
The LuaTEX pdf backend 1

1 The LUATEX PDF backend

1.1 Introduction

The original design of TEX has a clear separation between the front- and

backend code. In principle shipping out a page boils down to traversing

the to be shipped out box and translate the glyph, rule, glue, kern and list

nodes into positioning just glyphs and rules on a canvas. The dvi backend

is therefore relatively simple, as the dvi output format delegates the details

of font inclusion and such into the final format to other programs; it just

describes the pages.

Because we eventually want color and images too there is a mechanism

to pass additional information to postprocessing programs. One can insert

\specials with directives like insert image with name foo.jpg here. The

frontend as well as the backend are not really interested in what goes into

a special; the dvi postprocessor of course is.

The pdf backend is more complex as it immediately produces the final result

and as such it offers possibilities to insert verbatim code (\pdfliteral),

images (\pdfximage cum suis), reuse typeset content (\pdfxform cum suis),

annotations, destinations, threads and all kind of objects so there are all

kind of \pdf... commands. The way these were implemented prior to

0.82 violates the separation between front- and backend, an inheritance

from pdfTEX. Additional features like protrusion and expansion add to that

entanglement. However, because pdf is an evolving standard occasionally

we need to adapt the related code. A separation of code makes sure that

the frontend can become stable (and hopefully frozen) at some point.1

In LuaTEXwe already had startedmaking the separation again, like a cleaner

implementation of font expansion, but all these \pdf... commands were

still all over the place, leading to fuzzy dependencies, checks for backend

modes, etc. so a logical step was to clean this up. That way we can let

LuaTEX get a cleaner core constructed from traditional TEX, extended with

u�-TEX, Aleph/Omega, and LuaTEX functionality.

1 In practice nowadays that happens seldom because the pdf that LuaTEX produces is rather

simple and there are ways to adapt to the standard.



2 The LuaTEX pdf backend

1.2 Extensions

A first step was to turn generic (i.e. independent from a backend) func-

tionality, still sort of bound to Aleph and pdfTEX, into core functionality. A

second step was to reorganize the backend specific pdf code, i.e. move it

out of the core and into the extension group of commands. This extension

group is kind of special and originates in traditional TEX. It is the way to

add your own functionality to TEX the program.

As example Don Knuth added 4 extensions: \openout, \closeout, \write

and \special. The Aleph and pdfTEX engines put some functionality in

extensions and some in the core. This has to do with the fact that dealing

with variables in the extensions is not really handy as they are then seen

as (unexpandable) commands instead of integers, token lists etc. The write

related commands being there is just a side effect of demonstrating the

mechanism, because everything related to reading from files is in the core.

There is one property that sort of forces us to keep the writers there, and

that’s the \immediate prefix.2

In the process of separating we reshuffled the code base a bit and the cur-

rent use of the extensions mechanism still suits as an example but also pro-

vides us backward compatibility. However, new backend primitives will not

be added there but in specific plugins (if needed at all).

1.3 Concepts

The pdf backend has introduced two concepts into the core: (reuseable)

images and (reusable) content (wrapped in boxes). In good TEX tradition

these were implemented as whatsits (a node type for extensions) but this

also introduced an anomality in the handling of such nodes. Say that we

have a loop over a node list where we need to check dimensions of nodes.

We then get something like:

while n do

if n.id == glyph then

-- wd ht dp

elseif n.id == rule then

-- wd ht dp

elseif n.id == kern then

2 Unfortunately we’re stuck with that one (a deferred keyword would have been handier,

especially because some backend related commands also can be immediate.



The LuaTEX pdf backend 3

-- wd

elseif n.id == glue then

-- size stretch shrink

elseif n.id == whatsits then

if n.subtype == pdfxform then

-- wd ht dp

elseif n.subtype == pdfximage then

-- wd ht dp

end

end

n = n.next

end

So each time we need to check these two whatsit types. But as these two

concepts are rather generic there is no need to implement it this way. Of

course the backend has to provide the inclusion and reuse, but the frontend

is rather agnostic for this. And at the input end, in specifying these two

injects, we only have to make sure we pass the right information (so the

scanner might differentiate between backends).

In LuaTEX these two concepts have been promoted to core features:

\saveboxresource \pdfxform

\saveimageresource \pdfximage

\useboxresource \pdfrefxform

\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform

\lastsavedimageresourceindex \pdflastximage

\lastsavedimageresourcepages \pdflastximagepages

The index is to be considered just some number and is whatever the backend

plugin decides to use as identifier. These are no longer whatsits either, but

a special type of rule: after all, TEX is only interested in dimensions so the

previous code can be simplified to:

while n do

if n.id == glyph then

-- wd ht dp

elseif n.id == rule then

-- wd ht dp

elseif n.id == kern then

-- wd

elseif n.id == glue then



4 The LuaTEX pdf backend

-- size stretch shrink

end

n = n.next

end

A similar upgrade has been done with direction nodes that also were what-

sits. These are now normal nodes so instead of consulting whatsit subtypes

we can now just check the id of a node. It will be clear that both these

changes from whatsits to normal nodes already simplifies the code base.

The only consequence for the already existing rule (which in fact is also

something that needs to be dealt with in the backend, depending on the

target format) is that it now has subtype 0 while the box resource has sub-

type 1 and the image subtype 2.

If you still want to use the pdfTEX names you can do this:

\let\pdfxform \saveboxresource

\let\pdflastxform \lastsavedboxresourceindex

\let\pdfrefxform \useboxresource

\let\pdfximage \saveimageresource

\let\pdflastximage \lastsavedimageresourceindex

\let\pdflastximagepages\lastsavedimageresourcepages

\let\pdfrefximage \useimageresource

There are more commands promoted to core commands. The pdfTEX coun-

terparts are:

\let\pdfpagewidth \pagewidth

\let\pdfpageheight \pageheight

\let\pdfadjustspacing \adjustspacing

\let\pdfprotrudechars \protrudechars

\let\pdfnoligatures \ignoreligaturesinfont

\let\pdffontexpand \expandglyphsinfont

\let\pdfcopyfont \copyfont

\let\pdfnormaldeviate \normaldeviate

\let\pdfuniformdeviate \uniformdeviate

\let\pdfsetrandomseed \setrandomseed

\let\pdfrandomseed \randomseed



The LuaTEX pdf backend 5

\let\ifpdfabsnum \ifabsnum

\let\ifpdfabsdim \ifabsdim

\let\ifpdfprimitive \ifprimitive

\let\pdfprimitive \primitive

\let\pdfsavepos \savepos

\let\pdflastxpos \lastxpos

\let\pdflastypos \lastypos

\let\pdftexversion \luatexversion

\let\pdftexrevision \luatexrevision

\let\pdftexbanner \luatexbanner

\let\pdfoutput \outputmode

\let\pdfdraftmode \draftmode

\let\pdfpxdimen \pxdimen

\let\pdfinsertht \insertht

I won’t mention the ones that are gone. These were experimental anyway

and can easily be provided in TEX (using Lua).

1.4 Commands

There are many commands that start with \pdf and in the past many have

been added, some have been renamed, others removed. Instead of themany

we now have just one: \pdfextension. This is used as:

\pdfextension literal {1 0 0 2 0 0 cm}

\pdfextension obj {/foo (bar)}

So, we pass a keyword that tells what to scan for and what to do with it.

A backward compatible interface is easy to write. It delegates a bit more

management of these \pdf commands to the macro package but the respon-

sibility for dealing with such low level, error-prone calls is there anyway.

The full list of extensions is given here. The scanning after the keyword is

the same as for pdfTEX.

\protected\def\pdfliteral {\pdfextension literal }

\protected\def\pdfcolorstack {\pdfextension colorstack }



6 The LuaTEX pdf backend

\protected\def\pdfsetmatrix {\pdfextension setmatrix }

\protected\def\pdfsave {\pdfextension save\relax}

\protected\def\pdfrestore {\pdfextension restore\relax}

\protected\def\pdfobj {\pdfextension obj }

\protected\def\pdfrefobj {\pdfextension refobj }

\protected\def\pdfannot {\pdfextension annot }

\protected\def\pdfstartlink {\pdfextension startlink }

\protected\def\pdfendlink {\pdfextension endlink\relax}

\protected\def\pdfoutline {\pdfextension outline }

\protected\def\pdfdest {\pdfextension dest }

\protected\def\pdfthread {\pdfextension thread }

\protected\def\pdfstartthread {\pdfextension startthread }

\protected\def\pdfendthread {\pdfextension endthread\relax}

\protected\def\pdfinfo {\pdfextension info }

\protected\def\pdfcatalog {\pdfextension catalog }

\protected\def\pdfnames {\pdfextension names }

\protected\def\pdfincludechars {\pdfextension includechars }

\protected\def\pdffontattr {\pdfextension fontattr }

\protected\def\pdfmapfile {\pdfextension mapfile }

\protected\def\pdfmapline {\pdfextension mapline }

\protected\def\pdftrailer {\pdfextension trailer }

\protected\def\pdfglyphtounicode{\pdfextension glyphtounicode }

1.5 Variables

There are also lots of variables that influence the pdf backend. The most

important one is of course the one that sets the output mode. Well, that one

is gone and replaced by \outputmode. A value of 1 means that we produce

pdf.

One complication of variables is that (if we want to be compatible) we need

to have them as real TEX registers. However, most of them are optional so

an easy way out is to simply not define them in the engine. In order to be

able to deal with them as registers (backward compatible), we define them

as follows:

\edef\pdfcompresslevel {\pdfvariable compresslevel}

\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}

\edef\pdfdecimaldigits {\pdfvariable decimaldigits}

\edef\pdfgamma {\pdfvariable gamma}

\edef\pdfimageresolution {\pdfvariable imageresolution}



The LuaTEX pdf backend 7

\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}

\edef\pdfimagegamma {\pdfvariable imagegamma}

\edef\pdfimagehicolor {\pdfvariable imagehicolor}

\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}

\edef\pdfpkresolution {\pdfvariable pkresolution}

\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}

\edef\pdfinclusionerrorlevel{\pdfvariable inclusionerrorlevel}

\edef\pdfreplacefont {\pdfvariable replacefont}

\edef\pdfgentounicode {\pdfvariable gentounicode}

\edef\pdfpagebox {\pdfvariable pagebox}

\edef\pdfminorversion {\pdfvariable minorversion}

\edef\pdfuniqueresname {\pdfvariable uniqueresname}

\edef\pdfhorigin {\pdfvariable horigin}

\edef\pdfvorigin {\pdfvariable vorigin}

\edef\pdflinkmargin {\pdfvariable linkmargin}

\edef\pdfdestmargin {\pdfvariable destmargin}

\edef\pdfthreadmargin {\pdfvariable threadmargin}

\edef\pdfpagesattr {\pdfvariable pagesattr}

\edef\pdfpageattr {\pdfvariable pageattr}

\edef\pdfpageresources {\pdfvariable pageresources}

\edef\pdfxformattr {\pdfvariable xformattr}

\edef\pdfxformresources {\pdfvariable xformresources}

\edef\pdfpkmode {\pdfvariable pkmode}

You can now initialize them (although there is no real need as the values

shown are the initial values anyway):

\pdfcompresslevel 9

\pdfobjcompresslevel 1

\pdfdecimaldigits 3

\pdfgamma 1000

\pdfimageresolution 71

\pdfimageapplygamma 0

\pdfimagegamma 2200

\pdfimagehicolor 1

\pdfimageaddfilename 1

\pdfpkresolution 72

\pdfinclusioncopyfonts 0

\pdfinclusionerrorlevel 0

\pdfreplacefont 0



8 The LuaTEX pdf backend

\pdfgentounicode 0

\pdfpagebox 0

\pdfminorversion 4

\pdfuniqueresname 0

\pdfhorigin 1in

\pdfvorigin 1in

\pdflinkmargin 0pt

\pdfdestmargin 0pt

\pdfthreadmargin 0pt

Their removal from the frontend cleaned up the code and by making them

registers they are still compatible. A call to \pdfvariable will define an

internal register that keeps the value (of course this value can also be in-

fluenced by the backend itself). Although they are real registers they live

in a protected namespace:

\meaning\pdfcompresslevel

this gives:

macro:->[internal backend integer]

It’s really unfortunate that we have to be compatible because a setter and

getter would be nicer. I still consider writing the extension primitive in

Lua using the token scanner but it might not be possible to stay compatible

then. This is not so much an issue for ConTEXt which always had backend

drivers but other macro packages have users that expect the primitives (or

counterparts) to be available.

The backend can report back some properties and these were also accessi-

ble via \pdf... primitives. Because these are read-only variables another

primitive deals with them: \pdffeedback. That one can be used to define

compatible alternatives:

\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}

\def\pdfretval {\numexpr\pdffeedback retval\relax}

\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}

\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}

\def\pdfxformname {\numexpr\pdffeedback xformname}

\def\pdfcreationdate {\pdffeedback creationdate}

\def\pdffontname {\numexpr\pdffeedback fontname\relax}

\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}



The LuaTEX pdf backend 9

\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}

\def\pdfpageref {\numexpr\pdffeedback pageref\relax}

\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The variables are internal ones, so they are anonymous. When you ask for

the meaning of a few previously defined ones:

\meaning\pdfhorigin

\meaning\pdfcompresslevel

\meaning\pdfpageattr

you will get:

macro:->[internal backend dimension]

macro:->[internal backend integer]

macro:->[internal backend tokenlist]




