[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [PATCH v1 4/5] hw/ppc: SPI SEEPROM model
From: |
Stefan Berger |
Subject: |
Re: [PATCH v1 4/5] hw/ppc: SPI SEEPROM model |
Date: |
Fri, 8 Mar 2024 10:14:24 -0500 |
User-agent: |
Mozilla Thunderbird |
On 2/7/24 11:08, Chalapathi V wrote:
This commit implements a Serial EEPROM utilizing the Serial Peripheral
Interface (SPI) compatible bus.
Currently implemented SEEPROM is Microchip's 25CSM04 which provides 4 Mbits
of Serial EEPROM utilizing the Serial Peripheral Interface (SPI) compatible
bus. The device is organized as 524288 bytes of 8 bits each (512Kbyte) and
is optimized for use in consumer and industrial applications where reliable
and dependable nonvolatile memory storage is essential.
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
---
include/hw/ppc/pnv_spi_seeprom.h | 70 +++
hw/ppc/pnv_spi_seeprom.c | 989 +++++++++++++++++++++++++++++++
hw/ppc/meson.build | 1 +
3 files changed, 1060 insertions(+)
create mode 100644 include/hw/ppc/pnv_spi_seeprom.h
create mode 100644 hw/ppc/pnv_spi_seeprom.c
diff --git a/include/hw/ppc/pnv_spi_seeprom.h b/include/hw/ppc/pnv_spi_seeprom.h
new file mode 100644
index 0000000000..9739e411b5
--- /dev/null
+++ b/include/hw/ppc/pnv_spi_seeprom.h
@@ -0,0 +1,70 @@
+/*
+ * QEMU PowerPC SPI SEEPROM model
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This model implements a Serial EEPROM utilizing the Serial Peripheral
+ * Interface (SPI) compatible bus.
+ * Currently supported variants: 25CSM04.
+ * The Microchip Technology Inc. 25CSM04 provides 4 Mbits of Serial EEPROM
+ * utilizing the Serial Peripheral Interface (SPI) compatible bus. The device
+ * is organized as 524288 bytes of 8 bits each (512Kbyte) and is optimized
+ * for use in consumer and industrial applications where reliable and
+ * dependable nonvolatile memory storage is essential
+ */
+
+#ifndef PPC_PNV_SPI_SEEPROM_H
+#define PPC_PNV_SPI_SEEPROM_H
+
+#include "hw/ppc/pnv_spi_responder.h"
+#include "qom/object.h"
+
+#define TYPE_PNV_SPI_SEEPROM "pnv-spi-seeprom"
+
+OBJECT_DECLARE_SIMPLE_TYPE(PnvSpiSeeprom, PNV_SPI_SEEPROM)
+
+typedef struct xfer_buffer xfer_buffer;
+
+typedef struct PnvSpiSeeprom {
+ PnvSpiResponder resp;
+
+ char *file; /* SEEPROM image file */
+ uint8_t opcode; /* SEEPROM Opcode */
+ uint32_t addr; /* SEEPROM Command Address */
+ uint8_t rd_state; /* READ State Machine state variable */
+ bool locked; /* Security Register Locked */
+ bool controller_connected; /* Flag for master connection */
+ /*
+ * Device registers
+ * The 25CSM04 contains four types of registers that modulate device
+ * operation and/or report on the current status of the device. These
+ * registers are:
+ * STATUS register
+ * Security register
+ * Memory Partition registers (eight total)
+ * Identification register
+ */
+ uint8_t status0;
+ uint8_t status1;
+ /*
+ * The Security register is split into
+ * 1. user-programmable lockable ID page section.
+ * 2. The read-only section contains a preprogrammed, globally unique,
+ * 128-bit serial number.
+ */
+ uint8_t uplid[256];
+ uint8_t dsn[16];
+ uint8_t mpr[8];
+ uint8_t idr[5];
+} PnvSpiSeeprom;
+
+xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, int first, int last,
+ int bits, xfer_buffer *payload);
+void seeprom_connect_controller(PnvSpiResponder *resp, const char *port);
+void seeprom_disconnect_controller(PnvSpiResponder *resp);
+bool compute_addr(PnvSpiSeeprom *spi_resp, xfer_buffer *req_payload,
+ xfer_buffer *rsp_payload, int bits, uint32_t *data_offset);
+bool validate_addr(PnvSpiSeeprom *spi_resp);
+#endif /* PPC_PNV_SPI_SEEPROM_H */
diff --git a/hw/ppc/pnv_spi_seeprom.c b/hw/ppc/pnv_spi_seeprom.c
new file mode 100644
index 0000000000..ae46610045
--- /dev/null
+++ b/hw/ppc/pnv_spi_seeprom.c
@@ -0,0 +1,989 @@
+/*
+ * QEMU PowerPC SPI SEEPROM model
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "hw/ppc/pnv_spi_seeprom.h"
+#include <math.h>
+
+#define SPI_DEBUG(x)
+
+/*
+ * 2-byte STATUS register which is a combination of six nonvolatile bits of
+ * EEPROM and five volatile latches.
+ *
+ * status 0:
+ * bit 7 WPEN: Write-Protect Enable bit
+ * 1 = Write-Protect pin is enabled, 0 = Write-Protect pin is ignored
+ *
+ * bit 3-2 BP<1:0>: Block Protection bits
+ * 00 = No array write protection
+ * 01 = Upper quarter memory array protection
+ * 10 = Upper half memory array protection
+ * 11 = Entire memory array protection
+ *
+ * bit 1 WEL: Write Enable Latch bit
+ * 1 = WREN has been executed and device is enabled for writing
+ * 0 = Device is not write-enabled
+ *
+ * bit 0 RDY/BSY: Ready/Busy Status Latch bit
+ * 1 = Device is busy with an internal write cycle
+ * 0 = Device is ready for a new sequence
+ */
+#define STATUS0_WPEN 0x7
+#define STATUS0_BP 0x2
+#define STATUS0_WEL 0x1
+#define STATUS0_BUSY 0x0
+
+/*
+ * status 1:
+ * bit 7 WPM: Write Protection Mode bit(1)
+ * 1 = Enhanced Write Protection mode selected (factory default)
+ * 0 = Legacy Write Protection mode selected
+ *
+ * bit 6 ECS: Error Correction State Latch bit
+ * 1 = The previously executed read sequence did require the ECC
+ * 0 = The previous executed read sequence did not require the ECC
+ *
+ * bit 5 FMPC: Freeze Memory Protection Configuration bit(2)
+ * 1 = Memory Partition registers and write protection mode are permanently
+ * frozen and cannot be modified
+ * 0 = Memory Partition registers and write protection mode are not frozen
+ * and are modifiable
+ *
+ * bit 4 PREL: Partition Register Write Enable Latch bit
+ * 1 = PRWE has been executed and WMPR, FRZR and PPAB instructions are enabled
+ * 0 = WMPR, FRZR and PPAB instructions are disabled
+ *
+ * bit 3 PABP: Partition Address Boundary Protection bit
+ * 1 = Partition Address Endpoints set in Memory Partition registers
+ * cannot be modified
+ * 0 = Partition Address Endpoints set in Memory Partition registers
+ * are modifiable
+ *
+ * bit 0 RDY/BSY: Ready/Busy Status Latch bit
+ * 1 = Device is busy with an internal write cycle
+ * 0 = Device is ready for a new sequence
+ */
+#define STATUS1_WPM 0x7
+#define STATUS1_ECS 0x6
+#define STATUS1_FMPC 0x5
+#define STATUS1_PREL 0x4
+#define STATUS1_PABP 0x3
+#define STATUS1_BUSY 0x0
+
+/*
+ * MEMORY PARTITION REGISTERS
+ * Note 1: The MPR cannot be written if the FMPC bit has been set.
+ * 2: The Partition Endpoint Address bits cannot be written if the PABP
+ * bit has been set.
+ *
+ * bits 7-6 PB<1:0>: Partition Behavior bits(1)
+ * 00 = Partition is open and writing is permitted
+ * factory default is unprotected.
+ * 01 = Partition is always write-protected but can be reversed at a later
+ * time (software write-protected).
+ * 10 = Partition is write-protected only when WP pin is asserted
+ * (hardware write-protected).
+ * 11 = Partition is software write-protected and MPR is permanently locked
+ *
+ * bit 5-0 A<18:13>: Partition Endpoint Address bits(1, 2)
+ * 000000 = Endpoint address of partition is set to 01FFFh.
+ * 000001 = Endpoint address of partition is set to 03FFFh.
+ * ----
+ * 111110 = Endpoint address of partition is set to 7DFFFh.
+ * 111111 = Endpoint address of partition is set to 7FFFFh.
+ */
+#define MPR_PB 0x6
+#define MPR_PEA 0x5
+
+/* INSTRUCTION SET FOR 25CSM04 */
+#define RDSR 0x05
+#define WRBP 0x08
+#define WREN 0x06
+#define WRDI 0x04
+#define WRSR 0x01
+#define READ 0x03
+#define WRITE 0x0
+#define RDEX_CHLK 0x83
+#define WREX_LOCK 0x82
+#define RMPR 0x31
+#define PRWE 0x07
+#define PRWD 0x0A
+#define WMPR 0x32
+#define PPAB 0x34
+#define FRZR 0x37
+#define SPID 0x9F
+#define SRST 0x7C
+
+/* READ FSM state */
+#define ST_IDLE 0
+#define ST_READ 1
+#define ST_SEC_READ 2
+
+xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp,
+ int first, int last, int bits, xfer_buffer *payload)
+{
+ PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
+ uint32_t data_offset = 0;
+ int data_len = 0;
+ xfer_buffer *rsp_payload = NULL;
+ uint8_t *read_buf = NULL;
+ uint8_t *buf = NULL;
+ uint16_t idx;
+ bool failed = false;
Add empty line after variables declaration.
+ SPI_DEBUG(qemu_log("Received SPI request, first=%d, last=%d, bits=%d, "
+ "payload length=%d\n", first, last, bits, payload->len));
+ if (seeprom->controller_connected == false) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Controller is disconnected, invoke "
+ "connect method of spi_responder interface\n");
+ return rsp_payload;
+ }
+ if (rsp_payload == NULL) {
+ rsp_payload = xfer_buffer_new();
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, 0, payload->len);
+ memset(buf, 0xFF, payload->len);
+ /*
+ * SPI communication is always full-duplex, so the controller receives as
+ * many bits as it sends, although often both the responder and controller
+ * device ignores some incoming bits. To simulate half-duplex the
controller
+ * sends zeros to the responder when controller is receiving and ignores
+ * incoming data when the controller transmitting. So, a SPI response
should
+ * always have the same length in bits as the corresponding request.
+ */
+ if ((payload->len != ceil(bits / 8)) || (payload->len <= 0)) {
len is a uint32 and can never be < 0.
+ qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Payload size bits(%d) "
+ "Payload_len(%d bytes)\n", bits, payload->len);
+ return rsp_payload;
+ }
+ if ((bits % 8) != 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "non-8bit aligned SPI transfer is "
+ "unimplemented\n");
+ return rsp_payload;
+ }
+ /*
+ * Different scenarios for first and last SPI interface method parameters
+ *
+ * first(1) and last(1)
+ * SPI Controller can invoke spi_request with parameters first(1) and
+ * last(1), which indicates this is first and last spi_request in this
+ * transaction. This can be used when the valid data (excluding fake bytes)
+ * transmitted or received over SPI is less than or equal to 8 Bytes
+ *
+ * first(1) and last(0), # (required) first request
+ * first(0) and last(0), # (optional) in-between requests
+ * first(0) and last(0), # (optional) in-between requests
+ * ..
+ * ..
+ * first(0) and last(1), # (required) last request in the transaction
+ * SPI Controller can invoke spi_request multiple times with parameters
+ * first and last as shown in the sequence above for a transaction. This
+ * can be used when the valid data(excluding fake bytes) transmitted or
+ * received over SPI is more than 8 Bytes, SPI controller splits the
+ * transaction into multiple requests, this is due to TDR and RDR size(8B)
+ * restriction in SPI Controller.
+ */
+
+ /*
+ * check if first is "1", indicates a new incoming command sequence fetch
+ * the opcode and address from payload.
+ */
+ if (first == 1) {
+ /* Fetch opcode from offset 0 of payload */
+ xfer_buffer_read_ptr(payload, &read_buf, 0, 1);
+ seeprom->opcode = read_buf[0];
+ SPI_DEBUG(qemu_log("Command Opcode (0x%x)\n", seeprom->opcode));
+ /*
+ * Check if device is busy with internal write cycle, During this
+ * time, only the Read STATUS Register (RDSR) and the Write Ready/Busy
+ * Poll (WRBP) instructions will be executed by the device.
+ */
+ bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1);
+ bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1);
Variables should be declared at the top of the function or block.
+ if (((status0_busy == 1) || (status1_busy == 1)) &&
+ ((seeprom->opcode != RDSR) || (seeprom->opcode != WRBP))) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Busy with Internal Write Cycle, "
+ "opcode(0x%x) not executed\n", seeprom->opcode);
+ return rsp_payload;
+ }
+ /*
+ * Implement a state machine for READ sequence, to catch an error
+ * scenario when controller generates a new command sequence, with out
+ * properly terminating the READ sequence, as shown below
+ * first(1) and last(0), # READ command
+ * first(0) and last(0), # READ command continues
+ * ...
+ * first(1) and last(0,1), # New command sequence
+ * Not required to implement a state machine for write sequence as
+ * we can leverage status register for it
+ */
+ if (seeprom->rd_state != ST_IDLE) {
+ qemu_log_mask(LOG_GUEST_ERROR, "New Command Sequence with "
+ "opcode(0x%x)is ignored Previous READ sequence is "
+ "not terminated properly!!! Continuing the previous
"
+ "READ sequence\n", seeprom->opcode);
+ seeprom->opcode = (seeprom->rd_state == ST_READ) ? READ :
+ RDEX_CHLK;
+ } else {
+ /*
+ * For a new command sequence compute Address and data offset in
+ * xfer_buffer.
+ */
+ failed = compute_addr(seeprom, payload, rsp_payload, bits,
+ &data_offset);
+ /*
+ * Address computation failed, nothing to do further, just send
+ * response and return from here.
+ */ > + if (failed == true) {
if (failed) {
+ return rsp_payload;
+ }
+ }
+ } /* end of branch if (first == 1) */
add empty line here
+ switch (seeprom->opcode) {
+ case READ:
+ SPI_DEBUG(qemu_log("READ(0x%x), addr(0x%x)\n",
+ seeprom->opcode, seeprom->addr));
+ seeprom->rd_state = ST_READ;
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
+ "should be at least 1 Byte\n", data_len);
+ break;
+ }
+ /* Fill the buffer with the data read from image */
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ FILE *f;
Move variable decl to top of the block.
+ if (seeprom->file) {
+ f = fopen(seeprom->file, "rb+");
+ if (f) {
+ fseek(f, seeprom->addr, SEEK_SET);
Check return code.
+ int read_len = fread(buf, sizeof(uint8_t), data_len, f);
move variable declaration to top of block
+ if (read_len == data_len) {
+ SPI_DEBUG(qemu_log("Read %d bytes from seeprom\n",
+ read_len));
+ } else {
+ if (ferror(f)) {
+ SPI_DEBUG(qemu_log("Error reading seeprom\n"));
+ }
+ }
+ }
+ fclose(f);
+ }
+ /* Check if last is 0 and increase address by data length */
+ if (last == 0) {
+ seeprom->addr = (seeprom->addr & 0x7FFFF) + data_len;
+ } else {
+ seeprom->rd_state = ST_IDLE;
+ }
+ break;
+
+ case RDSR:
+ SPI_DEBUG(qemu_log("READ Status Register RDSR(0x%x)\n",
+ seeprom->opcode));
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
+ "should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ buf[0] = seeprom->status0;
+ if (data_len == 2) {
+ buf[1] = seeprom->status1;
+ }
+ break;
+
+ case WRBP:
+ SPI_DEBUG(qemu_log("Write Ready/Busy Poll WRBP(0x%x)\n",
+ seeprom->opcode));
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
+ "should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1);
+ bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1);
+ bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1);
variable declaration
+ if ((status0_busy == 1) || (status1_busy == 1)) {
+ buf[0] = 0xFF;
+ } else {
+ buf[0] = 0x00;
+ }
+ break;
+
+ case WREN:
+ SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WREN(0x%x)\n",
+ seeprom->opcode));
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 1);
+ break;
+
+ case WRDI:
+ SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WRDI(0x%x)\n",
+ seeprom->opcode));
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ break;
+
+ case WRSR:
+ SPI_DEBUG(qemu_log("Write STATUS Register WRSR(0x%x)\n",
+ seeprom->opcode));
+ if (extract8(seeprom->status0, STATUS0_WEL, 1) == 1) {
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ /* Mask and update status0/1 bytes */
+ xfer_buffer_read_ptr(payload, &read_buf, 1, 2);
+ seeprom->status0 = read_buf[0] & 0x8C;
+ /* 2nd Status Byte is optional */
+ if (data_len == 2) {
+ seeprom->status1 = read_buf[1] & 0x80;
+ }
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Set Write Enable Latch (WEL) "
+ "before doing WRSR\n");
+ }
+ break;
+
+ case SPID:
+ SPI_DEBUG(qemu_log("READ IDENTIFICATION REGISTER, SPID(0x%x)\n",
+ seeprom->opcode));
+ data_len = payload->len - data_offset;
Missing check here for data_len <= 0?
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ for (idx = 0; idx < data_len; idx++) {
+ buf[idx] = seeprom->idr[idx];
+ }
Use memcpy().
+ break;
+
+ case SRST:
+ SPI_DEBUG(qemu_log("Software Device Reset, SRST(0x%x)\n",
+ seeprom->opcode));
+ /*
+ * Note: The SRST instruction cannot interrupt the device while it is
+ * in a Busy state (Section 6.1.4 Ready/Busy Status Latch).
+ * This is already taken care when the command opcode is fetched
... taken care of ...
+ *
+ * 1.2 Device Default State
+ * 1.2.1 POWER-UP DEFAULT STATE
+ * The 25CSM04 default state upon power-up consists of:
+ * - Standby Power mode (CS = HIGH)
+ * - A high-to-low level transition on CS is required to enter the
+ * active state
+ `* - WEL bit in the STATUS register = 0
stray '`'
+ * - ECS bit in the STATUS register = 0
+ * - PREL bit in the STATUS register = 0
+ * - Ready/Busy (RDY/BUSY) bit in the STATUS register = 0, indicating
+ * the device is ready to accept a new instruction.
+ */
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_ECS, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_BUSY, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_BUSY, 1, 0);
+ break;
+
+ case WRITE:
+ SPI_DEBUG(qemu_log("WRITE(0x%x), addr(0x%x)\n",
+ seeprom->opcode, seeprom->addr));
+ if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, "
+ "ignoring WRITE instruction\n");
+ break;
+ }
+ /* Make sure data is at least 1 Byte */
You forgot to calculate data_len here it seems.
+ if (data_len <= 0) {
+ /*
+ * first last comment
+ * 0 0 data length cannot be 0
+ * 0 1 data length cannot be 0
+ * 1 0 data length can be 0, don't log error
+ * 1 1 data length cannot be 0
+ */
+ if (!(first == 1 && (last == 0))) {
(first == 1) so it looks like (last == 0)
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ }
+ /* Write into SEEPROM Array */
+ SPI_DEBUG(qemu_log("(%d)%s Write sequence\n", data_len,
+ (data_len == 1) ? "Byte" : "Bytes Page"));
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len);
+ if (seeprom->file) {
+ f = fopen(seeprom->file, "rb+");
+ if (f) {
+ fseek(f, seeprom->addr, SEEK_SET);
check return code
+ int write_len = fwrite(read_buf, sizeof(uint8_t), data_len, f);
variable declaration
+ if (write_len == data_len) {
+ SPI_DEBUG(qemu_log("Write %d bytes to seeprom\n",
+ write_len));
+ } else {
+ SPI_DEBUG(qemu_log("Failed to write seeprom\n"));
+ }
+ }
+ fclose(f);
+ }
+ /* Increase offset in the page */
+ seeprom->addr += data_len;
+ /* Check if last is 1 and end the sequence */
+ if (last == 1) {
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ }
+ break;
+
+ case RMPR:
+ SPI_DEBUG(qemu_log("RMPR(0x%x) for MPR[%d]\n", seeprom->opcode,
+ extract8(seeprom->addr, 16, 2)));
+ data_len = payload->len - data_offset
It may be worth considering another switch statement before this one
where you do this repetitive data_len handling just once:
switch (seeprom->opcode) {
case READ:
...
case RMPR:
case WMPR:
case PPAB:
data_len = payload->len - data_offset;
if (data_len <= 0) {
qem_log_mask(LOG_GUEST_ERROR, "%s: Insufficient number of
bytes: %d", __func__, data_len););
return NULL;
}
break;
default:
/* does not access payload */
}
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1);
+ buf[0] = seeprom->mpr[extract8(seeprom->addr, 16, 2)];
What is '16' in this case (used agaoin below also)? Add comment or
define a constant?
+ break;
+
+ case PRWE:
+ SPI_DEBUG(qemu_log("Set Memory Partition Write Enable Latch "
+ "PRWE(0x%x)\n", seeprom->opcode));
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 1);
+ break;
+
+ case PRWD:
+ SPI_DEBUG(qemu_log("Reset Memory Partition Write Enable Latch "
+ "PRWD(0x%x)\n", seeprom->opcode));
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case WMPR:
+ SPI_DEBUG(qemu_log("Write Memory Partition Register[%d] WMPR(0x%x)\n",
+ extract8(seeprom->addr, 16, 2), seeprom->opcode));
+ /*
+ * Once the WEL and PREL bits in the STATUS register have been set to
+ * 1, the Memory Partition registers can be programmed provided that
+ * the FMPC bit in the STATUS register has not already been set to a
+ * logic 1.
+ */
+ if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "ignoring Write to MPR\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
+ if (extract8(seeprom->status1, STATUS1_PABP, 1) == 1) {
+ /* Partition Address Boundaries Protected */
+ seeprom->mpr[extract8(seeprom->addr, 16, 2)] =
+ ((read_buf[0] >> 6) & 0x3);
+ } else {
+ seeprom->mpr[extract8(seeprom->addr, 16, 2)] = read_buf[0];
+ }
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case PPAB:
+ SPI_DEBUG(qemu_log("Protect Partition Address Boundaries PPAB(0x%x)\n",
+ seeprom->opcode));
+ if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Ignoring PPAB command\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
+ if (read_buf[0] == 0xFF) {
+ seeprom->status1 = deposit32(seeprom->status1,
+ STATUS1_PABP, 1, 1);
+ } else if (read_buf[0] == 0x0) {
+ seeprom->status1 = deposit32(seeprom->status1,
+ STATUS1_PABP, 1, 0);
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Data Byte(0x%x), "
+ "should be 0x0 or 0xFF\n", read_buf[0]);
+ }
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case FRZR:
+ SPI_DEBUG(qemu_log("Freeze Memory Protection Configuration "
+ "FRZR(0x%x)\n", seeprom->opcode));
+ if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "ignoring FRZR command\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
+ if (read_buf[0] == 0xD2) {
+ seeprom->status1 = deposit32(seeprom->status1,
+ STATUS1_FMPC, 1, 1);
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid Confirmation Data "
+ "byte(0x%x), expecting 0xD2", read_buf[0]);
+ }
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case RDEX_CHLK:
+ SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode));
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
byte not Byte -- everywhere
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ if (extract8(seeprom->addr, 10, 1) == 0) {
+ /* RDEX */
+ seeprom->rd_state = ST_SEC_READ;
+ for (idx = 0; idx < data_len; idx++) {
Probably the same and IMO easier to follow:
sidx = seeprom->addr & 0x1ff;
if (sidx <= 0xff)
buf[idx] = seeprom->dsn[sidx]
else
buf[idx] = seeprom->uplid[sidx & 0xff];
+ if (extract32(seeprom->addr, 0, 9) <= 0xFF) {
+ buf[idx] = seeprom->dsn[extract8(seeprom->addr, 0, 8)];
+ } else {
+ buf[idx] = seeprom->uplid[extract8(seeprom->addr, 0, 8)];
+ }
+ seeprom->addr = deposit32(seeprom->addr, 0, 9,
+ ((extract32(seeprom->addr, 0, 9)) + 1));
I wonder what this is doing ...
seeprom->addr = (seeprom->addr & ~0x1ff) | ((seeprom->addr + 1) & 0x1ff)
+ }
+ if (last == 1) {
+ seeprom->rd_state = ST_IDLE;
+ } else {
+ /* CHLK */
+ if (seeprom->locked == true) {
if (seeprom->locked)
+ buf[0] = 0x01;
+ } else {
+ buf[0] = 0x00;
+ }
+ }
+ }
+ break;
+
+ case WREX_LOCK:
+ SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode));
+ if (seeprom->locked == true) {
if (seeprom->locked)
+ qemu_log_mask(LOG_GUEST_ERROR, "Device is already Locked, "
+ "command is ignored\n");
+ break;
+ }
+ if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, "
+ "command is ignored\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len);
+ if (extract8(seeprom->addr, 10, 1) == 0) {
Can you add a comment why bit 10 must be 0?
+ /* WREX */
+ for (idx = 0; idx < data_len; idx++) {
+ seeprom->uplid[extract8(seeprom->addr, 0, 8)] = read_buf[idx];
+ /* Increase address with the page, and let it rool over */
you mean 'roll' over ? not sure what this means, though.
+ seeprom->addr = deposit32(seeprom->addr, 0, 8,
+ ((extract32(seeprom->addr, 0, 8)) + 1));
Are you just advancing the addr by '1' but then only modifying the
lowest 9 bit and never touching bit 9?
+ }
+ } else {
+ /*
+ * LOCK (82h) instruction is clocked in on the SI line, followed
+ * by a fake address where bits A[23:0] are don't care bits with
+ * the exception that bit A10 must be set to 1. Finally, a
+ * confirmation data byte of xxxx_xx1xb is sent
+ */
+ if ((buf[0] & 0x02) == 0x2) {
+ seeprom->locked = true;
+ }
+ }
+ break;
+
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid instruction(0x%x)\n",
+ seeprom->opcode);
+ } /* end of switch */
+ return rsp_payload;
+} /* end of seeprom_spi_request */
+
+void seeprom_connect_controller(PnvSpiResponder *resp, const char *port)
+{
+ PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
+ seeprom->controller_connected = true;
+}
+
+void seeprom_disconnect_controller(PnvSpiResponder *resp)
+{
+ PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
+ /* This method is invoked when Controller wants to deslect responder */
This method is called when the controller wants to deselect the responder
+ seeprom->controller_connected = false;
+ seeprom->rd_state = ST_IDLE; /* Reset Read state */
+ if (seeprom->opcode == WRITE) { /* Reset Write enable */
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ }
+}
+
+/*
+ * Method : compute_addr
+ * This method is used to compute address and data offset for supported
+ * opcodes and only invoked when a valid new command sequence starts aka
+ * first is 1.
+ */
+bool compute_addr(PnvSpiSeeprom *seeprom, xfer_buffer *req_payload,
+ xfer_buffer *rsp_payload, int bits, uint32_t *data_offset)
remove additional space: uint32_t *data_offset
+{
+ bool addr_wr_protected = false;
+ uint8_t *read_buf = NULL;
+ *data_offset = 0;
move below variable declarations
+ bool failed = false;
+
+ xfer_buffer_read_ptr(req_payload, &read_buf, 1, 3);
+ switch (seeprom->opcode) {
+ case READ:
+ case WRITE:
+ SPI_DEBUG(qemu_log("Compute address and payload buffer data offset "
+ "for %s\n", (seeprom->opcode == READ) ? "READ" : "WRITE"));
+ /* command size is 4 bytes for READ/WRITE, data_offset is 4 */
+ *data_offset = 4;
+
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /*
+ * Fetch address from size 24 bit from offset 1,2,3 of payload
+ * and mask of higher 5 bits as valid memory array size is 512KB
+ */
+ seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
+ seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]);
+ seeprom->addr = deposit32(seeprom->addr, 16, 8,
+ (read_buf[0] & 0x7));
seeprom->addr = ((read_buf[0] & 7) << 16) | (read_buf[1] << 8) |
read_buf[2];
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ }
+ if (seeprom->opcode == WRITE) {
+ addr_wr_protected = validate_addr(seeprom);
+ if (addr_wr_protected) {
+ qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is Write
"
+ "protected\n", seeprom->addr);
+ failed = true;
+ }
+ }
+ break;
+
+ case RDSR:
+ case WRBP:
+ case WRSR:
+ case SPID:
+ /*
+ * command size is 1 bytes for RDSR, WRBP, WRSR, SPID. So data_offset
+ * is 1
+ */
+ *data_offset = 1;
+ break;
+
+ case RMPR:
+ case WMPR:
+ SPI_DEBUG(qemu_log("Compute MPR address for %s MPR\n",
+ (seeprom->opcode == RMPR) ? "READ" : "WRITE"));
+ /* command size is 4 bytes for WMPR/RMPR, data_offset is 4 */
+ *data_offset = 4;
+
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /*
+ * The address for each Memory Partition register is embedded into
+ * the first address byte sent to the device,in bit positions A18
+ * through A16.
+ */
+ seeprom->addr = deposit32(seeprom->addr, 0, 15, 0);
+ seeprom->addr = deposit32(seeprom->addr, 16, 8,
+ (read_buf[0] & 0x7));
Imo the following would be better to read and understand:
seeprom->addr = (read_buf[0] & 7) << 16;
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ }
+ break;
+
+ case PPAB:
+ case FRZR:
+ SPI_DEBUG(qemu_log("Validate if addr[15:0] is %s\n",
+ (seeprom->opcode == PPAB) ? "0xCCFF for PPAB" :
+ "0xAA40 for FRZR"));
+ /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */
+ *data_offset = 4;
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /* Address bits A23-A16 are ignored. */
+ seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
+ seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]);
+ seeprom->addr = deposit32(seeprom->addr, 16, 8, 0);
seeprom->addr = (read_buf[1] << 8) | read_buf[2];
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ break;
+ }
+ /* Address bits A15-A0 must be set to CC55h. */
+ if ((seeprom->opcode == PPAB) &&
+ (extract32(seeprom->addr, 0, 15) != 0xCC55)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for
"
+ "PPAB\n", extract32(seeprom->addr, 0, 15));
+ failed = true;
+ }
+ /* Address bits A15-A0 must be set to AA40h. */
+ if ((seeprom->opcode == FRZR) &&
+ (extract32(seeprom->addr, 0, 15) != 0xAA40)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for
"
+ "FRZR\n", extract32(seeprom->addr, 0, 15));
+ failed = true;
+ }
+ break;
+
+ case RDEX_CHLK:
+ case WREX_LOCK:
+ SPI_DEBUG(qemu_log("Compute Address for Security reg command\n"));
+ /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */
+ *data_offset = 4;
+
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /*
+ * RDEX : A[23:9] are don't care bits, except A10 which must be a
+ * logic 0.
+ * WREX : A[23:9] are don't care bits, except A10 which must be a
+ * logic 0 and A8 which must be a logic 1 to address the
+ * second Security register byte that is user programmable.
+ * CHLK : A[23:0] are don't care bits, except A10 which must be a
+ * logic 1.
+ * LOCK : A[23:0] are don't care bits, except A10 which must be a
+ * logic 1.
+ */
+ seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
+ seeprom->addr = deposit32(seeprom->addr, 8, 8,
+ (read_buf[1] & 0x05));
+ seeprom->addr = deposit32(seeprom->addr, 16, 8, 0);
seeprom->addr = ((read_buf[1] & 0x5) << 8) | read_buf[2];
+ SPI_DEBUG(qemu_log("Received Command %s\n",
+ (seeprom->opcode == RDEX_CHLK)
+ ? (extract32(seeprom->addr, 10, 1) ?
+ "CHLK : Check Lock Status of Security Register" :
+ "RDEX : Read from the Security Register")
+ : (extract32(seeprom->addr, 10, 1) ?
+ "LOCK : Lock the Security Register (permanent)" :
+ "WREX : Write to the Security Register")));
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ }
+
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 10, 1) == 0)) {
+ /*
+ * WREX
+ * In Legacy Write Protection mode, the Security register is
+ * write-protected when the BP <1:0> bits (bits 3-2 byte0) of
+ * the STATUS register = 11.
+ */
+ if (extract8(seeprom->status1, STATUS1_WPM, 1) == 0) {
+ addr_wr_protected = validate_addr(seeprom);
+ } else {
+ if (extract32(seeprom->addr, 0, 9) <= 0xFF) {
+ addr_wr_protected = true;
+ }
+ }
+ if (addr_wr_protected) {
+ qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is "
+ "Write protected\n", seeprom->addr);
+ failed = true;
+ }
+ }
+ break;
+ } /* end of switch */
+ return failed;
+} /* end of method compute_addr */
+
+/*
+ * Method : validate_addr
+ * This method validates whether SEEPROM address is write protected or not
+ */
+
+bool validate_addr(PnvSpiSeeprom *seeprom)
+{
+ bool addr_wr_protected = false;
+ uint8_t mpr_idx = 0;
+
+ if (extract8(seeprom->status1, STATUS1_WPM, 1) == 1) {
+ /*
+ * enhanced write protection
+ * Memory partition register Bit5 through bit0 contain the Partition
+ * Endpoint Address of A18:A13, where A12:A0 are a logic "1". For
+ * example, if the first partition of the memory array is desired to
+ * stop after 128-Kbit of memory, that end point address is 03FFFh. The
+ * corresponding A18:A13 address bits to be loaded into MPR0 are
+ * therefore 000001b. The eight MPRs are each decoded sequentially by
+ * the device, starting with MPR0. Each MPR should be set to a
+ * Partition Endpoint Address greater than the ending address of the
+ * previous MPR. If a higher order MPR sets a Partition Endpoint
Address
+ * less than or equal to the ending address of a lower order MPR, that
+ * higher order MPR is ignored and no protection is set by it's
+ * contents.
+ */
+ for (mpr_idx = 0; mpr_idx < 8; mpr_idx++) {
+ if ((extract32(seeprom->addr, 13, 6)) <=
+ (extract8(seeprom->mpr[mpr_idx], MPR_PEA, 1))) {
+ switch (extract8(seeprom->mpr[mpr_idx], MPR_PB, 1)) {
Don't you have to extract 2 bits for the case values 0..3 below?
+ case 0:
+ /*
+ * 0b00 = Partition is open and writing is permitted
+ * (factory default is unprotected).
+ */
+ addr_wr_protected = false;
+ break;
+ case 1:
+ /*
+ * 0b01 = Partition is always write-protected but can be
+ * reversed at a later time (software write-protected).
+ */
+ addr_wr_protected = true;
+ break;
+ case 2:
+ /*
+ * 0b10 = Partition is write-protected only when WP pin is
+ * asserted (hardware write-protected).
+ */
+ addr_wr_protected = false;
+ break;
+ case 3:
+ /*
+ * 0b11 = Partition is software write-protected and Memory
+ * Partition register is permanently locked.
+ */
+ addr_wr_protected = true;
+ break;
+ } /* end of switch */
+ break; /* break from for loop. */
+ }
+ } /* end of for loop */
+ } else {
+ /* Legacy write protection mode */
+ switch (extract8(seeprom->status0, STATUS0_BP, 2)) {
2 bits extracted -- good
+ case 0:
+ /*
+ * 0b00 = No array write protection
+ * EEPROM None
+ * Security Register 00000h - 000FFh
+ */
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
+ addr_wr_protected = true;
+ }
+ break;
+ case 1:
+ /*
+ * 0b01 = Upper quarter memory array protection
+ * EEPROM 60000h - 7FFFFh
+ * Security Register 00000h - 000FFh
+ */
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
+ addr_wr_protected = true;
+ } else if ((seeprom->opcode == WRITE) &&
+ (extract32(seeprom->addr, 0, 19) <= 0x60000)) {
+ addr_wr_protected = true;
+ }
+ break;
+ case 2:
+ /*
+ * 0b10 = Upper half memory array protection
+ * EEPROM 40000h - 7FFFFh
+ * Security Register 00000h - 000FFh
+ */
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
+ addr_wr_protected = true;
+ } else if ((seeprom->opcode == WRITE) &&
+ (extract32(seeprom->addr, 0, 19) <= 0x40000)) {
+ addr_wr_protected = true;
+ }
+ break;
+ case 3:
+ /*
+ * 0b11 = Entire memory array protection
+ * EEPROM 00000h - 7FFFFh
+ * Security Register 00000h - 001FFh
+ */
+ addr_wr_protected = true;
+ break;
+ } /* end of switch */
+ }
+ return addr_wr_protected;
+} /* end of validate_addr */
+
+static void pnv_spi_seeprom_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ PnvSpiResponderClass *resp_class = PNV_SPI_RESPONDER_CLASS(klass);
+
+ resp_class->connect_controller = seeprom_connect_controller;
+ resp_class->disconnect_controller = seeprom_disconnect_controller;
+ resp_class->request = seeprom_spi_request;
+
+ dc->desc = "PowerNV SPI SEEPROM";
+ dc->bus_type = TYPE_SPI_BUS;
+}
+
+static const TypeInfo pnv_spi_seeprom_info = {
+ .name = TYPE_PNV_SPI_SEEPROM,
+ .parent = TYPE_PNV_SPI_RESPONDER,
+ .instance_size = sizeof(PnvSpiSeeprom),
+ .class_init = pnv_spi_seeprom_class_init,
+};
+
+static void pnv_spi_seeprom_register_types(void)
+{
+ type_register_static(&pnv_spi_seeprom_info);
+}
+
+type_init(pnv_spi_seeprom_register_types);
diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build
index de25cac763..2c1ef0c937 100644
--- a/hw/ppc/meson.build
+++ b/hw/ppc/meson.build
@@ -55,6 +55,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files(
'pnv_pnor.c',
'pnv_spi_responder.c',
'pnv_spi_controller.c',
+ 'pnv_spi_seeprom.c',
))
# PowerPC 4xx boards
ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
[Prev in Thread] |
Current Thread |
[Next in Thread] |
- Re: [PATCH v1 4/5] hw/ppc: SPI SEEPROM model,
Stefan Berger <=