
regex(3) Library Functions Manual regex(3)

NAME
regcomp, regexec, regerror, regfree − POSIX regex functions

LIBRARY
Standard C library (libc, −lc)

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *restrict preg, const char *restrict regex,

int cflags);

int regexec(const regex_t *restrict preg, const char *restrict string,

size_t nmatch, regmatch_t pmatch[_Nullable restrict .nmatch],

int eflags);

size_t regerror(int errcode, const regex_t *_Nullable restrict preg,

char errbuf[_Nullable restrict .errbuf_size],

size_t errbuf_size);

void regfree(regex_t *preg);

typedef struct {

size_t re_nsub; /* Number of parenthesized subexpressions */

} regex_t;

typedef struct {

regoff_t rm_so; /* Byte offset from start of string

to start of substring */

regoff_t rm_eo; /* Byte offset from start of string to

the first character after the end of

substring */

} regmatch_t;

typedef /* ... */ regoff_t;

DESCRIPTION
Compilation

regcomp() is used to compile a regular expression into a form that is suitable for subsequent regexec()

searches.

On success, the pattern buffer at *preg is initialized. regex is a null-terminated string. The locale must be

the same when running regexec().

After regcomp() succeeds, preg->re_nsub holds the number of subexpressions in regex. Thus, a value of

preg->re_nsub + 1 passed as nmatch to regexec() is sufficient to capture all matches.

cflags is the bitwise OR of zero or more of the following:

REG_EXTENDED

Use POSIX Extended Regular Expression syntax when interpreting regex. If not set, POSIX Basic

Regular Expression syntax is used.

REG_ICASE

Do not differentiate case. Subsequent regexec() searches using this pattern buffer will be case in-

sensitive.

REG_NOSUB

Report only overall success. regexec() will use only pmatch for REG_STARTEND, ignoring

nmatch.

Linux man-pages (unreleased) (date) 1



regex(3) Library Functions Manual regex(3)

REG_NEWLINE

Match-any-character operators don’t match a newline.

A nonmatching list ([^...]) not containing a newline does not match a newline.

Match-beginning-of-line operator (^) matches the empty string immediately after a newline, re-

gardless of whether eflags, the execution flags of regexec(), contains REG_NOTBOL.

Match-end-of-line operator ($) matches the empty string immediately before a newline, regardless

of whether eflags contains REG_NOTEOL.

Matching

regexec() is used to match a null-terminated string against the compiled pattern buffer in *preg, which must

have been initialised with regexec(). eflags is the bitwise OR of zero or more of the following flags:

REG_NOTBOL

The match-beginning-of-line operator always fails to match (but see the compilation flag

REG_NEWLINE above). This flag may be used when different portions of a string are passed to

regexec() and the beginning of the string should not be interpreted as the beginning of the line.

REG_NOTEOL

The match-end-of-line operator always fails to match (but see the compilation flag REG_NEW-

LINE above).

REG_STARTEND

Match [string + pmatch[0].rm_so, string + pmatch[0].rm_eo) instead of [string, string +

strlen(string)). This allows matching embedded NUL bytes and avoids a strlen(3) on known-

length strings. If any matches are returned (REG_NOSUB wasn’t passed to regcomp(), the

match succeeded, and nmatch > 0), they overwrite pmatch as usual, and the match offsets remain

relative to string (not string + pmatch[0].rm_so). This flag is a BSD extension, not present in

POSIX.

Match offsets

Unless REG_NOSUB was set for the compilation of the pattern buffer, it is possible to obtain match ad-

dressing information. pmatch must be dimensioned to have at least nmatch elements. These are filled in

by regexec() with substring match addresses. The offsets of the subexpression starting at the ith open

parenthesis are stored in pmatch[i]. The entire regular expression’s match addresses are stored in

pmatch[0]. (Note that to return the offsets of N subexpression matches, nmatch must be at least N+1.)

Any unused structure elements will contain the value −1.

Each rm_so element that is not −1 indicates the start offset of the next largest substring match within the

string. The relative rm_eo element indicates the end offset of the match, which is the offset of the first

character after the matching text.

regoff_t is a signed integer type capable of storing the largest value that can be stored in either an ptrdiff_t

type or a ssize_t type.

Error reporting

regerror() is used to turn the error codes that can be returned by both regcomp() and regexec() into error

message strings.

regerror() is passed the error code, errcode, the pattern buffer, preg, a pointer to a character string buffer,

errbuf , and the size of the string buffer, errbuf_size. It returns the size of the errbuf required to contain the

null-terminated error message string. If both errbuf and errbuf_size are nonzero, errbuf is filled in with

the first errbuf_size − 1 characters of the error message and a terminating null byte ('\0').

Freeing

regfree() deinitializes the pattern buffer at *preg, freeing any associated memory; *preg must have been ini-

tialized via regcomp().

RETURN VALUE
regcomp() returns zero for a successful compilation or an error code for failure.

Linux man-pages (unreleased) (date) 2



regex(3) Library Functions Manual regex(3)

regexec() returns zero for a successful match or REG_NOMATCH for failure.

ERRORS
The following errors can be returned by regcomp():

REG_BADBR

Invalid use of back reference operator.

REG_BADPAT

Invalid use of pattern operators such as group or list.

REG_BADRPT

Invalid use of repetition operators such as using '*' as the first character.

REG_EBRACE

Un-matched brace interval operators.

REG_EBRACK

Un-matched bracket list operators.

REG_ECOLLATE

Invalid collating element.

REG_ECTYPE

Unknown character class name.

REG_EEND

Nonspecific error. This is not defined by POSIX.

REG_EESCAPE

Trailing backslash.

REG_EPAREN

Un-matched parenthesis group operators.

REG_ERANGE

Invalid use of the range operator; for example, the ending point of the range occurs prior to the

starting point.

REG_ESIZE

Compiled regular expression requires a pattern buffer larger than 64 kB. This is not defined by

POSIX.

REG_ESPACE

The regex routines ran out of memory.

REG_ESUBREG

Invalid back reference to a subexpression.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safe localeregcomp(), regexec()

Thread safety MT-Safe envregerror()

Thread safety MT-Saferegfree()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Prior to POSIX.1-2008, regoff_t was required to be capable of storing the largest value that can be stored in

either an off_t type or a ssize_t type.

Linux man-pages (unreleased) (date) 3



regex(3) Library Functions Manual regex(3)

CAVEATS
re_nsub is only required to be initialized if REG_NOSUB wasn’t specified, but all known implementations

initialize it regardless.

Both regex_t and regmatch_t may (and do) have more members, in any order. Always reference them by

name.

EXAMPLES
#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <regex.h>

#define ARRAY_SIZE(arr) (sizeof((arr)) / sizeof((arr)[0]))

static const char *const str =

"1) John Driverhacker;\n2) John Doe;\n3) John Foo;\n";

static const char *const re = "John.*o";

int main(void)

{

static const char *s = str;

regex_t regex;

regmatch_t pmatch[1];

regoff_t off, len;

if (regcomp(&regex, re, REG_NEWLINE))

exit(EXIT_FAILURE);

printf("String = \"%s\"\n", str);

printf("Matches:\n");

for (unsigned int i = 0; ; i++) {

if (regexec(&regex, s, ARRAY_SIZE(pmatch), pmatch, 0))

break;

off = pmatch[0].rm_so + (s − str);

len = pmatch[0].rm_eo − pmatch[0].rm_so;

printf("#%zu:\n", i);

printf("offset = %jd; length = %jd\n", (intmax_t) off,

(intmax_t) len);

printf("substring = \"%.*s\"\n", len, s + pmatch[0].rm_so);

s += pmatch[0].rm_eo;

}

exit(EXIT_SUCCESS);

}

SEE ALSO
grep(1), regex(7)

The glibc manual section, Regular Expressions

Linux man-pages (unreleased) (date) 4


