[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [PATCH] disas: Remove libvixl disassembler
From: |
Claudio Fontana |
Subject: |
Re: [PATCH] disas: Remove libvixl disassembler |
Date: |
Fri, 3 Jun 2022 19:26:50 +0200 |
User-agent: |
Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/20100101 Thunderbird/91.4.0 |
On 6/3/22 18:42, Thomas Huth wrote:
> The disassembly via capstone should be superiour to our old vixl
> sources nowadays, so let's finally cut this old disassembler out
> of the QEMU source tree.
>
> Signed-off-by: Thomas Huth <thuth@redhat.com>
agreed, one thought: at the time I added this thing, I had to add C++
compilation support,
maybe something we can now drop if there are no more C++ users?
Not sure how that evolved through the meson move.
Thanks,
Claudio
> ---
> See also the discussions here:
> - https://lists.gnu.org/archive/html/qemu-devel/2022-06/msg00428.html
> - https://lists.nongnu.org/archive/html/qemu-devel/2018-05/msg03416.html
>
> meson.build | 4 -
> disas/libvixl/vixl/a64/assembler-a64.h | 4624 --------------------
> disas/libvixl/vixl/a64/constants-a64.h | 2116 ---------
> disas/libvixl/vixl/a64/cpu-a64.h | 83 -
> disas/libvixl/vixl/a64/decoder-a64.h | 275 --
> disas/libvixl/vixl/a64/disasm-a64.h | 177 -
> disas/libvixl/vixl/a64/instructions-a64.h | 757 ----
> disas/libvixl/vixl/code-buffer.h | 113 -
> disas/libvixl/vixl/compiler-intrinsics.h | 155 -
> disas/libvixl/vixl/globals.h | 155 -
> disas/libvixl/vixl/invalset.h | 775 ----
> disas/libvixl/vixl/platform.h | 39 -
> disas/libvixl/vixl/utils.h | 286 --
> include/exec/poison.h | 2 -
> disas.c | 3 -
> target/arm/cpu.c | 7 -
> MAINTAINERS | 4 -
> disas/arm-a64.cc | 101 -
> disas/libvixl/LICENCE | 30 -
> disas/libvixl/README | 11 -
> disas/libvixl/meson.build | 7 -
> disas/libvixl/vixl/a64/decoder-a64.cc | 877 ----
> disas/libvixl/vixl/a64/disasm-a64.cc | 3495 ---------------
> disas/libvixl/vixl/a64/instructions-a64.cc | 622 ---
> disas/libvixl/vixl/compiler-intrinsics.cc | 144 -
> disas/libvixl/vixl/utils.cc | 142 -
> disas/meson.build | 5 -
> scripts/clean-header-guards.pl | 4 +-
> scripts/clean-includes | 2 +-
> scripts/coverity-scan/COMPONENTS.md | 3 -
> 30 files changed, 3 insertions(+), 15015 deletions(-)
> delete mode 100644 disas/libvixl/vixl/a64/assembler-a64.h
> delete mode 100644 disas/libvixl/vixl/a64/constants-a64.h
> delete mode 100644 disas/libvixl/vixl/a64/cpu-a64.h
> delete mode 100644 disas/libvixl/vixl/a64/decoder-a64.h
> delete mode 100644 disas/libvixl/vixl/a64/disasm-a64.h
> delete mode 100644 disas/libvixl/vixl/a64/instructions-a64.h
> delete mode 100644 disas/libvixl/vixl/code-buffer.h
> delete mode 100644 disas/libvixl/vixl/compiler-intrinsics.h
> delete mode 100644 disas/libvixl/vixl/globals.h
> delete mode 100644 disas/libvixl/vixl/invalset.h
> delete mode 100644 disas/libvixl/vixl/platform.h
> delete mode 100644 disas/libvixl/vixl/utils.h
> delete mode 100644 disas/arm-a64.cc
> delete mode 100644 disas/libvixl/LICENCE
> delete mode 100644 disas/libvixl/README
> delete mode 100644 disas/libvixl/meson.build
> delete mode 100644 disas/libvixl/vixl/a64/decoder-a64.cc
> delete mode 100644 disas/libvixl/vixl/a64/disasm-a64.cc
> delete mode 100644 disas/libvixl/vixl/a64/instructions-a64.cc
> delete mode 100644 disas/libvixl/vixl/compiler-intrinsics.cc
> delete mode 100644 disas/libvixl/vixl/utils.cc
>
> diff --git a/meson.build b/meson.build
> index bc6234c85e..3daebae207 100644
> --- a/meson.build
> +++ b/meson.build
> @@ -246,7 +246,6 @@ endif
> add_project_arguments('-iquote', '.',
> '-iquote', meson.current_source_dir(),
> '-iquote', meson.current_source_dir() / 'include',
> - '-iquote', meson.current_source_dir() /
> 'disas/libvixl',
> language: ['c', 'cpp', 'objc'])
>
> link_language = meson.get_external_property('link_language', 'cpp')
> @@ -2330,7 +2329,6 @@ config_target_mak = {}
>
> disassemblers = {
> 'alpha' : ['CONFIG_ALPHA_DIS'],
> - 'arm' : ['CONFIG_ARM_DIS'],
> 'avr' : ['CONFIG_AVR_DIS'],
> 'cris' : ['CONFIG_CRIS_DIS'],
> 'hexagon' : ['CONFIG_HEXAGON_DIS'],
> @@ -2352,8 +2350,6 @@ disassemblers = {
> }
> if link_language == 'cpp'
> disassemblers += {
> - 'aarch64' : [ 'CONFIG_ARM_A64_DIS'],
> - 'arm' : [ 'CONFIG_ARM_DIS', 'CONFIG_ARM_A64_DIS'],
> 'mips' : [ 'CONFIG_MIPS_DIS', 'CONFIG_NANOMIPS_DIS'],
> }
> endif
> diff --git a/disas/libvixl/vixl/a64/assembler-a64.h
> b/disas/libvixl/vixl/a64/assembler-a64.h
> deleted file mode 100644
> index fda5ccc6c7..0000000000
> --- a/disas/libvixl/vixl/a64/assembler-a64.h
> +++ /dev/null
> @@ -1,4624 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_A64_ASSEMBLER_A64_H_
> -#define VIXL_A64_ASSEMBLER_A64_H_
> -
> -
> -#include "vixl/globals.h"
> -#include "vixl/invalset.h"
> -#include "vixl/utils.h"
> -#include "vixl/code-buffer.h"
> -#include "vixl/a64/instructions-a64.h"
> -
> -namespace vixl {
> -
> -typedef uint64_t RegList;
> -static const int kRegListSizeInBits = sizeof(RegList) * 8;
> -
> -
> -// Registers.
> -
> -// Some CPURegister methods can return Register or VRegister types, so we
> need
> -// to declare them in advance.
> -class Register;
> -class VRegister;
> -
> -class CPURegister {
> - public:
> - enum RegisterType {
> - // The kInvalid value is used to detect uninitialized static instances,
> - // which are always zero-initialized before any constructors are called.
> - kInvalid = 0,
> - kRegister,
> - kVRegister,
> - kFPRegister = kVRegister,
> - kNoRegister
> - };
> -
> - CPURegister() : code_(0), size_(0), type_(kNoRegister) {
> - VIXL_ASSERT(!IsValid());
> - VIXL_ASSERT(IsNone());
> - }
> -
> - CPURegister(unsigned code, unsigned size, RegisterType type)
> - : code_(code), size_(size), type_(type) {
> - VIXL_ASSERT(IsValidOrNone());
> - }
> -
> - unsigned code() const {
> - VIXL_ASSERT(IsValid());
> - return code_;
> - }
> -
> - RegisterType type() const {
> - VIXL_ASSERT(IsValidOrNone());
> - return type_;
> - }
> -
> - RegList Bit() const {
> - VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
> - return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
> - }
> -
> - unsigned size() const {
> - VIXL_ASSERT(IsValid());
> - return size_;
> - }
> -
> - int SizeInBytes() const {
> - VIXL_ASSERT(IsValid());
> - VIXL_ASSERT(size() % 8 == 0);
> - return size_ / 8;
> - }
> -
> - int SizeInBits() const {
> - VIXL_ASSERT(IsValid());
> - return size_;
> - }
> -
> - bool Is8Bits() const {
> - VIXL_ASSERT(IsValid());
> - return size_ == 8;
> - }
> -
> - bool Is16Bits() const {
> - VIXL_ASSERT(IsValid());
> - return size_ == 16;
> - }
> -
> - bool Is32Bits() const {
> - VIXL_ASSERT(IsValid());
> - return size_ == 32;
> - }
> -
> - bool Is64Bits() const {
> - VIXL_ASSERT(IsValid());
> - return size_ == 64;
> - }
> -
> - bool Is128Bits() const {
> - VIXL_ASSERT(IsValid());
> - return size_ == 128;
> - }
> -
> - bool IsValid() const {
> - if (IsValidRegister() || IsValidVRegister()) {
> - VIXL_ASSERT(!IsNone());
> - return true;
> - } else {
> - // This assert is hit when the register has not been properly
> initialized.
> - // One cause for this can be an initialisation order fiasco. See
> - // https://isocpp.org/wiki/faq/ctors#static-init-order for some
> details.
> - VIXL_ASSERT(IsNone());
> - return false;
> - }
> - }
> -
> - bool IsValidRegister() const {
> - return IsRegister() &&
> - ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
> - ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
> - }
> -
> - bool IsValidVRegister() const {
> - return IsVRegister() &&
> - ((size_ == kBRegSize) || (size_ == kHRegSize) ||
> - (size_ == kSRegSize) || (size_ == kDRegSize) ||
> - (size_ == kQRegSize)) &&
> - (code_ < kNumberOfVRegisters);
> - }
> -
> - bool IsValidFPRegister() const {
> - return IsFPRegister() && (code_ < kNumberOfVRegisters);
> - }
> -
> - bool IsNone() const {
> - // kNoRegister types should always have size 0 and code 0.
> - VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
> - VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
> -
> - return type_ == kNoRegister;
> - }
> -
> - bool Aliases(const CPURegister& other) const {
> - VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
> - return (code_ == other.code_) && (type_ == other.type_);
> - }
> -
> - bool Is(const CPURegister& other) const {
> - VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
> - return Aliases(other) && (size_ == other.size_);
> - }
> -
> - bool IsZero() const {
> - VIXL_ASSERT(IsValid());
> - return IsRegister() && (code_ == kZeroRegCode);
> - }
> -
> - bool IsSP() const {
> - VIXL_ASSERT(IsValid());
> - return IsRegister() && (code_ == kSPRegInternalCode);
> - }
> -
> - bool IsRegister() const {
> - return type_ == kRegister;
> - }
> -
> - bool IsVRegister() const {
> - return type_ == kVRegister;
> - }
> -
> - bool IsFPRegister() const {
> - return IsS() || IsD();
> - }
> -
> - bool IsW() const { return IsValidRegister() && Is32Bits(); }
> - bool IsX() const { return IsValidRegister() && Is64Bits(); }
> -
> - // These assertions ensure that the size and type of the register are as
> - // described. They do not consider the number of lanes that make up a
> vector.
> - // So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
> - // does not imply Is1D() or Is8B().
> - // Check the number of lanes, ie. the format of the vector, using methods
> such
> - // as Is8B(), Is1D(), etc. in the VRegister class.
> - bool IsV() const { return IsVRegister(); }
> - bool IsB() const { return IsV() && Is8Bits(); }
> - bool IsH() const { return IsV() && Is16Bits(); }
> - bool IsS() const { return IsV() && Is32Bits(); }
> - bool IsD() const { return IsV() && Is64Bits(); }
> - bool IsQ() const { return IsV() && Is128Bits(); }
> -
> - const Register& W() const;
> - const Register& X() const;
> - const VRegister& V() const;
> - const VRegister& B() const;
> - const VRegister& H() const;
> - const VRegister& S() const;
> - const VRegister& D() const;
> - const VRegister& Q() const;
> -
> - bool IsSameSizeAndType(const CPURegister& other) const {
> - return (size_ == other.size_) && (type_ == other.type_);
> - }
> -
> - protected:
> - unsigned code_;
> - unsigned size_;
> - RegisterType type_;
> -
> - private:
> - bool IsValidOrNone() const {
> - return IsValid() || IsNone();
> - }
> -};
> -
> -
> -class Register : public CPURegister {
> - public:
> - Register() : CPURegister() {}
> - explicit Register(const CPURegister& other)
> - : CPURegister(other.code(), other.size(), other.type()) {
> - VIXL_ASSERT(IsValidRegister());
> - }
> - Register(unsigned code, unsigned size)
> - : CPURegister(code, size, kRegister) {}
> -
> - bool IsValid() const {
> - VIXL_ASSERT(IsRegister() || IsNone());
> - return IsValidRegister();
> - }
> -
> - static const Register& WRegFromCode(unsigned code);
> - static const Register& XRegFromCode(unsigned code);
> -
> - private:
> - static const Register wregisters[];
> - static const Register xregisters[];
> -};
> -
> -
> -class VRegister : public CPURegister {
> - public:
> - VRegister() : CPURegister(), lanes_(1) {}
> - explicit VRegister(const CPURegister& other)
> - : CPURegister(other.code(), other.size(), other.type()), lanes_(1) {
> - VIXL_ASSERT(IsValidVRegister());
> - VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
> - }
> - VRegister(unsigned code, unsigned size, unsigned lanes = 1)
> - : CPURegister(code, size, kVRegister), lanes_(lanes) {
> - VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
> - }
> - VRegister(unsigned code, VectorFormat format)
> - : CPURegister(code, RegisterSizeInBitsFromFormat(format), kVRegister),
> - lanes_(IsVectorFormat(format) ? LaneCountFromFormat(format) : 1) {
> - VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
> - }
> -
> - bool IsValid() const {
> - VIXL_ASSERT(IsVRegister() || IsNone());
> - return IsValidVRegister();
> - }
> -
> - static const VRegister& BRegFromCode(unsigned code);
> - static const VRegister& HRegFromCode(unsigned code);
> - static const VRegister& SRegFromCode(unsigned code);
> - static const VRegister& DRegFromCode(unsigned code);
> - static const VRegister& QRegFromCode(unsigned code);
> - static const VRegister& VRegFromCode(unsigned code);
> -
> - VRegister V8B() const { return VRegister(code_, kDRegSize, 8); }
> - VRegister V16B() const { return VRegister(code_, kQRegSize, 16); }
> - VRegister V4H() const { return VRegister(code_, kDRegSize, 4); }
> - VRegister V8H() const { return VRegister(code_, kQRegSize, 8); }
> - VRegister V2S() const { return VRegister(code_, kDRegSize, 2); }
> - VRegister V4S() const { return VRegister(code_, kQRegSize, 4); }
> - VRegister V2D() const { return VRegister(code_, kQRegSize, 2); }
> - VRegister V1D() const { return VRegister(code_, kDRegSize, 1); }
> -
> - bool Is8B() const { return (Is64Bits() && (lanes_ == 8)); }
> - bool Is16B() const { return (Is128Bits() && (lanes_ == 16)); }
> - bool Is4H() const { return (Is64Bits() && (lanes_ == 4)); }
> - bool Is8H() const { return (Is128Bits() && (lanes_ == 8)); }
> - bool Is2S() const { return (Is64Bits() && (lanes_ == 2)); }
> - bool Is4S() const { return (Is128Bits() && (lanes_ == 4)); }
> - bool Is1D() const { return (Is64Bits() && (lanes_ == 1)); }
> - bool Is2D() const { return (Is128Bits() && (lanes_ == 2)); }
> -
> - // For consistency, we assert the number of lanes of these scalar
> registers,
> - // even though there are no vectors of equivalent total size with which
> they
> - // could alias.
> - bool Is1B() const {
> - VIXL_ASSERT(!(Is8Bits() && IsVector()));
> - return Is8Bits();
> - }
> - bool Is1H() const {
> - VIXL_ASSERT(!(Is16Bits() && IsVector()));
> - return Is16Bits();
> - }
> - bool Is1S() const {
> - VIXL_ASSERT(!(Is32Bits() && IsVector()));
> - return Is32Bits();
> - }
> -
> - bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSize; }
> - bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSize; }
> - bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSize; }
> - bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSize; }
> -
> - int lanes() const {
> - return lanes_;
> - }
> -
> - bool IsScalar() const {
> - return lanes_ == 1;
> - }
> -
> - bool IsVector() const {
> - return lanes_ > 1;
> - }
> -
> - bool IsSameFormat(const VRegister& other) const {
> - return (size_ == other.size_) && (lanes_ == other.lanes_);
> - }
> -
> - unsigned LaneSizeInBytes() const {
> - return SizeInBytes() / lanes_;
> - }
> -
> - unsigned LaneSizeInBits() const {
> - return LaneSizeInBytes() * 8;
> - }
> -
> - private:
> - static const VRegister bregisters[];
> - static const VRegister hregisters[];
> - static const VRegister sregisters[];
> - static const VRegister dregisters[];
> - static const VRegister qregisters[];
> - static const VRegister vregisters[];
> - int lanes_;
> -};
> -
> -
> -// Backward compatibility for FPRegisters.
> -typedef VRegister FPRegister;
> -
> -// No*Reg is used to indicate an unused argument, or an error case. Note that
> -// these all compare equal (using the Is() method). The Register and
> VRegister
> -// variants are provided for convenience.
> -const Register NoReg;
> -const VRegister NoVReg;
> -const FPRegister NoFPReg; // For backward compatibility.
> -const CPURegister NoCPUReg;
> -
> -
> -#define DEFINE_REGISTERS(N) \
> -const Register w##N(N, kWRegSize); \
> -const Register x##N(N, kXRegSize);
> -REGISTER_CODE_LIST(DEFINE_REGISTERS)
> -#undef DEFINE_REGISTERS
> -const Register wsp(kSPRegInternalCode, kWRegSize);
> -const Register sp(kSPRegInternalCode, kXRegSize);
> -
> -
> -#define DEFINE_VREGISTERS(N) \
> -const VRegister b##N(N, kBRegSize); \
> -const VRegister h##N(N, kHRegSize); \
> -const VRegister s##N(N, kSRegSize); \
> -const VRegister d##N(N, kDRegSize); \
> -const VRegister q##N(N, kQRegSize); \
> -const VRegister v##N(N, kQRegSize);
> -REGISTER_CODE_LIST(DEFINE_VREGISTERS)
> -#undef DEFINE_VREGISTERS
> -
> -
> -// Registers aliases.
> -const Register ip0 = x16;
> -const Register ip1 = x17;
> -const Register lr = x30;
> -const Register xzr = x31;
> -const Register wzr = w31;
> -
> -
> -// AreAliased returns true if any of the named registers overlap. Arguments
> -// set to NoReg are ignored. The system stack pointer may be specified.
> -bool AreAliased(const CPURegister& reg1,
> - const CPURegister& reg2,
> - const CPURegister& reg3 = NoReg,
> - const CPURegister& reg4 = NoReg,
> - const CPURegister& reg5 = NoReg,
> - const CPURegister& reg6 = NoReg,
> - const CPURegister& reg7 = NoReg,
> - const CPURegister& reg8 = NoReg);
> -
> -
> -// AreSameSizeAndType returns true if all of the specified registers have the
> -// same size, and are of the same type. The system stack pointer may be
> -// specified. Arguments set to NoReg are ignored, as are any subsequent
> -// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
> -bool AreSameSizeAndType(const CPURegister& reg1,
> - const CPURegister& reg2,
> - const CPURegister& reg3 = NoCPUReg,
> - const CPURegister& reg4 = NoCPUReg,
> - const CPURegister& reg5 = NoCPUReg,
> - const CPURegister& reg6 = NoCPUReg,
> - const CPURegister& reg7 = NoCPUReg,
> - const CPURegister& reg8 = NoCPUReg);
> -
> -
> -// AreSameFormat returns true if all of the specified VRegisters have the
> same
> -// vector format. Arguments set to NoReg are ignored, as are any subsequent
> -// arguments. At least one argument (reg1) must be valid (not NoVReg).
> -bool AreSameFormat(const VRegister& reg1,
> - const VRegister& reg2,
> - const VRegister& reg3 = NoVReg,
> - const VRegister& reg4 = NoVReg);
> -
> -
> -// AreConsecutive returns true if all of the specified VRegisters are
> -// consecutive in the register file. Arguments set to NoReg are ignored, as
> are
> -// any subsequent arguments. At least one argument (reg1) must be valid
> -// (not NoVReg).
> -bool AreConsecutive(const VRegister& reg1,
> - const VRegister& reg2,
> - const VRegister& reg3 = NoVReg,
> - const VRegister& reg4 = NoVReg);
> -
> -
> -// Lists of registers.
> -class CPURegList {
> - public:
> - explicit CPURegList(CPURegister reg1,
> - CPURegister reg2 = NoCPUReg,
> - CPURegister reg3 = NoCPUReg,
> - CPURegister reg4 = NoCPUReg)
> - : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
> - size_(reg1.size()), type_(reg1.type()) {
> - VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
> - VIXL_ASSERT(IsValid());
> - }
> -
> - CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
> - : list_(list), size_(size), type_(type) {
> - VIXL_ASSERT(IsValid());
> - }
> -
> - CPURegList(CPURegister::RegisterType type, unsigned size,
> - unsigned first_reg, unsigned last_reg)
> - : size_(size), type_(type) {
> - VIXL_ASSERT(((type == CPURegister::kRegister) &&
> - (last_reg < kNumberOfRegisters)) ||
> - ((type == CPURegister::kVRegister) &&
> - (last_reg < kNumberOfVRegisters)));
> - VIXL_ASSERT(last_reg >= first_reg);
> - list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
> - list_ &= ~((UINT64_C(1) << first_reg) - 1);
> - VIXL_ASSERT(IsValid());
> - }
> -
> - CPURegister::RegisterType type() const {
> - VIXL_ASSERT(IsValid());
> - return type_;
> - }
> -
> - // Combine another CPURegList into this one. Registers that already exist
> in
> - // this list are left unchanged. The type and size of the registers in the
> - // 'other' list must match those in this list.
> - void Combine(const CPURegList& other) {
> - VIXL_ASSERT(IsValid());
> - VIXL_ASSERT(other.type() == type_);
> - VIXL_ASSERT(other.RegisterSizeInBits() == size_);
> - list_ |= other.list();
> - }
> -
> - // Remove every register in the other CPURegList from this one. Registers
> that
> - // do not exist in this list are ignored. The type and size of the
> registers
> - // in the 'other' list must match those in this list.
> - void Remove(const CPURegList& other) {
> - VIXL_ASSERT(IsValid());
> - VIXL_ASSERT(other.type() == type_);
> - VIXL_ASSERT(other.RegisterSizeInBits() == size_);
> - list_ &= ~other.list();
> - }
> -
> - // Variants of Combine and Remove which take a single register.
> - void Combine(const CPURegister& other) {
> - VIXL_ASSERT(other.type() == type_);
> - VIXL_ASSERT(other.size() == size_);
> - Combine(other.code());
> - }
> -
> - void Remove(const CPURegister& other) {
> - VIXL_ASSERT(other.type() == type_);
> - VIXL_ASSERT(other.size() == size_);
> - Remove(other.code());
> - }
> -
> - // Variants of Combine and Remove which take a single register by its code;
> - // the type and size of the register is inferred from this list.
> - void Combine(int code) {
> - VIXL_ASSERT(IsValid());
> - VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
> - list_ |= (UINT64_C(1) << code);
> - }
> -
> - void Remove(int code) {
> - VIXL_ASSERT(IsValid());
> - VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
> - list_ &= ~(UINT64_C(1) << code);
> - }
> -
> - static CPURegList Union(const CPURegList& list_1, const CPURegList&
> list_2) {
> - VIXL_ASSERT(list_1.type_ == list_2.type_);
> - VIXL_ASSERT(list_1.size_ == list_2.size_);
> - return CPURegList(list_1.type_, list_1.size_, list_1.list_ |
> list_2.list_);
> - }
> - static CPURegList Union(const CPURegList& list_1,
> - const CPURegList& list_2,
> - const CPURegList& list_3);
> - static CPURegList Union(const CPURegList& list_1,
> - const CPURegList& list_2,
> - const CPURegList& list_3,
> - const CPURegList& list_4);
> -
> - static CPURegList Intersection(const CPURegList& list_1,
> - const CPURegList& list_2) {
> - VIXL_ASSERT(list_1.type_ == list_2.type_);
> - VIXL_ASSERT(list_1.size_ == list_2.size_);
> - return CPURegList(list_1.type_, list_1.size_, list_1.list_ &
> list_2.list_);
> - }
> - static CPURegList Intersection(const CPURegList& list_1,
> - const CPURegList& list_2,
> - const CPURegList& list_3);
> - static CPURegList Intersection(const CPURegList& list_1,
> - const CPURegList& list_2,
> - const CPURegList& list_3,
> - const CPURegList& list_4);
> -
> - bool Overlaps(const CPURegList& other) const {
> - return (type_ == other.type_) && ((list_ & other.list_) != 0);
> - }
> -
> - RegList list() const {
> - VIXL_ASSERT(IsValid());
> - return list_;
> - }
> -
> - void set_list(RegList new_list) {
> - VIXL_ASSERT(IsValid());
> - list_ = new_list;
> - }
> -
> - // Remove all callee-saved registers from the list. This can be useful when
> - // preparing registers for an AAPCS64 function call, for example.
> - void RemoveCalleeSaved();
> -
> - CPURegister PopLowestIndex();
> - CPURegister PopHighestIndex();
> -
> - // AAPCS64 callee-saved registers.
> - static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
> - static CPURegList GetCalleeSavedV(unsigned size = kDRegSize);
> -
> - // AAPCS64 caller-saved registers. Note that this includes lr.
> - // TODO(all): Determine how we handle d8-d15 being callee-saved, but the
> top
> - // 64-bits being caller-saved.
> - static CPURegList GetCallerSaved(unsigned size = kXRegSize);
> - static CPURegList GetCallerSavedV(unsigned size = kDRegSize);
> -
> - bool IsEmpty() const {
> - VIXL_ASSERT(IsValid());
> - return list_ == 0;
> - }
> -
> - bool IncludesAliasOf(const CPURegister& other) const {
> - VIXL_ASSERT(IsValid());
> - return (type_ == other.type()) && ((other.Bit() & list_) != 0);
> - }
> -
> - bool IncludesAliasOf(int code) const {
> - VIXL_ASSERT(IsValid());
> - return ((code & list_) != 0);
> - }
> -
> - int Count() const {
> - VIXL_ASSERT(IsValid());
> - return CountSetBits(list_);
> - }
> -
> - unsigned RegisterSizeInBits() const {
> - VIXL_ASSERT(IsValid());
> - return size_;
> - }
> -
> - unsigned RegisterSizeInBytes() const {
> - int size_in_bits = RegisterSizeInBits();
> - VIXL_ASSERT((size_in_bits % 8) == 0);
> - return size_in_bits / 8;
> - }
> -
> - unsigned TotalSizeInBytes() const {
> - VIXL_ASSERT(IsValid());
> - return RegisterSizeInBytes() * Count();
> - }
> -
> - private:
> - RegList list_;
> - unsigned size_;
> - CPURegister::RegisterType type_;
> -
> - bool IsValid() const;
> -};
> -
> -
> -// AAPCS64 callee-saved registers.
> -extern const CPURegList kCalleeSaved;
> -extern const CPURegList kCalleeSavedV;
> -
> -
> -// AAPCS64 caller-saved registers. Note that this includes lr.
> -extern const CPURegList kCallerSaved;
> -extern const CPURegList kCallerSavedV;
> -
> -
> -// Operand.
> -class Operand {
> - public:
> - // #<immediate>
> - // where <immediate> is int64_t.
> - // This is allowed to be an implicit constructor because Operand is
> - // a wrapper class that doesn't normally perform any type conversion.
> - Operand(int64_t immediate = 0); // NOLINT(runtime/explicit)
> -
> - // rm, {<shift> #<shift_amount>}
> - // where <shift> is one of {LSL, LSR, ASR, ROR}.
> - // <shift_amount> is uint6_t.
> - // This is allowed to be an implicit constructor because Operand is
> - // a wrapper class that doesn't normally perform any type conversion.
> - Operand(Register reg,
> - Shift shift = LSL,
> - unsigned shift_amount = 0); // NOLINT(runtime/explicit)
> -
> - // rm, {<extend> {#<shift_amount>}}
> - // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW,
> SXTX}.
> - // <shift_amount> is uint2_t.
> - explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
> -
> - bool IsImmediate() const;
> - bool IsShiftedRegister() const;
> - bool IsExtendedRegister() const;
> - bool IsZero() const;
> -
> - // This returns an LSL shift (<= 4) operand as an equivalent extend
> operand,
> - // which helps in the encoding of instructions that use the stack pointer.
> - Operand ToExtendedRegister() const;
> -
> - int64_t immediate() const {
> - VIXL_ASSERT(IsImmediate());
> - return immediate_;
> - }
> -
> - Register reg() const {
> - VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
> - return reg_;
> - }
> -
> - Shift shift() const {
> - VIXL_ASSERT(IsShiftedRegister());
> - return shift_;
> - }
> -
> - Extend extend() const {
> - VIXL_ASSERT(IsExtendedRegister());
> - return extend_;
> - }
> -
> - unsigned shift_amount() const {
> - VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
> - return shift_amount_;
> - }
> -
> - private:
> - int64_t immediate_;
> - Register reg_;
> - Shift shift_;
> - Extend extend_;
> - unsigned shift_amount_;
> -};
> -
> -
> -// MemOperand represents the addressing mode of a load or store instruction.
> -class MemOperand {
> - public:
> - explicit MemOperand(Register base,
> - int64_t offset = 0,
> - AddrMode addrmode = Offset);
> - MemOperand(Register base,
> - Register regoffset,
> - Shift shift = LSL,
> - unsigned shift_amount = 0);
> - MemOperand(Register base,
> - Register regoffset,
> - Extend extend,
> - unsigned shift_amount = 0);
> - MemOperand(Register base,
> - const Operand& offset,
> - AddrMode addrmode = Offset);
> -
> - const Register& base() const { return base_; }
> - const Register& regoffset() const { return regoffset_; }
> - int64_t offset() const { return offset_; }
> - AddrMode addrmode() const { return addrmode_; }
> - Shift shift() const { return shift_; }
> - Extend extend() const { return extend_; }
> - unsigned shift_amount() const { return shift_amount_; }
> - bool IsImmediateOffset() const;
> - bool IsRegisterOffset() const;
> - bool IsPreIndex() const;
> - bool IsPostIndex() const;
> -
> - void AddOffset(int64_t offset);
> -
> - private:
> - Register base_;
> - Register regoffset_;
> - int64_t offset_;
> - AddrMode addrmode_;
> - Shift shift_;
> - Extend extend_;
> - unsigned shift_amount_;
> -};
> -
> -
> -class LabelTestHelper; // Forward declaration.
> -
> -
> -class Label {
> - public:
> - Label() : location_(kLocationUnbound) {}
> - ~Label() {
> - // If the label has been linked to, it needs to be bound to a target.
> - VIXL_ASSERT(!IsLinked() || IsBound());
> - }
> -
> - bool IsBound() const { return location_ >= 0; }
> - bool IsLinked() const { return !links_.empty(); }
> -
> - ptrdiff_t location() const { return location_; }
> -
> - static const int kNPreallocatedLinks = 4;
> - static const ptrdiff_t kInvalidLinkKey = PTRDIFF_MAX;
> - static const size_t kReclaimFrom = 512;
> - static const size_t kReclaimFactor = 2;
> -
> - typedef InvalSet<ptrdiff_t,
> - kNPreallocatedLinks,
> - ptrdiff_t,
> - kInvalidLinkKey,
> - kReclaimFrom,
> - kReclaimFactor> LinksSetBase;
> - typedef InvalSetIterator<LinksSetBase> LabelLinksIteratorBase;
> -
> - private:
> - class LinksSet : public LinksSetBase {
> - public:
> - LinksSet() : LinksSetBase() {}
> - };
> -
> - // Allows iterating over the links of a label. The behaviour is undefined
> if
> - // the list of links is modified in any way while iterating.
> - class LabelLinksIterator : public LabelLinksIteratorBase {
> - public:
> - explicit LabelLinksIterator(Label* label)
> - : LabelLinksIteratorBase(&label->links_) {}
> - };
> -
> - void Bind(ptrdiff_t location) {
> - // Labels can only be bound once.
> - VIXL_ASSERT(!IsBound());
> - location_ = location;
> - }
> -
> - void AddLink(ptrdiff_t instruction) {
> - // If a label is bound, the assembler already has the information it
> needs
> - // to write the instruction, so there is no need to add it to links_.
> - VIXL_ASSERT(!IsBound());
> - links_.insert(instruction);
> - }
> -
> - void DeleteLink(ptrdiff_t instruction) {
> - links_.erase(instruction);
> - }
> -
> - void ClearAllLinks() {
> - links_.clear();
> - }
> -
> - // TODO: The comment below considers average case complexity for our
> - // usual use-cases. The elements of interest are:
> - // - Branches to a label are emitted in order: branch instructions to a
> label
> - // are generated at an offset in the code generation buffer greater than
> any
> - // other branch to that same label already generated. As an example, this
> can
> - // be broken when an instruction is patched to become a branch. Note that
> the
> - // code will still work, but the complexity considerations below may
> locally
> - // not apply any more.
> - // - Veneers are generated in order: for multiple branches of the same type
> - // branching to the same unbound label going out of range, veneers are
> - // generated in growing order of the branch instruction offset from the
> start
> - // of the buffer.
> - //
> - // When creating a veneer for a branch going out of range, the link for
> this
> - // branch needs to be removed from this `links_`. Since all branches are
> - // tracked in one underlying InvalSet, the complexity for this deletion is
> the
> - // same as for finding the element, ie. O(n), where n is the number of
> links
> - // in the set.
> - // This could be reduced to O(1) by using the same trick as used when
> tracking
> - // branch information for veneers: split the container to use one set per
> type
> - // of branch. With that setup, when a veneer is created and the link needs
> to
> - // be deleted, if the two points above hold, it must be the minimum
> element of
> - // the set for its type of branch, and that minimum element will be
> accessible
> - // in O(1).
> -
> - // The offsets of the instructions that have linked to this label.
> - LinksSet links_;
> - // The label location.
> - ptrdiff_t location_;
> -
> - static const ptrdiff_t kLocationUnbound = -1;
> -
> - // It is not safe to copy labels, so disable the copy constructor and
> operator
> - // by declaring them private (without an implementation).
> - Label(const Label&);
> - void operator=(const Label&);
> -
> - // The Assembler class is responsible for binding and linking labels, since
> - // the stored offsets need to be consistent with the Assembler's buffer.
> - friend class Assembler;
> - // The MacroAssembler and VeneerPool handle resolution of branches to
> distant
> - // targets.
> - friend class MacroAssembler;
> - friend class VeneerPool;
> -};
> -
> -
> -// Required InvalSet template specialisations.
> -#define INVAL_SET_TEMPLATE_PARAMETERS \
> - ptrdiff_t, \
> - Label::kNPreallocatedLinks, \
> - ptrdiff_t, \
> - Label::kInvalidLinkKey, \
> - Label::kReclaimFrom, \
> - Label::kReclaimFactor
> -template<>
> -inline ptrdiff_t InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::Key(
> - const ptrdiff_t& element) {
> - return element;
> -}
> -template<>
> -inline void InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::SetKey(
> - ptrdiff_t* element, ptrdiff_t key) {
> - *element = key;
> -}
> -#undef INVAL_SET_TEMPLATE_PARAMETERS
> -
> -
> -class Assembler;
> -class LiteralPool;
> -
> -// A literal is a 32-bit or 64-bit piece of data stored in the instruction
> -// stream and loaded through a pc relative load. The same literal can be
> -// referred to by multiple instructions but a literal can only reside at one
> -// place in memory. A literal can be used by a load before or after being
> -// placed in memory.
> -//
> -// Internally an offset of 0 is associated with a literal which has been
> -// neither used nor placed. Then two possibilities arise:
> -// 1) the label is placed, the offset (stored as offset + 1) is used to
> -// resolve any subsequent load using the label.
> -// 2) the label is not placed and offset is the offset of the last load
> using
> -// the literal (stored as -offset -1). If multiple loads refer to this
> -// literal then the last load holds the offset of the preceding load and
> -// all loads form a chain. Once the offset is placed all the loads in the
> -// chain are resolved and future loads fall back to possibility 1.
> -class RawLiteral {
> - public:
> - enum DeletionPolicy {
> - kDeletedOnPlacementByPool,
> - kDeletedOnPoolDestruction,
> - kManuallyDeleted
> - };
> -
> - RawLiteral(size_t size,
> - LiteralPool* literal_pool,
> - DeletionPolicy deletion_policy = kManuallyDeleted);
> -
> - // The literal pool only sees and deletes `RawLiteral*` pointers, but they
> are
> - // actually pointing to `Literal<T>` objects.
> - virtual ~RawLiteral() {}
> -
> - size_t size() {
> - VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
> - VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
> - VIXL_ASSERT((size_ == kXRegSizeInBytes) ||
> - (size_ == kWRegSizeInBytes) ||
> - (size_ == kQRegSizeInBytes));
> - return size_;
> - }
> - uint64_t raw_value128_low64() {
> - VIXL_ASSERT(size_ == kQRegSizeInBytes);
> - return low64_;
> - }
> - uint64_t raw_value128_high64() {
> - VIXL_ASSERT(size_ == kQRegSizeInBytes);
> - return high64_;
> - }
> - uint64_t raw_value64() {
> - VIXL_ASSERT(size_ == kXRegSizeInBytes);
> - VIXL_ASSERT(high64_ == 0);
> - return low64_;
> - }
> - uint32_t raw_value32() {
> - VIXL_ASSERT(size_ == kWRegSizeInBytes);
> - VIXL_ASSERT(high64_ == 0);
> - VIXL_ASSERT(is_uint32(low64_) || is_int32(low64_));
> - return static_cast<uint32_t>(low64_);
> - }
> - bool IsUsed() { return offset_ < 0; }
> - bool IsPlaced() { return offset_ > 0; }
> -
> - LiteralPool* GetLiteralPool() const {
> - return literal_pool_;
> - }
> -
> - ptrdiff_t offset() {
> - VIXL_ASSERT(IsPlaced());
> - return offset_ - 1;
> - }
> -
> - protected:
> - void set_offset(ptrdiff_t offset) {
> - VIXL_ASSERT(offset >= 0);
> - VIXL_ASSERT(IsWordAligned(offset));
> - VIXL_ASSERT(!IsPlaced());
> - offset_ = offset + 1;
> - }
> - ptrdiff_t last_use() {
> - VIXL_ASSERT(IsUsed());
> - return -offset_ - 1;
> - }
> - void set_last_use(ptrdiff_t offset) {
> - VIXL_ASSERT(offset >= 0);
> - VIXL_ASSERT(IsWordAligned(offset));
> - VIXL_ASSERT(!IsPlaced());
> - offset_ = -offset - 1;
> - }
> -
> - size_t size_;
> - ptrdiff_t offset_;
> - uint64_t low64_;
> - uint64_t high64_;
> -
> - private:
> - LiteralPool* literal_pool_;
> - DeletionPolicy deletion_policy_;
> -
> - friend class Assembler;
> - friend class LiteralPool;
> -};
> -
> -
> -template <typename T>
> -class Literal : public RawLiteral {
> - public:
> - explicit Literal(T value,
> - LiteralPool* literal_pool = NULL,
> - RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
> - : RawLiteral(sizeof(value), literal_pool, ownership) {
> - VIXL_STATIC_ASSERT(sizeof(value) <= kXRegSizeInBytes);
> - UpdateValue(value);
> - }
> -
> - Literal(T high64, T low64,
> - LiteralPool* literal_pool = NULL,
> - RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
> - : RawLiteral(kQRegSizeInBytes, literal_pool, ownership) {
> - VIXL_STATIC_ASSERT(sizeof(low64) == (kQRegSizeInBytes / 2));
> - UpdateValue(high64, low64);
> - }
> -
> - virtual ~Literal() {}
> -
> - // Update the value of this literal, if necessary by rewriting the value in
> - // the pool.
> - // If the literal has already been placed in a literal pool, the address of
> - // the start of the code buffer must be provided, as the literal only
> knows it
> - // offset from there. This also allows patching the value after the code
> has
> - // been moved in memory.
> - void UpdateValue(T new_value, uint8_t* code_buffer = NULL) {
> - VIXL_ASSERT(sizeof(new_value) == size_);
> - memcpy(&low64_, &new_value, sizeof(new_value));
> - if (IsPlaced()) {
> - VIXL_ASSERT(code_buffer != NULL);
> - RewriteValueInCode(code_buffer);
> - }
> - }
> -
> - void UpdateValue(T high64, T low64, uint8_t* code_buffer = NULL) {
> - VIXL_ASSERT(sizeof(low64) == size_ / 2);
> - memcpy(&low64_, &low64, sizeof(low64));
> - memcpy(&high64_, &high64, sizeof(high64));
> - if (IsPlaced()) {
> - VIXL_ASSERT(code_buffer != NULL);
> - RewriteValueInCode(code_buffer);
> - }
> - }
> -
> - void UpdateValue(T new_value, const Assembler* assembler);
> - void UpdateValue(T high64, T low64, const Assembler* assembler);
> -
> - private:
> - void RewriteValueInCode(uint8_t* code_buffer) {
> - VIXL_ASSERT(IsPlaced());
> - VIXL_STATIC_ASSERT(sizeof(T) <= kXRegSizeInBytes);
> - switch (size()) {
> - case kSRegSizeInBytes:
> - *reinterpret_cast<uint32_t*>(code_buffer + offset()) = raw_value32();
> - break;
> - case kDRegSizeInBytes:
> - *reinterpret_cast<uint64_t*>(code_buffer + offset()) = raw_value64();
> - break;
> - default:
> - VIXL_ASSERT(size() == kQRegSizeInBytes);
> - uint64_t* base_address =
> - reinterpret_cast<uint64_t*>(code_buffer + offset());
> - *base_address = raw_value128_low64();
> - *(base_address + 1) = raw_value128_high64();
> - }
> - }
> -};
> -
> -
> -// Control whether or not position-independent code should be emitted.
> -enum PositionIndependentCodeOption {
> - // All code generated will be position-independent; all branches and
> - // references to labels generated with the Label class will use PC-relative
> - // addressing.
> - PositionIndependentCode,
> -
> - // Allow VIXL to generate code that refers to absolute addresses. With this
> - // option, it will not be possible to copy the code buffer and run it from
> a
> - // different address; code must be generated in its final location.
> - PositionDependentCode,
> -
> - // Allow VIXL to assume that the bottom 12 bits of the address will be
> - // constant, but that the top 48 bits may change. This allows `adrp` to
> - // function in systems which copy code between pages, but otherwise
> maintain
> - // 4KB page alignment.
> - PageOffsetDependentCode
> -};
> -
> -
> -// Control how scaled- and unscaled-offset loads and stores are generated.
> -enum LoadStoreScalingOption {
> - // Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
> - // register-offset, pre-index or post-index instructions if necessary.
> - PreferScaledOffset,
> -
> - // Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
> - // register-offset, pre-index or post-index instructions if necessary.
> - PreferUnscaledOffset,
> -
> - // Require scaled-immediate-offset instructions.
> - RequireScaledOffset,
> -
> - // Require unscaled-immediate-offset instructions.
> - RequireUnscaledOffset
> -};
> -
> -
> -// Assembler.
> -class Assembler {
> - public:
> - Assembler(size_t capacity,
> - PositionIndependentCodeOption pic = PositionIndependentCode);
> - Assembler(byte* buffer, size_t capacity,
> - PositionIndependentCodeOption pic = PositionIndependentCode);
> -
> - // The destructor asserts that one of the following is true:
> - // * The Assembler object has not been used.
> - // * Nothing has been emitted since the last Reset() call.
> - // * Nothing has been emitted since the last FinalizeCode() call.
> - ~Assembler();
> -
> - // System functions.
> -
> - // Start generating code from the beginning of the buffer, discarding any
> code
> - // and data that has already been emitted into the buffer.
> - void Reset();
> -
> - // Finalize a code buffer of generated instructions. This function must be
> - // called before executing or copying code from the buffer.
> - void FinalizeCode();
> -
> - // Label.
> - // Bind a label to the current PC.
> - void bind(Label* label);
> -
> - // Bind a label to a specified offset from the start of the buffer.
> - void BindToOffset(Label* label, ptrdiff_t offset);
> -
> - // Place a literal at the current PC.
> - void place(RawLiteral* literal);
> -
> - ptrdiff_t CursorOffset() const {
> - return buffer_->CursorOffset();
> - }
> -
> - ptrdiff_t BufferEndOffset() const {
> - return static_cast<ptrdiff_t>(buffer_->capacity());
> - }
> -
> - // Return the address of an offset in the buffer.
> - template <typename T>
> - T GetOffsetAddress(ptrdiff_t offset) const {
> - VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
> - return buffer_->GetOffsetAddress<T>(offset);
> - }
> -
> - // Return the address of a bound label.
> - template <typename T>
> - T GetLabelAddress(const Label * label) const {
> - VIXL_ASSERT(label->IsBound());
> - VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
> - return GetOffsetAddress<T>(label->location());
> - }
> -
> - // Return the address of the cursor.
> - template <typename T>
> - T GetCursorAddress() const {
> - VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
> - return GetOffsetAddress<T>(CursorOffset());
> - }
> -
> - // Return the address of the start of the buffer.
> - template <typename T>
> - T GetStartAddress() const {
> - VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
> - return GetOffsetAddress<T>(0);
> - }
> -
> - Instruction* InstructionAt(ptrdiff_t instruction_offset) {
> - return GetOffsetAddress<Instruction*>(instruction_offset);
> - }
> -
> - ptrdiff_t InstructionOffset(Instruction* instruction) {
> - VIXL_STATIC_ASSERT(sizeof(*instruction) == 1);
> - ptrdiff_t offset = instruction - GetStartAddress<Instruction*>();
> - VIXL_ASSERT((0 <= offset) &&
> - (offset < static_cast<ptrdiff_t>(BufferCapacity())));
> - return offset;
> - }
> -
> - // Instruction set functions.
> -
> - // Branch / Jump instructions.
> - // Branch to register.
> - void br(const Register& xn);
> -
> - // Branch with link to register.
> - void blr(const Register& xn);
> -
> - // Branch to register with return hint.
> - void ret(const Register& xn = lr);
> -
> - // Unconditional branch to label.
> - void b(Label* label);
> -
> - // Conditional branch to label.
> - void b(Label* label, Condition cond);
> -
> - // Unconditional branch to PC offset.
> - void b(int imm26);
> -
> - // Conditional branch to PC offset.
> - void b(int imm19, Condition cond);
> -
> - // Branch with link to label.
> - void bl(Label* label);
> -
> - // Branch with link to PC offset.
> - void bl(int imm26);
> -
> - // Compare and branch to label if zero.
> - void cbz(const Register& rt, Label* label);
> -
> - // Compare and branch to PC offset if zero.
> - void cbz(const Register& rt, int imm19);
> -
> - // Compare and branch to label if not zero.
> - void cbnz(const Register& rt, Label* label);
> -
> - // Compare and branch to PC offset if not zero.
> - void cbnz(const Register& rt, int imm19);
> -
> - // Table lookup from one register.
> - void tbl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Table lookup from two registers.
> - void tbl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vn2,
> - const VRegister& vm);
> -
> - // Table lookup from three registers.
> - void tbl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vn2,
> - const VRegister& vn3,
> - const VRegister& vm);
> -
> - // Table lookup from four registers.
> - void tbl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vn2,
> - const VRegister& vn3,
> - const VRegister& vn4,
> - const VRegister& vm);
> -
> - // Table lookup extension from one register.
> - void tbx(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Table lookup extension from two registers.
> - void tbx(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vn2,
> - const VRegister& vm);
> -
> - // Table lookup extension from three registers.
> - void tbx(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vn2,
> - const VRegister& vn3,
> - const VRegister& vm);
> -
> - // Table lookup extension from four registers.
> - void tbx(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vn2,
> - const VRegister& vn3,
> - const VRegister& vn4,
> - const VRegister& vm);
> -
> - // Test bit and branch to label if zero.
> - void tbz(const Register& rt, unsigned bit_pos, Label* label);
> -
> - // Test bit and branch to PC offset if zero.
> - void tbz(const Register& rt, unsigned bit_pos, int imm14);
> -
> - // Test bit and branch to label if not zero.
> - void tbnz(const Register& rt, unsigned bit_pos, Label* label);
> -
> - // Test bit and branch to PC offset if not zero.
> - void tbnz(const Register& rt, unsigned bit_pos, int imm14);
> -
> - // Address calculation instructions.
> - // Calculate a PC-relative address. Unlike for branches the offset in adr
> is
> - // unscaled (i.e. the result can be unaligned).
> -
> - // Calculate the address of a label.
> - void adr(const Register& rd, Label* label);
> -
> - // Calculate the address of a PC offset.
> - void adr(const Register& rd, int imm21);
> -
> - // Calculate the page address of a label.
> - void adrp(const Register& rd, Label* label);
> -
> - // Calculate the page address of a PC offset.
> - void adrp(const Register& rd, int imm21);
> -
> - // Data Processing instructions.
> - // Add.
> - void add(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Add and update status flags.
> - void adds(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Compare negative.
> - void cmn(const Register& rn, const Operand& operand);
> -
> - // Subtract.
> - void sub(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Subtract and update status flags.
> - void subs(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Compare.
> - void cmp(const Register& rn, const Operand& operand);
> -
> - // Negate.
> - void neg(const Register& rd,
> - const Operand& operand);
> -
> - // Negate and update status flags.
> - void negs(const Register& rd,
> - const Operand& operand);
> -
> - // Add with carry bit.
> - void adc(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Add with carry bit and update status flags.
> - void adcs(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Subtract with carry bit.
> - void sbc(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Subtract with carry bit and update status flags.
> - void sbcs(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Negate with carry bit.
> - void ngc(const Register& rd,
> - const Operand& operand);
> -
> - // Negate with carry bit and update status flags.
> - void ngcs(const Register& rd,
> - const Operand& operand);
> -
> - // Logical instructions.
> - // Bitwise and (A & B).
> - void and_(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Bitwise and (A & B) and update status flags.
> - void ands(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Bit test and set flags.
> - void tst(const Register& rn, const Operand& operand);
> -
> - // Bit clear (A & ~B).
> - void bic(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Bit clear (A & ~B) and update status flags.
> - void bics(const Register& rd,
> - const Register& rn,
> - const Operand& operand);
> -
> - // Bitwise or (A | B).
> - void orr(const Register& rd, const Register& rn, const Operand& operand);
> -
> - // Bitwise nor (A | ~B).
> - void orn(const Register& rd, const Register& rn, const Operand& operand);
> -
> - // Bitwise eor/xor (A ^ B).
> - void eor(const Register& rd, const Register& rn, const Operand& operand);
> -
> - // Bitwise enor/xnor (A ^ ~B).
> - void eon(const Register& rd, const Register& rn, const Operand& operand);
> -
> - // Logical shift left by variable.
> - void lslv(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Logical shift right by variable.
> - void lsrv(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Arithmetic shift right by variable.
> - void asrv(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Rotate right by variable.
> - void rorv(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Bitfield instructions.
> - // Bitfield move.
> - void bfm(const Register& rd,
> - const Register& rn,
> - unsigned immr,
> - unsigned imms);
> -
> - // Signed bitfield move.
> - void sbfm(const Register& rd,
> - const Register& rn,
> - unsigned immr,
> - unsigned imms);
> -
> - // Unsigned bitfield move.
> - void ubfm(const Register& rd,
> - const Register& rn,
> - unsigned immr,
> - unsigned imms);
> -
> - // Bfm aliases.
> - // Bitfield insert.
> - void bfi(const Register& rd,
> - const Register& rn,
> - unsigned lsb,
> - unsigned width) {
> - VIXL_ASSERT(width >= 1);
> - VIXL_ASSERT(lsb + width <= rn.size());
> - bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
> - }
> -
> - // Bitfield extract and insert low.
> - void bfxil(const Register& rd,
> - const Register& rn,
> - unsigned lsb,
> - unsigned width) {
> - VIXL_ASSERT(width >= 1);
> - VIXL_ASSERT(lsb + width <= rn.size());
> - bfm(rd, rn, lsb, lsb + width - 1);
> - }
> -
> - // Sbfm aliases.
> - // Arithmetic shift right.
> - void asr(const Register& rd, const Register& rn, unsigned shift) {
> - VIXL_ASSERT(shift < rd.size());
> - sbfm(rd, rn, shift, rd.size() - 1);
> - }
> -
> - // Signed bitfield insert with zero at right.
> - void sbfiz(const Register& rd,
> - const Register& rn,
> - unsigned lsb,
> - unsigned width) {
> - VIXL_ASSERT(width >= 1);
> - VIXL_ASSERT(lsb + width <= rn.size());
> - sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
> - }
> -
> - // Signed bitfield extract.
> - void sbfx(const Register& rd,
> - const Register& rn,
> - unsigned lsb,
> - unsigned width) {
> - VIXL_ASSERT(width >= 1);
> - VIXL_ASSERT(lsb + width <= rn.size());
> - sbfm(rd, rn, lsb, lsb + width - 1);
> - }
> -
> - // Signed extend byte.
> - void sxtb(const Register& rd, const Register& rn) {
> - sbfm(rd, rn, 0, 7);
> - }
> -
> - // Signed extend halfword.
> - void sxth(const Register& rd, const Register& rn) {
> - sbfm(rd, rn, 0, 15);
> - }
> -
> - // Signed extend word.
> - void sxtw(const Register& rd, const Register& rn) {
> - sbfm(rd, rn, 0, 31);
> - }
> -
> - // Ubfm aliases.
> - // Logical shift left.
> - void lsl(const Register& rd, const Register& rn, unsigned shift) {
> - unsigned reg_size = rd.size();
> - VIXL_ASSERT(shift < reg_size);
> - ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
> - }
> -
> - // Logical shift right.
> - void lsr(const Register& rd, const Register& rn, unsigned shift) {
> - VIXL_ASSERT(shift < rd.size());
> - ubfm(rd, rn, shift, rd.size() - 1);
> - }
> -
> - // Unsigned bitfield insert with zero at right.
> - void ubfiz(const Register& rd,
> - const Register& rn,
> - unsigned lsb,
> - unsigned width) {
> - VIXL_ASSERT(width >= 1);
> - VIXL_ASSERT(lsb + width <= rn.size());
> - ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
> - }
> -
> - // Unsigned bitfield extract.
> - void ubfx(const Register& rd,
> - const Register& rn,
> - unsigned lsb,
> - unsigned width) {
> - VIXL_ASSERT(width >= 1);
> - VIXL_ASSERT(lsb + width <= rn.size());
> - ubfm(rd, rn, lsb, lsb + width - 1);
> - }
> -
> - // Unsigned extend byte.
> - void uxtb(const Register& rd, const Register& rn) {
> - ubfm(rd, rn, 0, 7);
> - }
> -
> - // Unsigned extend halfword.
> - void uxth(const Register& rd, const Register& rn) {
> - ubfm(rd, rn, 0, 15);
> - }
> -
> - // Unsigned extend word.
> - void uxtw(const Register& rd, const Register& rn) {
> - ubfm(rd, rn, 0, 31);
> - }
> -
> - // Extract.
> - void extr(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - unsigned lsb);
> -
> - // Conditional select: rd = cond ? rn : rm.
> - void csel(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - Condition cond);
> -
> - // Conditional select increment: rd = cond ? rn : rm + 1.
> - void csinc(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - Condition cond);
> -
> - // Conditional select inversion: rd = cond ? rn : ~rm.
> - void csinv(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - Condition cond);
> -
> - // Conditional select negation: rd = cond ? rn : -rm.
> - void csneg(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - Condition cond);
> -
> - // Conditional set: rd = cond ? 1 : 0.
> - void cset(const Register& rd, Condition cond);
> -
> - // Conditional set mask: rd = cond ? -1 : 0.
> - void csetm(const Register& rd, Condition cond);
> -
> - // Conditional increment: rd = cond ? rn + 1 : rn.
> - void cinc(const Register& rd, const Register& rn, Condition cond);
> -
> - // Conditional invert: rd = cond ? ~rn : rn.
> - void cinv(const Register& rd, const Register& rn, Condition cond);
> -
> - // Conditional negate: rd = cond ? -rn : rn.
> - void cneg(const Register& rd, const Register& rn, Condition cond);
> -
> - // Rotate right.
> - void ror(const Register& rd, const Register& rs, unsigned shift) {
> - extr(rd, rs, rs, shift);
> - }
> -
> - // Conditional comparison.
> - // Conditional compare negative.
> - void ccmn(const Register& rn,
> - const Operand& operand,
> - StatusFlags nzcv,
> - Condition cond);
> -
> - // Conditional compare.
> - void ccmp(const Register& rn,
> - const Operand& operand,
> - StatusFlags nzcv,
> - Condition cond);
> -
> - // CRC-32 checksum from byte.
> - void crc32b(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // CRC-32 checksum from half-word.
> - void crc32h(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // CRC-32 checksum from word.
> - void crc32w(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // CRC-32 checksum from double word.
> - void crc32x(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // CRC-32 C checksum from byte.
> - void crc32cb(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // CRC-32 C checksum from half-word.
> - void crc32ch(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // CRC-32 C checksum from word.
> - void crc32cw(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // CRC-32C checksum from double word.
> - void crc32cx(const Register& rd,
> - const Register& rn,
> - const Register& rm);
> -
> - // Multiply.
> - void mul(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Negated multiply.
> - void mneg(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Signed long multiply: 32 x 32 -> 64-bit.
> - void smull(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
> - void smulh(const Register& xd, const Register& xn, const Register& xm);
> -
> - // Multiply and accumulate.
> - void madd(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - const Register& ra);
> -
> - // Multiply and subtract.
> - void msub(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - const Register& ra);
> -
> - // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
> - void smaddl(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - const Register& ra);
> -
> - // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
> - void umaddl(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - const Register& ra);
> -
> - // Unsigned long multiply: 32 x 32 -> 64-bit.
> - void umull(const Register& rd,
> - const Register& rn,
> - const Register& rm) {
> - umaddl(rd, rn, rm, xzr);
> - }
> -
> - // Unsigned multiply high: 64 x 64 -> 64-bit <127:64>.
> - void umulh(const Register& xd,
> - const Register& xn,
> - const Register& xm);
> -
> - // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
> - void smsubl(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - const Register& ra);
> -
> - // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
> - void umsubl(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - const Register& ra);
> -
> - // Signed integer divide.
> - void sdiv(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Unsigned integer divide.
> - void udiv(const Register& rd, const Register& rn, const Register& rm);
> -
> - // Bit reverse.
> - void rbit(const Register& rd, const Register& rn);
> -
> - // Reverse bytes in 16-bit half words.
> - void rev16(const Register& rd, const Register& rn);
> -
> - // Reverse bytes in 32-bit words.
> - void rev32(const Register& rd, const Register& rn);
> -
> - // Reverse bytes.
> - void rev(const Register& rd, const Register& rn);
> -
> - // Count leading zeroes.
> - void clz(const Register& rd, const Register& rn);
> -
> - // Count leading sign bits.
> - void cls(const Register& rd, const Register& rn);
> -
> - // Memory instructions.
> - // Load integer or FP register.
> - void ldr(const CPURegister& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Store integer or FP register.
> - void str(const CPURegister& rt, const MemOperand& dst,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Load word with sign extension.
> - void ldrsw(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Load byte.
> - void ldrb(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Store byte.
> - void strb(const Register& rt, const MemOperand& dst,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Load byte with sign extension.
> - void ldrsb(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Load half-word.
> - void ldrh(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Store half-word.
> - void strh(const Register& rt, const MemOperand& dst,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Load half-word with sign extension.
> - void ldrsh(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Load integer or FP register (with unscaled offset).
> - void ldur(const CPURegister& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Store integer or FP register (with unscaled offset).
> - void stur(const CPURegister& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Load word with sign extension.
> - void ldursw(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Load byte (with unscaled offset).
> - void ldurb(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Store byte (with unscaled offset).
> - void sturb(const Register& rt, const MemOperand& dst,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Load byte with sign extension (and unscaled offset).
> - void ldursb(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Load half-word (with unscaled offset).
> - void ldurh(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Store half-word (with unscaled offset).
> - void sturh(const Register& rt, const MemOperand& dst,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Load half-word with sign extension (and unscaled offset).
> - void ldursh(const Register& rt, const MemOperand& src,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Load integer or FP register pair.
> - void ldp(const CPURegister& rt, const CPURegister& rt2,
> - const MemOperand& src);
> -
> - // Store integer or FP register pair.
> - void stp(const CPURegister& rt, const CPURegister& rt2,
> - const MemOperand& dst);
> -
> - // Load word pair with sign extension.
> - void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
> -
> - // Load integer or FP register pair, non-temporal.
> - void ldnp(const CPURegister& rt, const CPURegister& rt2,
> - const MemOperand& src);
> -
> - // Store integer or FP register pair, non-temporal.
> - void stnp(const CPURegister& rt, const CPURegister& rt2,
> - const MemOperand& dst);
> -
> - // Load integer or FP register from literal pool.
> - void ldr(const CPURegister& rt, RawLiteral* literal);
> -
> - // Load word with sign extension from literal pool.
> - void ldrsw(const Register& rt, RawLiteral* literal);
> -
> - // Load integer or FP register from pc + imm19 << 2.
> - void ldr(const CPURegister& rt, int imm19);
> -
> - // Load word with sign extension from pc + imm19 << 2.
> - void ldrsw(const Register& rt, int imm19);
> -
> - // Store exclusive byte.
> - void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
> -
> - // Store exclusive half-word.
> - void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
> -
> - // Store exclusive register.
> - void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
> -
> - // Load exclusive byte.
> - void ldxrb(const Register& rt, const MemOperand& src);
> -
> - // Load exclusive half-word.
> - void ldxrh(const Register& rt, const MemOperand& src);
> -
> - // Load exclusive register.
> - void ldxr(const Register& rt, const MemOperand& src);
> -
> - // Store exclusive register pair.
> - void stxp(const Register& rs,
> - const Register& rt,
> - const Register& rt2,
> - const MemOperand& dst);
> -
> - // Load exclusive register pair.
> - void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
> -
> - // Store-release exclusive byte.
> - void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
> -
> - // Store-release exclusive half-word.
> - void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
> -
> - // Store-release exclusive register.
> - void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
> -
> - // Load-acquire exclusive byte.
> - void ldaxrb(const Register& rt, const MemOperand& src);
> -
> - // Load-acquire exclusive half-word.
> - void ldaxrh(const Register& rt, const MemOperand& src);
> -
> - // Load-acquire exclusive register.
> - void ldaxr(const Register& rt, const MemOperand& src);
> -
> - // Store-release exclusive register pair.
> - void stlxp(const Register& rs,
> - const Register& rt,
> - const Register& rt2,
> - const MemOperand& dst);
> -
> - // Load-acquire exclusive register pair.
> - void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
> -
> - // Store-release byte.
> - void stlrb(const Register& rt, const MemOperand& dst);
> -
> - // Store-release half-word.
> - void stlrh(const Register& rt, const MemOperand& dst);
> -
> - // Store-release register.
> - void stlr(const Register& rt, const MemOperand& dst);
> -
> - // Load-acquire byte.
> - void ldarb(const Register& rt, const MemOperand& src);
> -
> - // Load-acquire half-word.
> - void ldarh(const Register& rt, const MemOperand& src);
> -
> - // Load-acquire register.
> - void ldar(const Register& rt, const MemOperand& src);
> -
> - // Prefetch memory.
> - void prfm(PrefetchOperation op, const MemOperand& addr,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // Prefetch memory (with unscaled offset).
> - void prfum(PrefetchOperation op, const MemOperand& addr,
> - LoadStoreScalingOption option = PreferUnscaledOffset);
> -
> - // Prefetch memory in the literal pool.
> - void prfm(PrefetchOperation op, RawLiteral* literal);
> -
> - // Prefetch from pc + imm19 << 2.
> - void prfm(PrefetchOperation op, int imm19);
> -
> - // Move instructions. The default shift of -1 indicates that the move
> - // instruction will calculate an appropriate 16-bit immediate and left
> shift
> - // that is equal to the 64-bit immediate argument. If an explicit left
> shift
> - // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
> - //
> - // For movk, an explicit shift can be used to indicate which half word
> should
> - // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
> - // half word with zero, whereas movk(x0, 0, 48) will overwrite the
> - // most-significant.
> -
> - // Move immediate and keep.
> - void movk(const Register& rd, uint64_t imm, int shift = -1) {
> - MoveWide(rd, imm, shift, MOVK);
> - }
> -
> - // Move inverted immediate.
> - void movn(const Register& rd, uint64_t imm, int shift = -1) {
> - MoveWide(rd, imm, shift, MOVN);
> - }
> -
> - // Move immediate.
> - void movz(const Register& rd, uint64_t imm, int shift = -1) {
> - MoveWide(rd, imm, shift, MOVZ);
> - }
> -
> - // Misc instructions.
> - // Monitor debug-mode breakpoint.
> - void brk(int code);
> -
> - // Halting debug-mode breakpoint.
> - void hlt(int code);
> -
> - // Generate exception targeting EL1.
> - void svc(int code);
> -
> - // Move register to register.
> - void mov(const Register& rd, const Register& rn);
> -
> - // Move inverted operand to register.
> - void mvn(const Register& rd, const Operand& operand);
> -
> - // System instructions.
> - // Move to register from system register.
> - void mrs(const Register& rt, SystemRegister sysreg);
> -
> - // Move from register to system register.
> - void msr(SystemRegister sysreg, const Register& rt);
> -
> - // System instruction.
> - void sys(int op1, int crn, int crm, int op2, const Register& rt = xzr);
> -
> - // System instruction with pre-encoded op (op1:crn:crm:op2).
> - void sys(int op, const Register& rt = xzr);
> -
> - // System data cache operation.
> - void dc(DataCacheOp op, const Register& rt);
> -
> - // System instruction cache operation.
> - void ic(InstructionCacheOp op, const Register& rt);
> -
> - // System hint.
> - void hint(SystemHint code);
> -
> - // Clear exclusive monitor.
> - void clrex(int imm4 = 0xf);
> -
> - // Data memory barrier.
> - void dmb(BarrierDomain domain, BarrierType type);
> -
> - // Data synchronization barrier.
> - void dsb(BarrierDomain domain, BarrierType type);
> -
> - // Instruction synchronization barrier.
> - void isb();
> -
> - // Alias for system instructions.
> - // No-op.
> - void nop() {
> - hint(NOP);
> - }
> -
> - // FP and NEON instructions.
> - // Move double precision immediate to FP register.
> - void fmov(const VRegister& vd, double imm);
> -
> - // Move single precision immediate to FP register.
> - void fmov(const VRegister& vd, float imm);
> -
> - // Move FP register to register.
> - void fmov(const Register& rd, const VRegister& fn);
> -
> - // Move register to FP register.
> - void fmov(const VRegister& vd, const Register& rn);
> -
> - // Move FP register to FP register.
> - void fmov(const VRegister& vd, const VRegister& fn);
> -
> - // Move 64-bit register to top half of 128-bit FP register.
> - void fmov(const VRegister& vd, int index, const Register& rn);
> -
> - // Move top half of 128-bit FP register to 64-bit register.
> - void fmov(const Register& rd, const VRegister& vn, int index);
> -
> - // FP add.
> - void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
> -
> - // FP subtract.
> - void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
> -
> - // FP multiply.
> - void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
> -
> - // FP fused multiply-add.
> - void fmadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - const VRegister& va);
> -
> - // FP fused multiply-subtract.
> - void fmsub(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - const VRegister& va);
> -
> - // FP fused multiply-add and negate.
> - void fnmadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - const VRegister& va);
> -
> - // FP fused multiply-subtract and negate.
> - void fnmsub(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - const VRegister& va);
> -
> - // FP multiply-negate scalar.
> - void fnmul(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP reciprocal exponent scalar.
> - void frecpx(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP divide.
> - void fdiv(const VRegister& vd, const VRegister& fn, const VRegister& vm);
> -
> - // FP maximum.
> - void fmax(const VRegister& vd, const VRegister& fn, const VRegister& vm);
> -
> - // FP minimum.
> - void fmin(const VRegister& vd, const VRegister& fn, const VRegister& vm);
> -
> - // FP maximum number.
> - void fmaxnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
> -
> - // FP minimum number.
> - void fminnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
> -
> - // FP absolute.
> - void fabs(const VRegister& vd, const VRegister& vn);
> -
> - // FP negate.
> - void fneg(const VRegister& vd, const VRegister& vn);
> -
> - // FP square root.
> - void fsqrt(const VRegister& vd, const VRegister& vn);
> -
> - // FP round to integer, nearest with ties to away.
> - void frinta(const VRegister& vd, const VRegister& vn);
> -
> - // FP round to integer, implicit rounding.
> - void frinti(const VRegister& vd, const VRegister& vn);
> -
> - // FP round to integer, toward minus infinity.
> - void frintm(const VRegister& vd, const VRegister& vn);
> -
> - // FP round to integer, nearest with ties to even.
> - void frintn(const VRegister& vd, const VRegister& vn);
> -
> - // FP round to integer, toward plus infinity.
> - void frintp(const VRegister& vd, const VRegister& vn);
> -
> - // FP round to integer, exact, implicit rounding.
> - void frintx(const VRegister& vd, const VRegister& vn);
> -
> - // FP round to integer, towards zero.
> - void frintz(const VRegister& vd, const VRegister& vn);
> -
> - void FPCompareMacro(const VRegister& vn,
> - double value,
> - FPTrapFlags trap);
> -
> - void FPCompareMacro(const VRegister& vn,
> - const VRegister& vm,
> - FPTrapFlags trap);
> -
> - // FP compare registers.
> - void fcmp(const VRegister& vn, const VRegister& vm);
> -
> - // FP compare immediate.
> - void fcmp(const VRegister& vn, double value);
> -
> - void FPCCompareMacro(const VRegister& vn,
> - const VRegister& vm,
> - StatusFlags nzcv,
> - Condition cond,
> - FPTrapFlags trap);
> -
> - // FP conditional compare.
> - void fccmp(const VRegister& vn,
> - const VRegister& vm,
> - StatusFlags nzcv,
> - Condition cond);
> -
> - // FP signaling compare registers.
> - void fcmpe(const VRegister& vn, const VRegister& vm);
> -
> - // FP signaling compare immediate.
> - void fcmpe(const VRegister& vn, double value);
> -
> - // FP conditional signaling compare.
> - void fccmpe(const VRegister& vn,
> - const VRegister& vm,
> - StatusFlags nzcv,
> - Condition cond);
> -
> - // FP conditional select.
> - void fcsel(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - Condition cond);
> -
> - // Common FP Convert functions.
> - void NEONFPConvertToInt(const Register& rd,
> - const VRegister& vn,
> - Instr op);
> - void NEONFPConvertToInt(const VRegister& vd,
> - const VRegister& vn,
> - Instr op);
> -
> - // FP convert between precisions.
> - void fcvt(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to higher precision.
> - void fcvtl(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to higher precision (second part).
> - void fcvtl2(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to lower precision.
> - void fcvtn(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to lower prevision (second part).
> - void fcvtn2(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to lower precision, rounding to odd.
> - void fcvtxn(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to lower precision, rounding to odd (second part).
> - void fcvtxn2(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to signed integer, nearest with ties to away.
> - void fcvtas(const Register& rd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, nearest with ties to away.
> - void fcvtau(const Register& rd, const VRegister& vn);
> -
> - // FP convert to signed integer, nearest with ties to away.
> - void fcvtas(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, nearest with ties to away.
> - void fcvtau(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to signed integer, round towards -infinity.
> - void fcvtms(const Register& rd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, round towards -infinity.
> - void fcvtmu(const Register& rd, const VRegister& vn);
> -
> - // FP convert to signed integer, round towards -infinity.
> - void fcvtms(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, round towards -infinity.
> - void fcvtmu(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to signed integer, nearest with ties to even.
> - void fcvtns(const Register& rd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, nearest with ties to even.
> - void fcvtnu(const Register& rd, const VRegister& vn);
> -
> - // FP convert to signed integer, nearest with ties to even.
> - void fcvtns(const VRegister& rd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, nearest with ties to even.
> - void fcvtnu(const VRegister& rd, const VRegister& vn);
> -
> - // FP convert to signed integer or fixed-point, round towards zero.
> - void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);
> -
> - // FP convert to unsigned integer or fixed-point, round towards zero.
> - void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);
> -
> - // FP convert to signed integer or fixed-point, round towards zero.
> - void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);
> -
> - // FP convert to unsigned integer or fixed-point, round towards zero.
> - void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);
> -
> - // FP convert to signed integer, round towards +infinity.
> - void fcvtps(const Register& rd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, round towards +infinity.
> - void fcvtpu(const Register& rd, const VRegister& vn);
> -
> - // FP convert to signed integer, round towards +infinity.
> - void fcvtps(const VRegister& vd, const VRegister& vn);
> -
> - // FP convert to unsigned integer, round towards +infinity.
> - void fcvtpu(const VRegister& vd, const VRegister& vn);
> -
> - // Convert signed integer or fixed point to FP.
> - void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);
> -
> - // Convert unsigned integer or fixed point to FP.
> - void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);
> -
> - // Convert signed integer or fixed-point to FP.
> - void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
> -
> - // Convert unsigned integer or fixed-point to FP.
> - void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
> -
> - // Unsigned absolute difference.
> - void uabd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed absolute difference.
> - void sabd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned absolute difference and accumulate.
> - void uaba(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed absolute difference and accumulate.
> - void saba(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Add.
> - void add(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Subtract.
> - void sub(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned halving add.
> - void uhadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed halving add.
> - void shadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned rounding halving add.
> - void urhadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed rounding halving add.
> - void srhadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned halving sub.
> - void uhsub(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed halving sub.
> - void shsub(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned saturating add.
> - void uqadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating add.
> - void sqadd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned saturating subtract.
> - void uqsub(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating subtract.
> - void sqsub(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Add pairwise.
> - void addp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Add pair of elements scalar.
> - void addp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Multiply-add to accumulator.
> - void mla(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Multiply-subtract to accumulator.
> - void mls(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Multiply.
> - void mul(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Multiply by scalar element.
> - void mul(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Multiply-add by scalar element.
> - void mla(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Multiply-subtract by scalar element.
> - void mls(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed long multiply-add by scalar element.
> - void smlal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed long multiply-add by scalar element (second part).
> - void smlal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Unsigned long multiply-add by scalar element.
> - void umlal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Unsigned long multiply-add by scalar element (second part).
> - void umlal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed long multiply-sub by scalar element.
> - void smlsl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed long multiply-sub by scalar element (second part).
> - void smlsl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Unsigned long multiply-sub by scalar element.
> - void umlsl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Unsigned long multiply-sub by scalar element (second part).
> - void umlsl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed long multiply by scalar element.
> - void smull(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed long multiply by scalar element (second part).
> - void smull2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Unsigned long multiply by scalar element.
> - void umull(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Unsigned long multiply by scalar element (second part).
> - void umull2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed saturating double long multiply by element.
> - void sqdmull(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed saturating double long multiply by element (second part).
> - void sqdmull2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed saturating doubling long multiply-add by element.
> - void sqdmlal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed saturating doubling long multiply-add by element (second part).
> - void sqdmlal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed saturating doubling long multiply-sub by element.
> - void sqdmlsl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed saturating doubling long multiply-sub by element (second part).
> - void sqdmlsl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Compare equal.
> - void cmeq(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Compare signed greater than or equal.
> - void cmge(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Compare signed greater than.
> - void cmgt(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Compare unsigned higher.
> - void cmhi(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Compare unsigned higher or same.
> - void cmhs(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Compare bitwise test bits nonzero.
> - void cmtst(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Compare bitwise to zero.
> - void cmeq(const VRegister& vd,
> - const VRegister& vn,
> - int value);
> -
> - // Compare signed greater than or equal to zero.
> - void cmge(const VRegister& vd,
> - const VRegister& vn,
> - int value);
> -
> - // Compare signed greater than zero.
> - void cmgt(const VRegister& vd,
> - const VRegister& vn,
> - int value);
> -
> - // Compare signed less than or equal to zero.
> - void cmle(const VRegister& vd,
> - const VRegister& vn,
> - int value);
> -
> - // Compare signed less than zero.
> - void cmlt(const VRegister& vd,
> - const VRegister& vn,
> - int value);
> -
> - // Signed shift left by register.
> - void sshl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned shift left by register.
> - void ushl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating shift left by register.
> - void sqshl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned saturating shift left by register.
> - void uqshl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed rounding shift left by register.
> - void srshl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned rounding shift left by register.
> - void urshl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating rounding shift left by register.
> - void sqrshl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned saturating rounding shift left by register.
> - void uqrshl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bitwise and.
> - void and_(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bitwise or.
> - void orr(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bitwise or immediate.
> - void orr(const VRegister& vd,
> - const int imm8,
> - const int left_shift = 0);
> -
> - // Move register to register.
> - void mov(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Bitwise orn.
> - void orn(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bitwise eor.
> - void eor(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bit clear immediate.
> - void bic(const VRegister& vd,
> - const int imm8,
> - const int left_shift = 0);
> -
> - // Bit clear.
> - void bic(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bitwise insert if false.
> - void bif(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bitwise insert if true.
> - void bit(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Bitwise select.
> - void bsl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Polynomial multiply.
> - void pmul(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Vector move immediate.
> - void movi(const VRegister& vd,
> - const uint64_t imm,
> - Shift shift = LSL,
> - const int shift_amount = 0);
> -
> - // Bitwise not.
> - void mvn(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Vector move inverted immediate.
> - void mvni(const VRegister& vd,
> - const int imm8,
> - Shift shift = LSL,
> - const int shift_amount = 0);
> -
> - // Signed saturating accumulate of unsigned value.
> - void suqadd(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned saturating accumulate of signed value.
> - void usqadd(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Absolute value.
> - void abs(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed saturating absolute value.
> - void sqabs(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Negate.
> - void neg(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed saturating negate.
> - void sqneg(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Bitwise not.
> - void not_(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Extract narrow.
> - void xtn(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Extract narrow (second part).
> - void xtn2(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed saturating extract narrow.
> - void sqxtn(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed saturating extract narrow (second part).
> - void sqxtn2(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned saturating extract narrow.
> - void uqxtn(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned saturating extract narrow (second part).
> - void uqxtn2(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed saturating extract unsigned narrow.
> - void sqxtun(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed saturating extract unsigned narrow (second part).
> - void sqxtun2(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Extract vector from pair of vectors.
> - void ext(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int index);
> -
> - // Duplicate vector element to vector or scalar.
> - void dup(const VRegister& vd,
> - const VRegister& vn,
> - int vn_index);
> -
> - // Move vector element to scalar.
> - void mov(const VRegister& vd,
> - const VRegister& vn,
> - int vn_index);
> -
> - // Duplicate general-purpose register to vector.
> - void dup(const VRegister& vd,
> - const Register& rn);
> -
> - // Insert vector element from another vector element.
> - void ins(const VRegister& vd,
> - int vd_index,
> - const VRegister& vn,
> - int vn_index);
> -
> - // Move vector element to another vector element.
> - void mov(const VRegister& vd,
> - int vd_index,
> - const VRegister& vn,
> - int vn_index);
> -
> - // Insert vector element from general-purpose register.
> - void ins(const VRegister& vd,
> - int vd_index,
> - const Register& rn);
> -
> - // Move general-purpose register to a vector element.
> - void mov(const VRegister& vd,
> - int vd_index,
> - const Register& rn);
> -
> - // Unsigned move vector element to general-purpose register.
> - void umov(const Register& rd,
> - const VRegister& vn,
> - int vn_index);
> -
> - // Move vector element to general-purpose register.
> - void mov(const Register& rd,
> - const VRegister& vn,
> - int vn_index);
> -
> - // Signed move vector element to general-purpose register.
> - void smov(const Register& rd,
> - const VRegister& vn,
> - int vn_index);
> -
> - // One-element structure load to one register.
> - void ld1(const VRegister& vt,
> - const MemOperand& src);
> -
> - // One-element structure load to two registers.
> - void ld1(const VRegister& vt,
> - const VRegister& vt2,
> - const MemOperand& src);
> -
> - // One-element structure load to three registers.
> - void ld1(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const MemOperand& src);
> -
> - // One-element structure load to four registers.
> - void ld1(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const VRegister& vt4,
> - const MemOperand& src);
> -
> - // One-element single structure load to one lane.
> - void ld1(const VRegister& vt,
> - int lane,
> - const MemOperand& src);
> -
> - // One-element single structure load to all lanes.
> - void ld1r(const VRegister& vt,
> - const MemOperand& src);
> -
> - // Two-element structure load.
> - void ld2(const VRegister& vt,
> - const VRegister& vt2,
> - const MemOperand& src);
> -
> - // Two-element single structure load to one lane.
> - void ld2(const VRegister& vt,
> - const VRegister& vt2,
> - int lane,
> - const MemOperand& src);
> -
> - // Two-element single structure load to all lanes.
> - void ld2r(const VRegister& vt,
> - const VRegister& vt2,
> - const MemOperand& src);
> -
> - // Three-element structure load.
> - void ld3(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const MemOperand& src);
> -
> - // Three-element single structure load to one lane.
> - void ld3(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - int lane,
> - const MemOperand& src);
> -
> - // Three-element single structure load to all lanes.
> - void ld3r(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const MemOperand& src);
> -
> - // Four-element structure load.
> - void ld4(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const VRegister& vt4,
> - const MemOperand& src);
> -
> - // Four-element single structure load to one lane.
> - void ld4(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const VRegister& vt4,
> - int lane,
> - const MemOperand& src);
> -
> - // Four-element single structure load to all lanes.
> - void ld4r(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const VRegister& vt4,
> - const MemOperand& src);
> -
> - // Count leading sign bits.
> - void cls(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Count leading zero bits (vector).
> - void clz(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Population count per byte.
> - void cnt(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Reverse bit order.
> - void rbit(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Reverse elements in 16-bit halfwords.
> - void rev16(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Reverse elements in 32-bit words.
> - void rev32(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Reverse elements in 64-bit doublewords.
> - void rev64(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned reciprocal square root estimate.
> - void ursqrte(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned reciprocal estimate.
> - void urecpe(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed pairwise long add.
> - void saddlp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned pairwise long add.
> - void uaddlp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed pairwise long add and accumulate.
> - void sadalp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned pairwise long add and accumulate.
> - void uadalp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Shift left by immediate.
> - void shl(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating shift left by immediate.
> - void sqshl(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating shift left unsigned by immediate.
> - void sqshlu(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned saturating shift left by immediate.
> - void uqshl(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed shift left long by immediate.
> - void sshll(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed shift left long by immediate (second part).
> - void sshll2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed extend long.
> - void sxtl(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed extend long (second part).
> - void sxtl2(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned shift left long by immediate.
> - void ushll(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned shift left long by immediate (second part).
> - void ushll2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Shift left long by element size.
> - void shll(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Shift left long by element size (second part).
> - void shll2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned extend long.
> - void uxtl(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned extend long (second part).
> - void uxtl2(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Shift left by immediate and insert.
> - void sli(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Shift right by immediate and insert.
> - void sri(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed maximum.
> - void smax(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed pairwise maximum.
> - void smaxp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Add across vector.
> - void addv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed add long across vector.
> - void saddlv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned add long across vector.
> - void uaddlv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP maximum number across vector.
> - void fmaxnmv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP maximum across vector.
> - void fmaxv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP minimum number across vector.
> - void fminnmv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP minimum across vector.
> - void fminv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed maximum across vector.
> - void smaxv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Signed minimum.
> - void smin(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed minimum pairwise.
> - void sminp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed minimum across vector.
> - void sminv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // One-element structure store from one register.
> - void st1(const VRegister& vt,
> - const MemOperand& src);
> -
> - // One-element structure store from two registers.
> - void st1(const VRegister& vt,
> - const VRegister& vt2,
> - const MemOperand& src);
> -
> - // One-element structure store from three registers.
> - void st1(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const MemOperand& src);
> -
> - // One-element structure store from four registers.
> - void st1(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const VRegister& vt4,
> - const MemOperand& src);
> -
> - // One-element single structure store from one lane.
> - void st1(const VRegister& vt,
> - int lane,
> - const MemOperand& src);
> -
> - // Two-element structure store from two registers.
> - void st2(const VRegister& vt,
> - const VRegister& vt2,
> - const MemOperand& src);
> -
> - // Two-element single structure store from two lanes.
> - void st2(const VRegister& vt,
> - const VRegister& vt2,
> - int lane,
> - const MemOperand& src);
> -
> - // Three-element structure store from three registers.
> - void st3(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const MemOperand& src);
> -
> - // Three-element single structure store from three lanes.
> - void st3(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - int lane,
> - const MemOperand& src);
> -
> - // Four-element structure store from four registers.
> - void st4(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const VRegister& vt4,
> - const MemOperand& src);
> -
> - // Four-element single structure store from four lanes.
> - void st4(const VRegister& vt,
> - const VRegister& vt2,
> - const VRegister& vt3,
> - const VRegister& vt4,
> - int lane,
> - const MemOperand& src);
> -
> - // Unsigned add long.
> - void uaddl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned add long (second part).
> - void uaddl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned add wide.
> - void uaddw(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned add wide (second part).
> - void uaddw2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed add long.
> - void saddl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed add long (second part).
> - void saddl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed add wide.
> - void saddw(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed add wide (second part).
> - void saddw2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned subtract long.
> - void usubl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned subtract long (second part).
> - void usubl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned subtract wide.
> - void usubw(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned subtract wide (second part).
> - void usubw2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed subtract long.
> - void ssubl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed subtract long (second part).
> - void ssubl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed integer subtract wide.
> - void ssubw(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed integer subtract wide (second part).
> - void ssubw2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned maximum.
> - void umax(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned pairwise maximum.
> - void umaxp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned maximum across vector.
> - void umaxv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Unsigned minimum.
> - void umin(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned pairwise minimum.
> - void uminp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned minimum across vector.
> - void uminv(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Transpose vectors (primary).
> - void trn1(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Transpose vectors (secondary).
> - void trn2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unzip vectors (primary).
> - void uzp1(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unzip vectors (secondary).
> - void uzp2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Zip vectors (primary).
> - void zip1(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Zip vectors (secondary).
> - void zip2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed shift right by immediate.
> - void sshr(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned shift right by immediate.
> - void ushr(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed rounding shift right by immediate.
> - void srshr(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned rounding shift right by immediate.
> - void urshr(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed shift right by immediate and accumulate.
> - void ssra(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned shift right by immediate and accumulate.
> - void usra(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed rounding shift right by immediate and accumulate.
> - void srsra(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned rounding shift right by immediate and accumulate.
> - void ursra(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Shift right narrow by immediate.
> - void shrn(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Shift right narrow by immediate (second part).
> - void shrn2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Rounding shift right narrow by immediate.
> - void rshrn(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Rounding shift right narrow by immediate (second part).
> - void rshrn2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned saturating shift right narrow by immediate.
> - void uqshrn(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned saturating shift right narrow by immediate (second part).
> - void uqshrn2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned saturating rounding shift right narrow by immediate.
> - void uqrshrn(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Unsigned saturating rounding shift right narrow by immediate (second
> part).
> - void uqrshrn2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating shift right narrow by immediate.
> - void sqshrn(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating shift right narrow by immediate (second part).
> - void sqshrn2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating rounded shift right narrow by immediate.
> - void sqrshrn(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating rounded shift right narrow by immediate (second part).
> - void sqrshrn2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating shift right unsigned narrow by immediate.
> - void sqshrun(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed saturating shift right unsigned narrow by immediate (second
> part).
> - void sqshrun2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed sat rounded shift right unsigned narrow by immediate.
> - void sqrshrun(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // Signed sat rounded shift right unsigned narrow by immediate (second
> part).
> - void sqrshrun2(const VRegister& vd,
> - const VRegister& vn,
> - int shift);
> -
> - // FP reciprocal step.
> - void frecps(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP reciprocal estimate.
> - void frecpe(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP reciprocal square root estimate.
> - void frsqrte(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP reciprocal square root step.
> - void frsqrts(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed absolute difference and accumulate long.
> - void sabal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed absolute difference and accumulate long (second part).
> - void sabal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned absolute difference and accumulate long.
> - void uabal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned absolute difference and accumulate long (second part).
> - void uabal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed absolute difference long.
> - void sabdl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed absolute difference long (second part).
> - void sabdl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned absolute difference long.
> - void uabdl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned absolute difference long (second part).
> - void uabdl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Polynomial multiply long.
> - void pmull(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Polynomial multiply long (second part).
> - void pmull2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed long multiply-add.
> - void smlal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed long multiply-add (second part).
> - void smlal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned long multiply-add.
> - void umlal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned long multiply-add (second part).
> - void umlal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed long multiply-sub.
> - void smlsl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed long multiply-sub (second part).
> - void smlsl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned long multiply-sub.
> - void umlsl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned long multiply-sub (second part).
> - void umlsl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed long multiply.
> - void smull(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed long multiply (second part).
> - void smull2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling long multiply-add.
> - void sqdmlal(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling long multiply-add (second part).
> - void sqdmlal2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling long multiply-subtract.
> - void sqdmlsl(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling long multiply-subtract (second part).
> - void sqdmlsl2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling long multiply.
> - void sqdmull(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling long multiply (second part).
> - void sqdmull2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling multiply returning high half.
> - void sqdmulh(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating rounding doubling multiply returning high half.
> - void sqrdmulh(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Signed saturating doubling multiply element returning high half.
> - void sqdmulh(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Signed saturating rounding doubling multiply element returning high
> half.
> - void sqrdmulh(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // Unsigned long multiply long.
> - void umull(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Unsigned long multiply (second part).
> - void umull2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Add narrow returning high half.
> - void addhn(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Add narrow returning high half (second part).
> - void addhn2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Rounding add narrow returning high half.
> - void raddhn(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Rounding add narrow returning high half (second part).
> - void raddhn2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Subtract narrow returning high half.
> - void subhn(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Subtract narrow returning high half (second part).
> - void subhn2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Rounding subtract narrow returning high half.
> - void rsubhn(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // Rounding subtract narrow returning high half (second part).
> - void rsubhn2(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP vector multiply accumulate.
> - void fmla(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP vector multiply subtract.
> - void fmls(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP vector multiply extended.
> - void fmulx(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP absolute greater than or equal.
> - void facge(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP absolute greater than.
> - void facgt(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP multiply by element.
> - void fmul(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // FP fused multiply-add to accumulator by element.
> - void fmla(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // FP fused multiply-sub from accumulator by element.
> - void fmls(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // FP multiply extended by element.
> - void fmulx(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index);
> -
> - // FP compare equal.
> - void fcmeq(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP greater than.
> - void fcmgt(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP greater than or equal.
> - void fcmge(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP compare equal to zero.
> - void fcmeq(const VRegister& vd,
> - const VRegister& vn,
> - double imm);
> -
> - // FP greater than zero.
> - void fcmgt(const VRegister& vd,
> - const VRegister& vn,
> - double imm);
> -
> - // FP greater than or equal to zero.
> - void fcmge(const VRegister& vd,
> - const VRegister& vn,
> - double imm);
> -
> - // FP less than or equal to zero.
> - void fcmle(const VRegister& vd,
> - const VRegister& vn,
> - double imm);
> -
> - // FP less than to zero.
> - void fcmlt(const VRegister& vd,
> - const VRegister& vn,
> - double imm);
> -
> - // FP absolute difference.
> - void fabd(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP pairwise add vector.
> - void faddp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP pairwise add scalar.
> - void faddp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP pairwise maximum vector.
> - void fmaxp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP pairwise maximum scalar.
> - void fmaxp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP pairwise minimum vector.
> - void fminp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP pairwise minimum scalar.
> - void fminp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP pairwise maximum number vector.
> - void fmaxnmp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP pairwise maximum number scalar.
> - void fmaxnmp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // FP pairwise minimum number vector.
> - void fminnmp(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm);
> -
> - // FP pairwise minimum number scalar.
> - void fminnmp(const VRegister& vd,
> - const VRegister& vn);
> -
> - // Emit generic instructions.
> - // Emit raw instructions into the instruction stream.
> - void dci(Instr raw_inst) { Emit(raw_inst); }
> -
> - // Emit 32 bits of data into the instruction stream.
> - void dc32(uint32_t data) {
> - VIXL_ASSERT(buffer_monitor_ > 0);
> - buffer_->Emit32(data);
> - }
> -
> - // Emit 64 bits of data into the instruction stream.
> - void dc64(uint64_t data) {
> - VIXL_ASSERT(buffer_monitor_ > 0);
> - buffer_->Emit64(data);
> - }
> -
> - // Copy a string into the instruction stream, including the terminating
> NULL
> - // character. The instruction pointer is then aligned correctly for
> - // subsequent instructions.
> - void EmitString(const char * string) {
> - VIXL_ASSERT(string != NULL);
> - VIXL_ASSERT(buffer_monitor_ > 0);
> -
> - buffer_->EmitString(string);
> - buffer_->Align();
> - }
> -
> - // Code generation helpers.
> -
> - // Register encoding.
> - static Instr Rd(CPURegister rd) {
> - VIXL_ASSERT(rd.code() != kSPRegInternalCode);
> - return rd.code() << Rd_offset;
> - }
> -
> - static Instr Rn(CPURegister rn) {
> - VIXL_ASSERT(rn.code() != kSPRegInternalCode);
> - return rn.code() << Rn_offset;
> - }
> -
> - static Instr Rm(CPURegister rm) {
> - VIXL_ASSERT(rm.code() != kSPRegInternalCode);
> - return rm.code() << Rm_offset;
> - }
> -
> - static Instr RmNot31(CPURegister rm) {
> - VIXL_ASSERT(rm.code() != kSPRegInternalCode);
> - VIXL_ASSERT(!rm.IsZero());
> - return Rm(rm);
> - }
> -
> - static Instr Ra(CPURegister ra) {
> - VIXL_ASSERT(ra.code() != kSPRegInternalCode);
> - return ra.code() << Ra_offset;
> - }
> -
> - static Instr Rt(CPURegister rt) {
> - VIXL_ASSERT(rt.code() != kSPRegInternalCode);
> - return rt.code() << Rt_offset;
> - }
> -
> - static Instr Rt2(CPURegister rt2) {
> - VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
> - return rt2.code() << Rt2_offset;
> - }
> -
> - static Instr Rs(CPURegister rs) {
> - VIXL_ASSERT(rs.code() != kSPRegInternalCode);
> - return rs.code() << Rs_offset;
> - }
> -
> - // These encoding functions allow the stack pointer to be encoded, and
> - // disallow the zero register.
> - static Instr RdSP(Register rd) {
> - VIXL_ASSERT(!rd.IsZero());
> - return (rd.code() & kRegCodeMask) << Rd_offset;
> - }
> -
> - static Instr RnSP(Register rn) {
> - VIXL_ASSERT(!rn.IsZero());
> - return (rn.code() & kRegCodeMask) << Rn_offset;
> - }
> -
> - // Flags encoding.
> - static Instr Flags(FlagsUpdate S) {
> - if (S == SetFlags) {
> - return 1 << FlagsUpdate_offset;
> - } else if (S == LeaveFlags) {
> - return 0 << FlagsUpdate_offset;
> - }
> - VIXL_UNREACHABLE();
> - return 0;
> - }
> -
> - static Instr Cond(Condition cond) {
> - return cond << Condition_offset;
> - }
> -
> - // PC-relative address encoding.
> - static Instr ImmPCRelAddress(int imm21) {
> - VIXL_ASSERT(is_int21(imm21));
> - Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
> - Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
> - Instr immlo = imm << ImmPCRelLo_offset;
> - return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
> - }
> -
> - // Branch encoding.
> - static Instr ImmUncondBranch(int imm26) {
> - VIXL_ASSERT(is_int26(imm26));
> - return truncate_to_int26(imm26) << ImmUncondBranch_offset;
> - }
> -
> - static Instr ImmCondBranch(int imm19) {
> - VIXL_ASSERT(is_int19(imm19));
> - return truncate_to_int19(imm19) << ImmCondBranch_offset;
> - }
> -
> - static Instr ImmCmpBranch(int imm19) {
> - VIXL_ASSERT(is_int19(imm19));
> - return truncate_to_int19(imm19) << ImmCmpBranch_offset;
> - }
> -
> - static Instr ImmTestBranch(int imm14) {
> - VIXL_ASSERT(is_int14(imm14));
> - return truncate_to_int14(imm14) << ImmTestBranch_offset;
> - }
> -
> - static Instr ImmTestBranchBit(unsigned bit_pos) {
> - VIXL_ASSERT(is_uint6(bit_pos));
> - // Subtract five from the shift offset, as we need bit 5 from bit_pos.
> - unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
> - unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
> - b5 &= ImmTestBranchBit5_mask;
> - b40 &= ImmTestBranchBit40_mask;
> - return b5 | b40;
> - }
> -
> - // Data Processing encoding.
> - static Instr SF(Register rd) {
> - return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
> - }
> -
> - static Instr ImmAddSub(int imm) {
> - VIXL_ASSERT(IsImmAddSub(imm));
> - if (is_uint12(imm)) { // No shift required.
> - imm <<= ImmAddSub_offset;
> - } else {
> - imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
> - }
> - return imm;
> - }
> -
> - static Instr ImmS(unsigned imms, unsigned reg_size) {
> - VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
> - ((reg_size == kWRegSize) && is_uint5(imms)));
> - USE(reg_size);
> - return imms << ImmS_offset;
> - }
> -
> - static Instr ImmR(unsigned immr, unsigned reg_size) {
> - VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
> - ((reg_size == kWRegSize) && is_uint5(immr)));
> - USE(reg_size);
> - VIXL_ASSERT(is_uint6(immr));
> - return immr << ImmR_offset;
> - }
> -
> - static Instr ImmSetBits(unsigned imms, unsigned reg_size) {
> - VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
> - VIXL_ASSERT(is_uint6(imms));
> - VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
> - USE(reg_size);
> - return imms << ImmSetBits_offset;
> - }
> -
> - static Instr ImmRotate(unsigned immr, unsigned reg_size) {
> - VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
> - VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
> - ((reg_size == kWRegSize) && is_uint5(immr)));
> - USE(reg_size);
> - return immr << ImmRotate_offset;
> - }
> -
> - static Instr ImmLLiteral(int imm19) {
> - VIXL_ASSERT(is_int19(imm19));
> - return truncate_to_int19(imm19) << ImmLLiteral_offset;
> - }
> -
> - static Instr BitN(unsigned bitn, unsigned reg_size) {
> - VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
> - VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
> - USE(reg_size);
> - return bitn << BitN_offset;
> - }
> -
> - static Instr ShiftDP(Shift shift) {
> - VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift ==
> ROR);
> - return shift << ShiftDP_offset;
> - }
> -
> - static Instr ImmDPShift(unsigned amount) {
> - VIXL_ASSERT(is_uint6(amount));
> - return amount << ImmDPShift_offset;
> - }
> -
> - static Instr ExtendMode(Extend extend) {
> - return extend << ExtendMode_offset;
> - }
> -
> - static Instr ImmExtendShift(unsigned left_shift) {
> - VIXL_ASSERT(left_shift <= 4);
> - return left_shift << ImmExtendShift_offset;
> - }
> -
> - static Instr ImmCondCmp(unsigned imm) {
> - VIXL_ASSERT(is_uint5(imm));
> - return imm << ImmCondCmp_offset;
> - }
> -
> - static Instr Nzcv(StatusFlags nzcv) {
> - return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
> - }
> -
> - // MemOperand offset encoding.
> - static Instr ImmLSUnsigned(int imm12) {
> - VIXL_ASSERT(is_uint12(imm12));
> - return imm12 << ImmLSUnsigned_offset;
> - }
> -
> - static Instr ImmLS(int imm9) {
> - VIXL_ASSERT(is_int9(imm9));
> - return truncate_to_int9(imm9) << ImmLS_offset;
> - }
> -
> - static Instr ImmLSPair(int imm7, unsigned access_size) {
> - VIXL_ASSERT(((imm7 >> access_size) << access_size) == imm7);
> - int scaled_imm7 = imm7 >> access_size;
> - VIXL_ASSERT(is_int7(scaled_imm7));
> - return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
> - }
> -
> - static Instr ImmShiftLS(unsigned shift_amount) {
> - VIXL_ASSERT(is_uint1(shift_amount));
> - return shift_amount << ImmShiftLS_offset;
> - }
> -
> - static Instr ImmPrefetchOperation(int imm5) {
> - VIXL_ASSERT(is_uint5(imm5));
> - return imm5 << ImmPrefetchOperation_offset;
> - }
> -
> - static Instr ImmException(int imm16) {
> - VIXL_ASSERT(is_uint16(imm16));
> - return imm16 << ImmException_offset;
> - }
> -
> - static Instr ImmSystemRegister(int imm15) {
> - VIXL_ASSERT(is_uint15(imm15));
> - return imm15 << ImmSystemRegister_offset;
> - }
> -
> - static Instr ImmHint(int imm7) {
> - VIXL_ASSERT(is_uint7(imm7));
> - return imm7 << ImmHint_offset;
> - }
> -
> - static Instr CRm(int imm4) {
> - VIXL_ASSERT(is_uint4(imm4));
> - return imm4 << CRm_offset;
> - }
> -
> - static Instr CRn(int imm4) {
> - VIXL_ASSERT(is_uint4(imm4));
> - return imm4 << CRn_offset;
> - }
> -
> - static Instr SysOp(int imm14) {
> - VIXL_ASSERT(is_uint14(imm14));
> - return imm14 << SysOp_offset;
> - }
> -
> - static Instr ImmSysOp1(int imm3) {
> - VIXL_ASSERT(is_uint3(imm3));
> - return imm3 << SysOp1_offset;
> - }
> -
> - static Instr ImmSysOp2(int imm3) {
> - VIXL_ASSERT(is_uint3(imm3));
> - return imm3 << SysOp2_offset;
> - }
> -
> - static Instr ImmBarrierDomain(int imm2) {
> - VIXL_ASSERT(is_uint2(imm2));
> - return imm2 << ImmBarrierDomain_offset;
> - }
> -
> - static Instr ImmBarrierType(int imm2) {
> - VIXL_ASSERT(is_uint2(imm2));
> - return imm2 << ImmBarrierType_offset;
> - }
> -
> - // Move immediates encoding.
> - static Instr ImmMoveWide(uint64_t imm) {
> - VIXL_ASSERT(is_uint16(imm));
> - return static_cast<Instr>(imm << ImmMoveWide_offset);
> - }
> -
> - static Instr ShiftMoveWide(int64_t shift) {
> - VIXL_ASSERT(is_uint2(shift));
> - return static_cast<Instr>(shift << ShiftMoveWide_offset);
> - }
> -
> - // FP Immediates.
> - static Instr ImmFP32(float imm);
> - static Instr ImmFP64(double imm);
> -
> - // FP register type.
> - static Instr FPType(FPRegister fd) {
> - return fd.Is64Bits() ? FP64 : FP32;
> - }
> -
> - static Instr FPScale(unsigned scale) {
> - VIXL_ASSERT(is_uint6(scale));
> - return scale << FPScale_offset;
> - }
> -
> - // Immediate field checking helpers.
> - static bool IsImmAddSub(int64_t immediate);
> - static bool IsImmConditionalCompare(int64_t immediate);
> - static bool IsImmFP32(float imm);
> - static bool IsImmFP64(double imm);
> - static bool IsImmLogical(uint64_t value,
> - unsigned width,
> - unsigned* n = NULL,
> - unsigned* imm_s = NULL,
> - unsigned* imm_r = NULL);
> - static bool IsImmLSPair(int64_t offset, unsigned access_size);
> - static bool IsImmLSScaled(int64_t offset, unsigned access_size);
> - static bool IsImmLSUnscaled(int64_t offset);
> - static bool IsImmMovn(uint64_t imm, unsigned reg_size);
> - static bool IsImmMovz(uint64_t imm, unsigned reg_size);
> -
> - // Instruction bits for vector format in data processing operations.
> - static Instr VFormat(VRegister vd) {
> - if (vd.Is64Bits()) {
> - switch (vd.lanes()) {
> - case 2: return NEON_2S;
> - case 4: return NEON_4H;
> - case 8: return NEON_8B;
> - default: return 0xffffffff;
> - }
> - } else {
> - VIXL_ASSERT(vd.Is128Bits());
> - switch (vd.lanes()) {
> - case 2: return NEON_2D;
> - case 4: return NEON_4S;
> - case 8: return NEON_8H;
> - case 16: return NEON_16B;
> - default: return 0xffffffff;
> - }
> - }
> - }
> -
> - // Instruction bits for vector format in floating point data processing
> - // operations.
> - static Instr FPFormat(VRegister vd) {
> - if (vd.lanes() == 1) {
> - // Floating point scalar formats.
> - VIXL_ASSERT(vd.Is32Bits() || vd.Is64Bits());
> - return vd.Is64Bits() ? FP64 : FP32;
> - }
> -
> - // Two lane floating point vector formats.
> - if (vd.lanes() == 2) {
> - VIXL_ASSERT(vd.Is64Bits() || vd.Is128Bits());
> - return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
> - }
> -
> - // Four lane floating point vector format.
> - VIXL_ASSERT((vd.lanes() == 4) && vd.Is128Bits());
> - return NEON_FP_4S;
> - }
> -
> - // Instruction bits for vector format in load and store operations.
> - static Instr LSVFormat(VRegister vd) {
> - if (vd.Is64Bits()) {
> - switch (vd.lanes()) {
> - case 1: return LS_NEON_1D;
> - case 2: return LS_NEON_2S;
> - case 4: return LS_NEON_4H;
> - case 8: return LS_NEON_8B;
> - default: return 0xffffffff;
> - }
> - } else {
> - VIXL_ASSERT(vd.Is128Bits());
> - switch (vd.lanes()) {
> - case 2: return LS_NEON_2D;
> - case 4: return LS_NEON_4S;
> - case 8: return LS_NEON_8H;
> - case 16: return LS_NEON_16B;
> - default: return 0xffffffff;
> - }
> - }
> - }
> -
> - // Instruction bits for scalar format in data processing operations.
> - static Instr SFormat(VRegister vd) {
> - VIXL_ASSERT(vd.lanes() == 1);
> - switch (vd.SizeInBytes()) {
> - case 1: return NEON_B;
> - case 2: return NEON_H;
> - case 4: return NEON_S;
> - case 8: return NEON_D;
> - default: return 0xffffffff;
> - }
> - }
> -
> - static Instr ImmNEONHLM(int index, int num_bits) {
> - int h, l, m;
> - if (num_bits == 3) {
> - VIXL_ASSERT(is_uint3(index));
> - h = (index >> 2) & 1;
> - l = (index >> 1) & 1;
> - m = (index >> 0) & 1;
> - } else if (num_bits == 2) {
> - VIXL_ASSERT(is_uint2(index));
> - h = (index >> 1) & 1;
> - l = (index >> 0) & 1;
> - m = 0;
> - } else {
> - VIXL_ASSERT(is_uint1(index) && (num_bits == 1));
> - h = (index >> 0) & 1;
> - l = 0;
> - m = 0;
> - }
> - return (h << NEONH_offset) | (l << NEONL_offset) | (m << NEONM_offset);
> - }
> -
> - static Instr ImmNEONExt(int imm4) {
> - VIXL_ASSERT(is_uint4(imm4));
> - return imm4 << ImmNEONExt_offset;
> - }
> -
> - static Instr ImmNEON5(Instr format, int index) {
> - VIXL_ASSERT(is_uint4(index));
> - int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
> - int imm5 = (index << (s + 1)) | (1 << s);
> - return imm5 << ImmNEON5_offset;
> - }
> -
> - static Instr ImmNEON4(Instr format, int index) {
> - VIXL_ASSERT(is_uint4(index));
> - int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
> - int imm4 = index << s;
> - return imm4 << ImmNEON4_offset;
> - }
> -
> - static Instr ImmNEONabcdefgh(int imm8) {
> - VIXL_ASSERT(is_uint8(imm8));
> - Instr instr;
> - instr = ((imm8 >> 5) & 7) << ImmNEONabc_offset;
> - instr |= (imm8 & 0x1f) << ImmNEONdefgh_offset;
> - return instr;
> - }
> -
> - static Instr NEONCmode(int cmode) {
> - VIXL_ASSERT(is_uint4(cmode));
> - return cmode << NEONCmode_offset;
> - }
> -
> - static Instr NEONModImmOp(int op) {
> - VIXL_ASSERT(is_uint1(op));
> - return op << NEONModImmOp_offset;
> - }
> -
> - // Size of the code generated since label to the current position.
> - size_t SizeOfCodeGeneratedSince(Label* label) const {
> - VIXL_ASSERT(label->IsBound());
> - return buffer_->OffsetFrom(label->location());
> - }
> -
> - size_t SizeOfCodeGenerated() const {
> - return buffer_->CursorOffset();
> - }
> -
> - size_t BufferCapacity() const { return buffer_->capacity(); }
> -
> - size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
> -
> - void EnsureSpaceFor(size_t amount) {
> - if (buffer_->RemainingBytes() < amount) {
> - size_t capacity = buffer_->capacity();
> - size_t size = buffer_->CursorOffset();
> - do {
> - // TODO(all): refine.
> - capacity *= 2;
> - } while ((capacity - size) < amount);
> - buffer_->Grow(capacity);
> - }
> - }
> -
> -#ifdef VIXL_DEBUG
> - void AcquireBuffer() {
> - VIXL_ASSERT(buffer_monitor_ >= 0);
> - buffer_monitor_++;
> - }
> -
> - void ReleaseBuffer() {
> - buffer_monitor_--;
> - VIXL_ASSERT(buffer_monitor_ >= 0);
> - }
> -#endif
> -
> - PositionIndependentCodeOption pic() const {
> - return pic_;
> - }
> -
> - bool AllowPageOffsetDependentCode() const {
> - return (pic() == PageOffsetDependentCode) ||
> - (pic() == PositionDependentCode);
> - }
> -
> - static const Register& AppropriateZeroRegFor(const CPURegister& reg) {
> - return reg.Is64Bits() ? xzr : wzr;
> - }
> -
> -
> - protected:
> - void LoadStore(const CPURegister& rt,
> - const MemOperand& addr,
> - LoadStoreOp op,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - void LoadStorePair(const CPURegister& rt,
> - const CPURegister& rt2,
> - const MemOperand& addr,
> - LoadStorePairOp op);
> - void LoadStoreStruct(const VRegister& vt,
> - const MemOperand& addr,
> - NEONLoadStoreMultiStructOp op);
> - void LoadStoreStruct1(const VRegister& vt,
> - int reg_count,
> - const MemOperand& addr);
> - void LoadStoreStructSingle(const VRegister& vt,
> - uint32_t lane,
> - const MemOperand& addr,
> - NEONLoadStoreSingleStructOp op);
> - void LoadStoreStructSingleAllLanes(const VRegister& vt,
> - const MemOperand& addr,
> - NEONLoadStoreSingleStructOp op);
> - void LoadStoreStructVerify(const VRegister& vt,
> - const MemOperand& addr,
> - Instr op);
> -
> - void Prefetch(PrefetchOperation op,
> - const MemOperand& addr,
> - LoadStoreScalingOption option = PreferScaledOffset);
> -
> - // TODO(all): The third parameter should be passed by reference but gcc
> 4.8.2
> - // reports a bogus uninitialised warning then.
> - void Logical(const Register& rd,
> - const Register& rn,
> - const Operand operand,
> - LogicalOp op);
> - void LogicalImmediate(const Register& rd,
> - const Register& rn,
> - unsigned n,
> - unsigned imm_s,
> - unsigned imm_r,
> - LogicalOp op);
> -
> - void ConditionalCompare(const Register& rn,
> - const Operand& operand,
> - StatusFlags nzcv,
> - Condition cond,
> - ConditionalCompareOp op);
> -
> - void AddSubWithCarry(const Register& rd,
> - const Register& rn,
> - const Operand& operand,
> - FlagsUpdate S,
> - AddSubWithCarryOp op);
> -
> -
> - // Functions for emulating operands not directly supported by the
> instruction
> - // set.
> - void EmitShift(const Register& rd,
> - const Register& rn,
> - Shift shift,
> - unsigned amount);
> - void EmitExtendShift(const Register& rd,
> - const Register& rn,
> - Extend extend,
> - unsigned left_shift);
> -
> - void AddSub(const Register& rd,
> - const Register& rn,
> - const Operand& operand,
> - FlagsUpdate S,
> - AddSubOp op);
> -
> - void NEONTable(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - NEONTableOp op);
> -
> - // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
> - // registers. Only simple loads are supported; sign- and zero-extension
> (such
> - // as in LDPSW_x or LDRB_w) are not supported.
> - static LoadStoreOp LoadOpFor(const CPURegister& rt);
> - static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
> - const CPURegister& rt2);
> - static LoadStoreOp StoreOpFor(const CPURegister& rt);
> - static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
> - const CPURegister& rt2);
> - static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
> - const CPURegister& rt, const CPURegister& rt2);
> - static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
> - const CPURegister& rt, const CPURegister& rt2);
> - static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
> -
> -
> - private:
> - static uint32_t FP32ToImm8(float imm);
> - static uint32_t FP64ToImm8(double imm);
> -
> - // Instruction helpers.
> - void MoveWide(const Register& rd,
> - uint64_t imm,
> - int shift,
> - MoveWideImmediateOp mov_op);
> - void DataProcShiftedRegister(const Register& rd,
> - const Register& rn,
> - const Operand& operand,
> - FlagsUpdate S,
> - Instr op);
> - void DataProcExtendedRegister(const Register& rd,
> - const Register& rn,
> - const Operand& operand,
> - FlagsUpdate S,
> - Instr op);
> - void LoadStorePairNonTemporal(const CPURegister& rt,
> - const CPURegister& rt2,
> - const MemOperand& addr,
> - LoadStorePairNonTemporalOp op);
> - void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
> - void ConditionalSelect(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - Condition cond,
> - ConditionalSelectOp op);
> - void DataProcessing1Source(const Register& rd,
> - const Register& rn,
> - DataProcessing1SourceOp op);
> - void DataProcessing3Source(const Register& rd,
> - const Register& rn,
> - const Register& rm,
> - const Register& ra,
> - DataProcessing3SourceOp op);
> - void FPDataProcessing1Source(const VRegister& fd,
> - const VRegister& fn,
> - FPDataProcessing1SourceOp op);
> - void FPDataProcessing3Source(const VRegister& fd,
> - const VRegister& fn,
> - const VRegister& fm,
> - const VRegister& fa,
> - FPDataProcessing3SourceOp op);
> - void NEONAcrossLanesL(const VRegister& vd,
> - const VRegister& vn,
> - NEONAcrossLanesOp op);
> - void NEONAcrossLanes(const VRegister& vd,
> - const VRegister& vn,
> - NEONAcrossLanesOp op);
> - void NEONModifiedImmShiftLsl(const VRegister& vd,
> - const int imm8,
> - const int left_shift,
> - NEONModifiedImmediateOp op);
> - void NEONModifiedImmShiftMsl(const VRegister& vd,
> - const int imm8,
> - const int shift_amount,
> - NEONModifiedImmediateOp op);
> - void NEONFP2Same(const VRegister& vd,
> - const VRegister& vn,
> - Instr vop);
> - void NEON3Same(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - NEON3SameOp vop);
> - void NEONFP3Same(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - Instr op);
> - void NEON3DifferentL(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - NEON3DifferentOp vop);
> - void NEON3DifferentW(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - NEON3DifferentOp vop);
> - void NEON3DifferentHN(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - NEON3DifferentOp vop);
> - void NEONFP2RegMisc(const VRegister& vd,
> - const VRegister& vn,
> - NEON2RegMiscOp vop,
> - double value = 0.0);
> - void NEON2RegMisc(const VRegister& vd,
> - const VRegister& vn,
> - NEON2RegMiscOp vop,
> - int value = 0);
> - void NEONFP2RegMisc(const VRegister& vd,
> - const VRegister& vn,
> - Instr op);
> - void NEONAddlp(const VRegister& vd,
> - const VRegister& vn,
> - NEON2RegMiscOp op);
> - void NEONPerm(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - NEONPermOp op);
> - void NEONFPByElement(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index,
> - NEONByIndexedElementOp op);
> - void NEONByElement(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index,
> - NEONByIndexedElementOp op);
> - void NEONByElementL(const VRegister& vd,
> - const VRegister& vn,
> - const VRegister& vm,
> - int vm_index,
> - NEONByIndexedElementOp op);
> - void NEONShiftImmediate(const VRegister& vd,
> - const VRegister& vn,
> - NEONShiftImmediateOp op,
> - int immh_immb);
> - void NEONShiftLeftImmediate(const VRegister& vd,
> - const VRegister& vn,
> - int shift,
> - NEONShiftImmediateOp op);
> - void NEONShiftRightImmediate(const VRegister& vd,
> - const VRegister& vn,
> - int shift,
> - NEONShiftImmediateOp op);
> - void NEONShiftImmediateL(const VRegister& vd,
> - const VRegister& vn,
> - int shift,
> - NEONShiftImmediateOp op);
> - void NEONShiftImmediateN(const VRegister& vd,
> - const VRegister& vn,
> - int shift,
> - NEONShiftImmediateOp op);
> - void NEONXtn(const VRegister& vd,
> - const VRegister& vn,
> - NEON2RegMiscOp vop);
> -
> - Instr LoadStoreStructAddrModeField(const MemOperand& addr);
> -
> - // Encode the specified MemOperand for the specified access size and
> scaling
> - // preference.
> - Instr LoadStoreMemOperand(const MemOperand& addr,
> - unsigned access_size,
> - LoadStoreScalingOption option);
> -
> - // Link the current (not-yet-emitted) instruction to the specified label,
> then
> - // return an offset to be encoded in the instruction. If the label is not
> yet
> - // bound, an offset of 0 is returned.
> - ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
> - ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
> - ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
> -
> - // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
> - template <int element_shift>
> - ptrdiff_t LinkAndGetOffsetTo(Label* label);
> -
> - // Literal load offset are in words (32-bit).
> - ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
> -
> - // Emit the instruction in buffer_.
> - void Emit(Instr instruction) {
> - VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
> - VIXL_ASSERT(buffer_monitor_ > 0);
> - buffer_->Emit32(instruction);
> - }
> -
> - // Buffer where the code is emitted.
> - CodeBuffer* buffer_;
> - PositionIndependentCodeOption pic_;
> -
> -#ifdef VIXL_DEBUG
> - int64_t buffer_monitor_;
> -#endif
> -};
> -
> -
> -// All Assembler emits MUST acquire/release the underlying code buffer. The
> -// helper scope below will do so and optionally ensure the buffer is big
> enough
> -// to receive the emit. It is possible to request the scope not to perform
> any
> -// checks (kNoCheck) if for example it is known in advance the buffer size is
> -// adequate or there is some other size checking mechanism in place.
> -class CodeBufferCheckScope {
> - public:
> - // Tell whether or not the scope needs to ensure the associated CodeBuffer
> - // has enough space for the requested size.
> - enum CheckPolicy {
> - kNoCheck,
> - kCheck
> - };
> -
> - // Tell whether or not the scope should assert the amount of code emitted
> - // within the scope is consistent with the requested amount.
> - enum AssertPolicy {
> - kNoAssert, // No assert required.
> - kExactSize, // The code emitted must be exactly size bytes.
> - kMaximumSize // The code emitted must be at most size bytes.
> - };
> -
> - CodeBufferCheckScope(Assembler* assm,
> - size_t size,
> - CheckPolicy check_policy = kCheck,
> - AssertPolicy assert_policy = kMaximumSize)
> - : assm_(assm) {
> - if (check_policy == kCheck) assm->EnsureSpaceFor(size);
> -#ifdef VIXL_DEBUG
> - assm->bind(&start_);
> - size_ = size;
> - assert_policy_ = assert_policy;
> - assm->AcquireBuffer();
> -#else
> - USE(assert_policy);
> -#endif
> - }
> -
> - // This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck,
> kNoAssert).
> - explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
> -#ifdef VIXL_DEBUG
> - size_ = 0;
> - assert_policy_ = kNoAssert;
> - assm->AcquireBuffer();
> -#endif
> - }
> -
> - ~CodeBufferCheckScope() {
> -#ifdef VIXL_DEBUG
> - assm_->ReleaseBuffer();
> - switch (assert_policy_) {
> - case kNoAssert: break;
> - case kExactSize:
> - VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
> - break;
> - case kMaximumSize:
> - VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
> - break;
> - default:
> - VIXL_UNREACHABLE();
> - }
> -#endif
> - }
> -
> - protected:
> - Assembler* assm_;
> -#ifdef VIXL_DEBUG
> - Label start_;
> - size_t size_;
> - AssertPolicy assert_policy_;
> -#endif
> -};
> -
> -
> -template <typename T>
> -void Literal<T>::UpdateValue(T new_value, const Assembler* assembler) {
> - return UpdateValue(new_value, assembler->GetStartAddress<uint8_t*>());
> -}
> -
> -
> -template <typename T>
> -void Literal<T>::UpdateValue(T high64, T low64, const Assembler* assembler) {
> - return UpdateValue(high64, low64, assembler->GetStartAddress<uint8_t*>());
> -}
> -
> -
> -} // namespace vixl
> -
> -#endif // VIXL_A64_ASSEMBLER_A64_H_
> diff --git a/disas/libvixl/vixl/a64/constants-a64.h
> b/disas/libvixl/vixl/a64/constants-a64.h
> deleted file mode 100644
> index 2caa73af87..0000000000
> --- a/disas/libvixl/vixl/a64/constants-a64.h
> +++ /dev/null
> @@ -1,2116 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_A64_CONSTANTS_A64_H_
> -#define VIXL_A64_CONSTANTS_A64_H_
> -
> -namespace vixl {
> -
> -const unsigned kNumberOfRegisters = 32;
> -const unsigned kNumberOfVRegisters = 32;
> -const unsigned kNumberOfFPRegisters = kNumberOfVRegisters;
> -// Callee saved registers are x21-x30(lr).
> -const int kNumberOfCalleeSavedRegisters = 10;
> -const int kFirstCalleeSavedRegisterIndex = 21;
> -// Callee saved FP registers are d8-d15.
> -const int kNumberOfCalleeSavedFPRegisters = 8;
> -const int kFirstCalleeSavedFPRegisterIndex = 8;
> -
> -#define REGISTER_CODE_LIST(R)
> \
> -R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7)
> \
> -R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15)
> \
> -R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23)
> \
> -R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
> -
> -#define INSTRUCTION_FIELDS_LIST(V_)
> \
> -/* Register fields */
> \
> -V_(Rd, 4, 0, Bits) /* Destination register. */
> \
> -V_(Rn, 9, 5, Bits) /* First source register. */
> \
> -V_(Rm, 20, 16, Bits) /* Second source register. */
> \
> -V_(Ra, 14, 10, Bits) /* Third source register. */
> \
> -V_(Rt, 4, 0, Bits) /* Load/store register. */
> \
> -V_(Rt2, 14, 10, Bits) /* Load/store second register. */
> \
> -V_(Rs, 20, 16, Bits) /* Exclusive access status. */
> \
> -
> \
> -/* Common bits */
> \
> -V_(SixtyFourBits, 31, 31, Bits)
> \
> -V_(FlagsUpdate, 29, 29, Bits)
> \
> -
> \
> -/* PC relative addressing */
> \
> -V_(ImmPCRelHi, 23, 5, SignedBits)
> \
> -V_(ImmPCRelLo, 30, 29, Bits)
> \
> -
> \
> -/* Add/subtract/logical shift register */
> \
> -V_(ShiftDP, 23, 22, Bits)
> \
> -V_(ImmDPShift, 15, 10, Bits)
> \
> -
> \
> -/* Add/subtract immediate */
> \
> -V_(ImmAddSub, 21, 10, Bits)
> \
> -V_(ShiftAddSub, 23, 22, Bits)
> \
> -
> \
> -/* Add/substract extend */
> \
> -V_(ImmExtendShift, 12, 10, Bits)
> \
> -V_(ExtendMode, 15, 13, Bits)
> \
> -
> \
> -/* Move wide */
> \
> -V_(ImmMoveWide, 20, 5, Bits)
> \
> -V_(ShiftMoveWide, 22, 21, Bits)
> \
> -
> \
> -/* Logical immediate, bitfield and extract */
> \
> -V_(BitN, 22, 22, Bits)
> \
> -V_(ImmRotate, 21, 16, Bits)
> \
> -V_(ImmSetBits, 15, 10, Bits)
> \
> -V_(ImmR, 21, 16, Bits)
> \
> -V_(ImmS, 15, 10, Bits)
> \
> -
> \
> -/* Test and branch immediate */
> \
> -V_(ImmTestBranch, 18, 5, SignedBits)
> \
> -V_(ImmTestBranchBit40, 23, 19, Bits)
> \
> -V_(ImmTestBranchBit5, 31, 31, Bits)
> \
> -
> \
> -/* Conditionals */
> \
> -V_(Condition, 15, 12, Bits)
> \
> -V_(ConditionBranch, 3, 0, Bits)
> \
> -V_(Nzcv, 3, 0, Bits)
> \
> -V_(ImmCondCmp, 20, 16, Bits)
> \
> -V_(ImmCondBranch, 23, 5, SignedBits)
> \
> -
> \
> -/* Floating point */
> \
> -V_(FPType, 23, 22, Bits)
> \
> -V_(ImmFP, 20, 13, Bits)
> \
> -V_(FPScale, 15, 10, Bits)
> \
> -
> \
> -/* Load Store */
> \
> -V_(ImmLS, 20, 12, SignedBits)
> \
> -V_(ImmLSUnsigned, 21, 10, Bits)
> \
> -V_(ImmLSPair, 21, 15, SignedBits)
> \
> -V_(ImmShiftLS, 12, 12, Bits)
> \
> -V_(LSOpc, 23, 22, Bits)
> \
> -V_(LSVector, 26, 26, Bits)
> \
> -V_(LSSize, 31, 30, Bits)
> \
> -V_(ImmPrefetchOperation, 4, 0, Bits)
> \
> -V_(PrefetchHint, 4, 3, Bits)
> \
> -V_(PrefetchTarget, 2, 1, Bits)
> \
> -V_(PrefetchStream, 0, 0, Bits)
> \
> -
> \
> -/* Other immediates */
> \
> -V_(ImmUncondBranch, 25, 0, SignedBits)
> \
> -V_(ImmCmpBranch, 23, 5, SignedBits)
> \
> -V_(ImmLLiteral, 23, 5, SignedBits)
> \
> -V_(ImmException, 20, 5, Bits)
> \
> -V_(ImmHint, 11, 5, Bits)
> \
> -V_(ImmBarrierDomain, 11, 10, Bits)
> \
> -V_(ImmBarrierType, 9, 8, Bits)
> \
> -
> \
> -/* System (MRS, MSR, SYS) */
> \
> -V_(ImmSystemRegister, 19, 5, Bits)
> \
> -V_(SysO0, 19, 19, Bits)
> \
> -V_(SysOp, 18, 5, Bits)
> \
> -V_(SysOp1, 18, 16, Bits)
> \
> -V_(SysOp2, 7, 5, Bits)
> \
> -V_(CRn, 15, 12, Bits)
> \
> -V_(CRm, 11, 8, Bits)
> \
> -
> \
> -/* Load-/store-exclusive */
> \
> -V_(LdStXLoad, 22, 22, Bits)
> \
> -V_(LdStXNotExclusive, 23, 23, Bits)
> \
> -V_(LdStXAcquireRelease, 15, 15, Bits)
> \
> -V_(LdStXSizeLog2, 31, 30, Bits)
> \
> -V_(LdStXPair, 21, 21, Bits)
> \
> -
> \
> -/* NEON generic fields */
> \
> -V_(NEONQ, 30, 30, Bits)
> \
> -V_(NEONSize, 23, 22, Bits)
> \
> -V_(NEONLSSize, 11, 10, Bits)
> \
> -V_(NEONS, 12, 12, Bits)
> \
> -V_(NEONL, 21, 21, Bits)
> \
> -V_(NEONM, 20, 20, Bits)
> \
> -V_(NEONH, 11, 11, Bits)
> \
> -V_(ImmNEONExt, 14, 11, Bits)
> \
> -V_(ImmNEON5, 20, 16, Bits)
> \
> -V_(ImmNEON4, 14, 11, Bits)
> \
> -
> \
> -/* NEON Modified Immediate fields */
> \
> -V_(ImmNEONabc, 18, 16, Bits)
> \
> -V_(ImmNEONdefgh, 9, 5, Bits)
> \
> -V_(NEONModImmOp, 29, 29, Bits)
> \
> -V_(NEONCmode, 15, 12, Bits)
> \
> -
> \
> -/* NEON Shift Immediate fields */
> \
> -V_(ImmNEONImmhImmb, 22, 16, Bits)
> \
> -V_(ImmNEONImmh, 22, 19, Bits)
> \
> -V_(ImmNEONImmb, 18, 16, Bits)
> -
> -#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_)
> \
> -/* NZCV */
> \
> -V_(Flags, 31, 28, Bits)
> \
> -V_(N, 31, 31, Bits)
> \
> -V_(Z, 30, 30, Bits)
> \
> -V_(C, 29, 29, Bits)
> \
> -V_(V, 28, 28, Bits)
> \
> -M_(NZCV, Flags_mask)
> \
> -/* FPCR */
> \
> -V_(AHP, 26, 26, Bits)
> \
> -V_(DN, 25, 25, Bits)
> \
> -V_(FZ, 24, 24, Bits)
> \
> -V_(RMode, 23, 22, Bits)
> \
> -M_(FPCR, AHP_mask | DN_mask | FZ_mask | RMode_mask)
> -
> -// Fields offsets.
> -#define DECLARE_FIELDS_OFFSETS(Name, HighBit, LowBit, X)
> \
> -const int Name##_offset = LowBit;
> \
> -const int Name##_width = HighBit - LowBit + 1;
> \
> -const uint32_t Name##_mask = ((1 << Name##_width) - 1) << LowBit;
> -#define NOTHING(A, B)
> -INSTRUCTION_FIELDS_LIST(DECLARE_FIELDS_OFFSETS)
> -SYSTEM_REGISTER_FIELDS_LIST(DECLARE_FIELDS_OFFSETS, NOTHING)
> -#undef NOTHING
> -#undef DECLARE_FIELDS_BITS
> -
> -// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
> formed
> -// from ImmPCRelLo and ImmPCRelHi.
> -const int ImmPCRel_mask = ImmPCRelLo_mask | ImmPCRelHi_mask;
> -
> -// Condition codes.
> -enum Condition {
> - eq = 0, // Z set Equal.
> - ne = 1, // Z clear Not equal.
> - cs = 2, // C set Carry set.
> - cc = 3, // C clear Carry clear.
> - mi = 4, // N set Negative.
> - pl = 5, // N clear Positive or zero.
> - vs = 6, // V set Overflow.
> - vc = 7, // V clear No overflow.
> - hi = 8, // C set, Z clear Unsigned higher.
> - ls = 9, // C clear or Z set Unsigned lower or same.
> - ge = 10, // N == V Greater or equal.
> - lt = 11, // N != V Less than.
> - gt = 12, // Z clear, N == V Greater than.
> - le = 13, // Z set or N != V Less then or equal
> - al = 14, // Always.
> - nv = 15, // Behaves as always/al.
> -
> - // Aliases.
> - hs = cs, // C set Unsigned higher or same.
> - lo = cc // C clear Unsigned lower.
> -};
> -
> -inline Condition InvertCondition(Condition cond) {
> - // Conditions al and nv behave identically, as "always true". They can't be
> - // inverted, because there is no "always false" condition.
> - VIXL_ASSERT((cond != al) && (cond != nv));
> - return static_cast<Condition>(cond ^ 1);
> -}
> -
> -enum FPTrapFlags {
> - EnableTrap = 1,
> - DisableTrap = 0
> -};
> -
> -enum FlagsUpdate {
> - SetFlags = 1,
> - LeaveFlags = 0
> -};
> -
> -enum StatusFlags {
> - NoFlag = 0,
> -
> - // Derive the flag combinations from the system register bit descriptions.
> - NFlag = N_mask,
> - ZFlag = Z_mask,
> - CFlag = C_mask,
> - VFlag = V_mask,
> - NZFlag = NFlag | ZFlag,
> - NCFlag = NFlag | CFlag,
> - NVFlag = NFlag | VFlag,
> - ZCFlag = ZFlag | CFlag,
> - ZVFlag = ZFlag | VFlag,
> - CVFlag = CFlag | VFlag,
> - NZCFlag = NFlag | ZFlag | CFlag,
> - NZVFlag = NFlag | ZFlag | VFlag,
> - NCVFlag = NFlag | CFlag | VFlag,
> - ZCVFlag = ZFlag | CFlag | VFlag,
> - NZCVFlag = NFlag | ZFlag | CFlag | VFlag,
> -
> - // Floating-point comparison results.
> - FPEqualFlag = ZCFlag,
> - FPLessThanFlag = NFlag,
> - FPGreaterThanFlag = CFlag,
> - FPUnorderedFlag = CVFlag
> -};
> -
> -enum Shift {
> - NO_SHIFT = -1,
> - LSL = 0x0,
> - LSR = 0x1,
> - ASR = 0x2,
> - ROR = 0x3,
> - MSL = 0x4
> -};
> -
> -enum Extend {
> - NO_EXTEND = -1,
> - UXTB = 0,
> - UXTH = 1,
> - UXTW = 2,
> - UXTX = 3,
> - SXTB = 4,
> - SXTH = 5,
> - SXTW = 6,
> - SXTX = 7
> -};
> -
> -enum SystemHint {
> - NOP = 0,
> - YIELD = 1,
> - WFE = 2,
> - WFI = 3,
> - SEV = 4,
> - SEVL = 5
> -};
> -
> -enum BarrierDomain {
> - OuterShareable = 0,
> - NonShareable = 1,
> - InnerShareable = 2,
> - FullSystem = 3
> -};
> -
> -enum BarrierType {
> - BarrierOther = 0,
> - BarrierReads = 1,
> - BarrierWrites = 2,
> - BarrierAll = 3
> -};
> -
> -enum PrefetchOperation {
> - PLDL1KEEP = 0x00,
> - PLDL1STRM = 0x01,
> - PLDL2KEEP = 0x02,
> - PLDL2STRM = 0x03,
> - PLDL3KEEP = 0x04,
> - PLDL3STRM = 0x05,
> -
> - PLIL1KEEP = 0x08,
> - PLIL1STRM = 0x09,
> - PLIL2KEEP = 0x0a,
> - PLIL2STRM = 0x0b,
> - PLIL3KEEP = 0x0c,
> - PLIL3STRM = 0x0d,
> -
> - PSTL1KEEP = 0x10,
> - PSTL1STRM = 0x11,
> - PSTL2KEEP = 0x12,
> - PSTL2STRM = 0x13,
> - PSTL3KEEP = 0x14,
> - PSTL3STRM = 0x15
> -};
> -
> -// System/special register names.
> -// This information is not encoded as one field but as the concatenation of
> -// multiple fields (Op0<0>, Op1, Crn, Crm, Op2).
> -enum SystemRegister {
> - NZCV = ((0x1 << SysO0_offset) |
> - (0x3 << SysOp1_offset) |
> - (0x4 << CRn_offset) |
> - (0x2 << CRm_offset) |
> - (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset,
> - FPCR = ((0x1 << SysO0_offset) |
> - (0x3 << SysOp1_offset) |
> - (0x4 << CRn_offset) |
> - (0x4 << CRm_offset) |
> - (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset
> -};
> -
> -enum InstructionCacheOp {
> - IVAU = ((0x3 << SysOp1_offset) |
> - (0x7 << CRn_offset) |
> - (0x5 << CRm_offset) |
> - (0x1 << SysOp2_offset)) >> SysOp_offset
> -};
> -
> -enum DataCacheOp {
> - CVAC = ((0x3 << SysOp1_offset) |
> - (0x7 << CRn_offset) |
> - (0xa << CRm_offset) |
> - (0x1 << SysOp2_offset)) >> SysOp_offset,
> - CVAU = ((0x3 << SysOp1_offset) |
> - (0x7 << CRn_offset) |
> - (0xb << CRm_offset) |
> - (0x1 << SysOp2_offset)) >> SysOp_offset,
> - CIVAC = ((0x3 << SysOp1_offset) |
> - (0x7 << CRn_offset) |
> - (0xe << CRm_offset) |
> - (0x1 << SysOp2_offset)) >> SysOp_offset,
> - ZVA = ((0x3 << SysOp1_offset) |
> - (0x7 << CRn_offset) |
> - (0x4 << CRm_offset) |
> - (0x1 << SysOp2_offset)) >> SysOp_offset
> -};
> -
> -// Instruction enumerations.
> -//
> -// These are the masks that define a class of instructions, and the list of
> -// instructions within each class. Each enumeration has a Fixed, FMask and
> -// Mask value.
> -//
> -// Fixed: The fixed bits in this instruction class.
> -// FMask: The mask used to extract the fixed bits in the class.
> -// Mask: The mask used to identify the instructions within a class.
> -//
> -// The enumerations can be used like this:
> -//
> -// VIXL_ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
> -// switch(instr->Mask(PCRelAddressingMask)) {
> -// case ADR: Format("adr 'Xd, 'AddrPCRelByte"); break;
> -// case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break;
> -// default: printf("Unknown instruction\n");
> -// }
> -
> -
> -// Generic fields.
> -enum GenericInstrField {
> - SixtyFourBits = 0x80000000,
> - ThirtyTwoBits = 0x00000000,
> - FP32 = 0x00000000,
> - FP64 = 0x00400000
> -};
> -
> -enum NEONFormatField {
> - NEONFormatFieldMask = 0x40C00000,
> - NEON_Q = 0x40000000,
> - NEON_8B = 0x00000000,
> - NEON_16B = NEON_8B | NEON_Q,
> - NEON_4H = 0x00400000,
> - NEON_8H = NEON_4H | NEON_Q,
> - NEON_2S = 0x00800000,
> - NEON_4S = NEON_2S | NEON_Q,
> - NEON_1D = 0x00C00000,
> - NEON_2D = 0x00C00000 | NEON_Q
> -};
> -
> -enum NEONFPFormatField {
> - NEONFPFormatFieldMask = 0x40400000,
> - NEON_FP_2S = FP32,
> - NEON_FP_4S = FP32 | NEON_Q,
> - NEON_FP_2D = FP64 | NEON_Q
> -};
> -
> -enum NEONLSFormatField {
> - NEONLSFormatFieldMask = 0x40000C00,
> - LS_NEON_8B = 0x00000000,
> - LS_NEON_16B = LS_NEON_8B | NEON_Q,
> - LS_NEON_4H = 0x00000400,
> - LS_NEON_8H = LS_NEON_4H | NEON_Q,
> - LS_NEON_2S = 0x00000800,
> - LS_NEON_4S = LS_NEON_2S | NEON_Q,
> - LS_NEON_1D = 0x00000C00,
> - LS_NEON_2D = LS_NEON_1D | NEON_Q
> -};
> -
> -enum NEONScalarFormatField {
> - NEONScalarFormatFieldMask = 0x00C00000,
> - NEONScalar = 0x10000000,
> - NEON_B = 0x00000000,
> - NEON_H = 0x00400000,
> - NEON_S = 0x00800000,
> - NEON_D = 0x00C00000
> -};
> -
> -// PC relative addressing.
> -enum PCRelAddressingOp {
> - PCRelAddressingFixed = 0x10000000,
> - PCRelAddressingFMask = 0x1F000000,
> - PCRelAddressingMask = 0x9F000000,
> - ADR = PCRelAddressingFixed | 0x00000000,
> - ADRP = PCRelAddressingFixed | 0x80000000
> -};
> -
> -// Add/sub (immediate, shifted and extended.)
> -const int kSFOffset = 31;
> -enum AddSubOp {
> - AddSubOpMask = 0x60000000,
> - AddSubSetFlagsBit = 0x20000000,
> - ADD = 0x00000000,
> - ADDS = ADD | AddSubSetFlagsBit,
> - SUB = 0x40000000,
> - SUBS = SUB | AddSubSetFlagsBit
> -};
> -
> -#define ADD_SUB_OP_LIST(V) \
> - V(ADD), \
> - V(ADDS), \
> - V(SUB), \
> - V(SUBS)
> -
> -enum AddSubImmediateOp {
> - AddSubImmediateFixed = 0x11000000,
> - AddSubImmediateFMask = 0x1F000000,
> - AddSubImmediateMask = 0xFF000000,
> - #define ADD_SUB_IMMEDIATE(A) \
> - A##_w_imm = AddSubImmediateFixed | A, \
> - A##_x_imm = AddSubImmediateFixed | A | SixtyFourBits
> - ADD_SUB_OP_LIST(ADD_SUB_IMMEDIATE)
> - #undef ADD_SUB_IMMEDIATE
> -};
> -
> -enum AddSubShiftedOp {
> - AddSubShiftedFixed = 0x0B000000,
> - AddSubShiftedFMask = 0x1F200000,
> - AddSubShiftedMask = 0xFF200000,
> - #define ADD_SUB_SHIFTED(A) \
> - A##_w_shift = AddSubShiftedFixed | A, \
> - A##_x_shift = AddSubShiftedFixed | A | SixtyFourBits
> - ADD_SUB_OP_LIST(ADD_SUB_SHIFTED)
> - #undef ADD_SUB_SHIFTED
> -};
> -
> -enum AddSubExtendedOp {
> - AddSubExtendedFixed = 0x0B200000,
> - AddSubExtendedFMask = 0x1F200000,
> - AddSubExtendedMask = 0xFFE00000,
> - #define ADD_SUB_EXTENDED(A) \
> - A##_w_ext = AddSubExtendedFixed | A, \
> - A##_x_ext = AddSubExtendedFixed | A | SixtyFourBits
> - ADD_SUB_OP_LIST(ADD_SUB_EXTENDED)
> - #undef ADD_SUB_EXTENDED
> -};
> -
> -// Add/sub with carry.
> -enum AddSubWithCarryOp {
> - AddSubWithCarryFixed = 0x1A000000,
> - AddSubWithCarryFMask = 0x1FE00000,
> - AddSubWithCarryMask = 0xFFE0FC00,
> - ADC_w = AddSubWithCarryFixed | ADD,
> - ADC_x = AddSubWithCarryFixed | ADD | SixtyFourBits,
> - ADC = ADC_w,
> - ADCS_w = AddSubWithCarryFixed | ADDS,
> - ADCS_x = AddSubWithCarryFixed | ADDS | SixtyFourBits,
> - SBC_w = AddSubWithCarryFixed | SUB,
> - SBC_x = AddSubWithCarryFixed | SUB | SixtyFourBits,
> - SBC = SBC_w,
> - SBCS_w = AddSubWithCarryFixed | SUBS,
> - SBCS_x = AddSubWithCarryFixed | SUBS | SixtyFourBits
> -};
> -
> -
> -// Logical (immediate and shifted register).
> -enum LogicalOp {
> - LogicalOpMask = 0x60200000,
> - NOT = 0x00200000,
> - AND = 0x00000000,
> - BIC = AND | NOT,
> - ORR = 0x20000000,
> - ORN = ORR | NOT,
> - EOR = 0x40000000,
> - EON = EOR | NOT,
> - ANDS = 0x60000000,
> - BICS = ANDS | NOT
> -};
> -
> -// Logical immediate.
> -enum LogicalImmediateOp {
> - LogicalImmediateFixed = 0x12000000,
> - LogicalImmediateFMask = 0x1F800000,
> - LogicalImmediateMask = 0xFF800000,
> - AND_w_imm = LogicalImmediateFixed | AND,
> - AND_x_imm = LogicalImmediateFixed | AND | SixtyFourBits,
> - ORR_w_imm = LogicalImmediateFixed | ORR,
> - ORR_x_imm = LogicalImmediateFixed | ORR | SixtyFourBits,
> - EOR_w_imm = LogicalImmediateFixed | EOR,
> - EOR_x_imm = LogicalImmediateFixed | EOR | SixtyFourBits,
> - ANDS_w_imm = LogicalImmediateFixed | ANDS,
> - ANDS_x_imm = LogicalImmediateFixed | ANDS | SixtyFourBits
> -};
> -
> -// Logical shifted register.
> -enum LogicalShiftedOp {
> - LogicalShiftedFixed = 0x0A000000,
> - LogicalShiftedFMask = 0x1F000000,
> - LogicalShiftedMask = 0xFF200000,
> - AND_w = LogicalShiftedFixed | AND,
> - AND_x = LogicalShiftedFixed | AND | SixtyFourBits,
> - AND_shift = AND_w,
> - BIC_w = LogicalShiftedFixed | BIC,
> - BIC_x = LogicalShiftedFixed | BIC | SixtyFourBits,
> - BIC_shift = BIC_w,
> - ORR_w = LogicalShiftedFixed | ORR,
> - ORR_x = LogicalShiftedFixed | ORR | SixtyFourBits,
> - ORR_shift = ORR_w,
> - ORN_w = LogicalShiftedFixed | ORN,
> - ORN_x = LogicalShiftedFixed | ORN | SixtyFourBits,
> - ORN_shift = ORN_w,
> - EOR_w = LogicalShiftedFixed | EOR,
> - EOR_x = LogicalShiftedFixed | EOR | SixtyFourBits,
> - EOR_shift = EOR_w,
> - EON_w = LogicalShiftedFixed | EON,
> - EON_x = LogicalShiftedFixed | EON | SixtyFourBits,
> - EON_shift = EON_w,
> - ANDS_w = LogicalShiftedFixed | ANDS,
> - ANDS_x = LogicalShiftedFixed | ANDS | SixtyFourBits,
> - ANDS_shift = ANDS_w,
> - BICS_w = LogicalShiftedFixed | BICS,
> - BICS_x = LogicalShiftedFixed | BICS | SixtyFourBits,
> - BICS_shift = BICS_w
> -};
> -
> -// Move wide immediate.
> -enum MoveWideImmediateOp {
> - MoveWideImmediateFixed = 0x12800000,
> - MoveWideImmediateFMask = 0x1F800000,
> - MoveWideImmediateMask = 0xFF800000,
> - MOVN = 0x00000000,
> - MOVZ = 0x40000000,
> - MOVK = 0x60000000,
> - MOVN_w = MoveWideImmediateFixed | MOVN,
> - MOVN_x = MoveWideImmediateFixed | MOVN | SixtyFourBits,
> - MOVZ_w = MoveWideImmediateFixed | MOVZ,
> - MOVZ_x = MoveWideImmediateFixed | MOVZ | SixtyFourBits,
> - MOVK_w = MoveWideImmediateFixed | MOVK,
> - MOVK_x = MoveWideImmediateFixed | MOVK | SixtyFourBits
> -};
> -
> -// Bitfield.
> -const int kBitfieldNOffset = 22;
> -enum BitfieldOp {
> - BitfieldFixed = 0x13000000,
> - BitfieldFMask = 0x1F800000,
> - BitfieldMask = 0xFF800000,
> - SBFM_w = BitfieldFixed | 0x00000000,
> - SBFM_x = BitfieldFixed | 0x80000000,
> - SBFM = SBFM_w,
> - BFM_w = BitfieldFixed | 0x20000000,
> - BFM_x = BitfieldFixed | 0xA0000000,
> - BFM = BFM_w,
> - UBFM_w = BitfieldFixed | 0x40000000,
> - UBFM_x = BitfieldFixed | 0xC0000000,
> - UBFM = UBFM_w
> - // Bitfield N field.
> -};
> -
> -// Extract.
> -enum ExtractOp {
> - ExtractFixed = 0x13800000,
> - ExtractFMask = 0x1F800000,
> - ExtractMask = 0xFFA00000,
> - EXTR_w = ExtractFixed | 0x00000000,
> - EXTR_x = ExtractFixed | 0x80000000,
> - EXTR = EXTR_w
> -};
> -
> -// Unconditional branch.
> -enum UnconditionalBranchOp {
> - UnconditionalBranchFixed = 0x14000000,
> - UnconditionalBranchFMask = 0x7C000000,
> - UnconditionalBranchMask = 0xFC000000,
> - B = UnconditionalBranchFixed | 0x00000000,
> - BL = UnconditionalBranchFixed | 0x80000000
> -};
> -
> -// Unconditional branch to register.
> -enum UnconditionalBranchToRegisterOp {
> - UnconditionalBranchToRegisterFixed = 0xD6000000,
> - UnconditionalBranchToRegisterFMask = 0xFE000000,
> - UnconditionalBranchToRegisterMask = 0xFFFFFC1F,
> - BR = UnconditionalBranchToRegisterFixed | 0x001F0000,
> - BLR = UnconditionalBranchToRegisterFixed | 0x003F0000,
> - RET = UnconditionalBranchToRegisterFixed | 0x005F0000
> -};
> -
> -// Compare and branch.
> -enum CompareBranchOp {
> - CompareBranchFixed = 0x34000000,
> - CompareBranchFMask = 0x7E000000,
> - CompareBranchMask = 0xFF000000,
> - CBZ_w = CompareBranchFixed | 0x00000000,
> - CBZ_x = CompareBranchFixed | 0x80000000,
> - CBZ = CBZ_w,
> - CBNZ_w = CompareBranchFixed | 0x01000000,
> - CBNZ_x = CompareBranchFixed | 0x81000000,
> - CBNZ = CBNZ_w
> -};
> -
> -// Test and branch.
> -enum TestBranchOp {
> - TestBranchFixed = 0x36000000,
> - TestBranchFMask = 0x7E000000,
> - TestBranchMask = 0x7F000000,
> - TBZ = TestBranchFixed | 0x00000000,
> - TBNZ = TestBranchFixed | 0x01000000
> -};
> -
> -// Conditional branch.
> -enum ConditionalBranchOp {
> - ConditionalBranchFixed = 0x54000000,
> - ConditionalBranchFMask = 0xFE000000,
> - ConditionalBranchMask = 0xFF000010,
> - B_cond = ConditionalBranchFixed | 0x00000000
> -};
> -
> -// System.
> -// System instruction encoding is complicated because some instructions use
> op
> -// and CR fields to encode parameters. To handle this cleanly, the system
> -// instructions are split into more than one enum.
> -
> -enum SystemOp {
> - SystemFixed = 0xD5000000,
> - SystemFMask = 0xFFC00000
> -};
> -
> -enum SystemSysRegOp {
> - SystemSysRegFixed = 0xD5100000,
> - SystemSysRegFMask = 0xFFD00000,
> - SystemSysRegMask = 0xFFF00000,
> - MRS = SystemSysRegFixed | 0x00200000,
> - MSR = SystemSysRegFixed | 0x00000000
> -};
> -
> -enum SystemHintOp {
> - SystemHintFixed = 0xD503201F,
> - SystemHintFMask = 0xFFFFF01F,
> - SystemHintMask = 0xFFFFF01F,
> - HINT = SystemHintFixed | 0x00000000
> -};
> -
> -enum SystemSysOp {
> - SystemSysFixed = 0xD5080000,
> - SystemSysFMask = 0xFFF80000,
> - SystemSysMask = 0xFFF80000,
> - SYS = SystemSysFixed | 0x00000000
> -};
> -
> -// Exception.
> -enum ExceptionOp {
> - ExceptionFixed = 0xD4000000,
> - ExceptionFMask = 0xFF000000,
> - ExceptionMask = 0xFFE0001F,
> - HLT = ExceptionFixed | 0x00400000,
> - BRK = ExceptionFixed | 0x00200000,
> - SVC = ExceptionFixed | 0x00000001,
> - HVC = ExceptionFixed | 0x00000002,
> - SMC = ExceptionFixed | 0x00000003,
> - DCPS1 = ExceptionFixed | 0x00A00001,
> - DCPS2 = ExceptionFixed | 0x00A00002,
> - DCPS3 = ExceptionFixed | 0x00A00003
> -};
> -
> -enum MemBarrierOp {
> - MemBarrierFixed = 0xD503309F,
> - MemBarrierFMask = 0xFFFFF09F,
> - MemBarrierMask = 0xFFFFF0FF,
> - DSB = MemBarrierFixed | 0x00000000,
> - DMB = MemBarrierFixed | 0x00000020,
> - ISB = MemBarrierFixed | 0x00000040
> -};
> -
> -enum SystemExclusiveMonitorOp {
> - SystemExclusiveMonitorFixed = 0xD503305F,
> - SystemExclusiveMonitorFMask = 0xFFFFF0FF,
> - SystemExclusiveMonitorMask = 0xFFFFF0FF,
> - CLREX = SystemExclusiveMonitorFixed
> -};
> -
> -// Any load or store.
> -enum LoadStoreAnyOp {
> - LoadStoreAnyFMask = 0x0a000000,
> - LoadStoreAnyFixed = 0x08000000
> -};
> -
> -// Any load pair or store pair.
> -enum LoadStorePairAnyOp {
> - LoadStorePairAnyFMask = 0x3a000000,
> - LoadStorePairAnyFixed = 0x28000000
> -};
> -
> -#define LOAD_STORE_PAIR_OP_LIST(V) \
> - V(STP, w, 0x00000000), \
> - V(LDP, w, 0x00400000), \
> - V(LDPSW, x, 0x40400000), \
> - V(STP, x, 0x80000000), \
> - V(LDP, x, 0x80400000), \
> - V(STP, s, 0x04000000), \
> - V(LDP, s, 0x04400000), \
> - V(STP, d, 0x44000000), \
> - V(LDP, d, 0x44400000), \
> - V(STP, q, 0x84000000), \
> - V(LDP, q, 0x84400000)
> -
> -// Load/store pair (post, pre and offset.)
> -enum LoadStorePairOp {
> - LoadStorePairMask = 0xC4400000,
> - LoadStorePairLBit = 1 << 22,
> - #define LOAD_STORE_PAIR(A, B, C) \
> - A##_##B = C
> - LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR)
> - #undef LOAD_STORE_PAIR
> -};
> -
> -enum LoadStorePairPostIndexOp {
> - LoadStorePairPostIndexFixed = 0x28800000,
> - LoadStorePairPostIndexFMask = 0x3B800000,
> - LoadStorePairPostIndexMask = 0xFFC00000,
> - #define LOAD_STORE_PAIR_POST_INDEX(A, B, C) \
> - A##_##B##_post = LoadStorePairPostIndexFixed | A##_##B
> - LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_POST_INDEX)
> - #undef LOAD_STORE_PAIR_POST_INDEX
> -};
> -
> -enum LoadStorePairPreIndexOp {
> - LoadStorePairPreIndexFixed = 0x29800000,
> - LoadStorePairPreIndexFMask = 0x3B800000,
> - LoadStorePairPreIndexMask = 0xFFC00000,
> - #define LOAD_STORE_PAIR_PRE_INDEX(A, B, C) \
> - A##_##B##_pre = LoadStorePairPreIndexFixed | A##_##B
> - LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_PRE_INDEX)
> - #undef LOAD_STORE_PAIR_PRE_INDEX
> -};
> -
> -enum LoadStorePairOffsetOp {
> - LoadStorePairOffsetFixed = 0x29000000,
> - LoadStorePairOffsetFMask = 0x3B800000,
> - LoadStorePairOffsetMask = 0xFFC00000,
> - #define LOAD_STORE_PAIR_OFFSET(A, B, C) \
> - A##_##B##_off = LoadStorePairOffsetFixed | A##_##B
> - LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_OFFSET)
> - #undef LOAD_STORE_PAIR_OFFSET
> -};
> -
> -enum LoadStorePairNonTemporalOp {
> - LoadStorePairNonTemporalFixed = 0x28000000,
> - LoadStorePairNonTemporalFMask = 0x3B800000,
> - LoadStorePairNonTemporalMask = 0xFFC00000,
> - LoadStorePairNonTemporalLBit = 1 << 22,
> - STNP_w = LoadStorePairNonTemporalFixed | STP_w,
> - LDNP_w = LoadStorePairNonTemporalFixed | LDP_w,
> - STNP_x = LoadStorePairNonTemporalFixed | STP_x,
> - LDNP_x = LoadStorePairNonTemporalFixed | LDP_x,
> - STNP_s = LoadStorePairNonTemporalFixed | STP_s,
> - LDNP_s = LoadStorePairNonTemporalFixed | LDP_s,
> - STNP_d = LoadStorePairNonTemporalFixed | STP_d,
> - LDNP_d = LoadStorePairNonTemporalFixed | LDP_d,
> - STNP_q = LoadStorePairNonTemporalFixed | STP_q,
> - LDNP_q = LoadStorePairNonTemporalFixed | LDP_q
> -};
> -
> -// Load literal.
> -enum LoadLiteralOp {
> - LoadLiteralFixed = 0x18000000,
> - LoadLiteralFMask = 0x3B000000,
> - LoadLiteralMask = 0xFF000000,
> - LDR_w_lit = LoadLiteralFixed | 0x00000000,
> - LDR_x_lit = LoadLiteralFixed | 0x40000000,
> - LDRSW_x_lit = LoadLiteralFixed | 0x80000000,
> - PRFM_lit = LoadLiteralFixed | 0xC0000000,
> - LDR_s_lit = LoadLiteralFixed | 0x04000000,
> - LDR_d_lit = LoadLiteralFixed | 0x44000000,
> - LDR_q_lit = LoadLiteralFixed | 0x84000000
> -};
> -
> -#define LOAD_STORE_OP_LIST(V) \
> - V(ST, RB, w, 0x00000000), \
> - V(ST, RH, w, 0x40000000), \
> - V(ST, R, w, 0x80000000), \
> - V(ST, R, x, 0xC0000000), \
> - V(LD, RB, w, 0x00400000), \
> - V(LD, RH, w, 0x40400000), \
> - V(LD, R, w, 0x80400000), \
> - V(LD, R, x, 0xC0400000), \
> - V(LD, RSB, x, 0x00800000), \
> - V(LD, RSH, x, 0x40800000), \
> - V(LD, RSW, x, 0x80800000), \
> - V(LD, RSB, w, 0x00C00000), \
> - V(LD, RSH, w, 0x40C00000), \
> - V(ST, R, b, 0x04000000), \
> - V(ST, R, h, 0x44000000), \
> - V(ST, R, s, 0x84000000), \
> - V(ST, R, d, 0xC4000000), \
> - V(ST, R, q, 0x04800000), \
> - V(LD, R, b, 0x04400000), \
> - V(LD, R, h, 0x44400000), \
> - V(LD, R, s, 0x84400000), \
> - V(LD, R, d, 0xC4400000), \
> - V(LD, R, q, 0x04C00000)
> -
> -// Load/store (post, pre, offset and unsigned.)
> -enum LoadStoreOp {
> - LoadStoreMask = 0xC4C00000,
> - LoadStoreVMask = 0x04000000,
> - #define LOAD_STORE(A, B, C, D) \
> - A##B##_##C = D
> - LOAD_STORE_OP_LIST(LOAD_STORE),
> - #undef LOAD_STORE
> - PRFM = 0xC0800000
> -};
> -
> -// Load/store unscaled offset.
> -enum LoadStoreUnscaledOffsetOp {
> - LoadStoreUnscaledOffsetFixed = 0x38000000,
> - LoadStoreUnscaledOffsetFMask = 0x3B200C00,
> - LoadStoreUnscaledOffsetMask = 0xFFE00C00,
> - PRFUM = LoadStoreUnscaledOffsetFixed | PRFM,
> - #define LOAD_STORE_UNSCALED(A, B, C, D) \
> - A##U##B##_##C = LoadStoreUnscaledOffsetFixed | D
> - LOAD_STORE_OP_LIST(LOAD_STORE_UNSCALED)
> - #undef LOAD_STORE_UNSCALED
> -};
> -
> -// Load/store post index.
> -enum LoadStorePostIndex {
> - LoadStorePostIndexFixed = 0x38000400,
> - LoadStorePostIndexFMask = 0x3B200C00,
> - LoadStorePostIndexMask = 0xFFE00C00,
> - #define LOAD_STORE_POST_INDEX(A, B, C, D) \
> - A##B##_##C##_post = LoadStorePostIndexFixed | D
> - LOAD_STORE_OP_LIST(LOAD_STORE_POST_INDEX)
> - #undef LOAD_STORE_POST_INDEX
> -};
> -
> -// Load/store pre index.
> -enum LoadStorePreIndex {
> - LoadStorePreIndexFixed = 0x38000C00,
> - LoadStorePreIndexFMask = 0x3B200C00,
> - LoadStorePreIndexMask = 0xFFE00C00,
> - #define LOAD_STORE_PRE_INDEX(A, B, C, D) \
> - A##B##_##C##_pre = LoadStorePreIndexFixed | D
> - LOAD_STORE_OP_LIST(LOAD_STORE_PRE_INDEX)
> - #undef LOAD_STORE_PRE_INDEX
> -};
> -
> -// Load/store unsigned offset.
> -enum LoadStoreUnsignedOffset {
> - LoadStoreUnsignedOffsetFixed = 0x39000000,
> - LoadStoreUnsignedOffsetFMask = 0x3B000000,
> - LoadStoreUnsignedOffsetMask = 0xFFC00000,
> - PRFM_unsigned = LoadStoreUnsignedOffsetFixed | PRFM,
> - #define LOAD_STORE_UNSIGNED_OFFSET(A, B, C, D) \
> - A##B##_##C##_unsigned = LoadStoreUnsignedOffsetFixed | D
> - LOAD_STORE_OP_LIST(LOAD_STORE_UNSIGNED_OFFSET)
> - #undef LOAD_STORE_UNSIGNED_OFFSET
> -};
> -
> -// Load/store register offset.
> -enum LoadStoreRegisterOffset {
> - LoadStoreRegisterOffsetFixed = 0x38200800,
> - LoadStoreRegisterOffsetFMask = 0x3B200C00,
> - LoadStoreRegisterOffsetMask = 0xFFE00C00,
> - PRFM_reg = LoadStoreRegisterOffsetFixed | PRFM,
> - #define LOAD_STORE_REGISTER_OFFSET(A, B, C, D) \
> - A##B##_##C##_reg = LoadStoreRegisterOffsetFixed | D
> - LOAD_STORE_OP_LIST(LOAD_STORE_REGISTER_OFFSET)
> - #undef LOAD_STORE_REGISTER_OFFSET
> -};
> -
> -enum LoadStoreExclusive {
> - LoadStoreExclusiveFixed = 0x08000000,
> - LoadStoreExclusiveFMask = 0x3F000000,
> - LoadStoreExclusiveMask = 0xFFE08000,
> - STXRB_w = LoadStoreExclusiveFixed | 0x00000000,
> - STXRH_w = LoadStoreExclusiveFixed | 0x40000000,
> - STXR_w = LoadStoreExclusiveFixed | 0x80000000,
> - STXR_x = LoadStoreExclusiveFixed | 0xC0000000,
> - LDXRB_w = LoadStoreExclusiveFixed | 0x00400000,
> - LDXRH_w = LoadStoreExclusiveFixed | 0x40400000,
> - LDXR_w = LoadStoreExclusiveFixed | 0x80400000,
> - LDXR_x = LoadStoreExclusiveFixed | 0xC0400000,
> - STXP_w = LoadStoreExclusiveFixed | 0x80200000,
> - STXP_x = LoadStoreExclusiveFixed | 0xC0200000,
> - LDXP_w = LoadStoreExclusiveFixed | 0x80600000,
> - LDXP_x = LoadStoreExclusiveFixed | 0xC0600000,
> - STLXRB_w = LoadStoreExclusiveFixed | 0x00008000,
> - STLXRH_w = LoadStoreExclusiveFixed | 0x40008000,
> - STLXR_w = LoadStoreExclusiveFixed | 0x80008000,
> - STLXR_x = LoadStoreExclusiveFixed | 0xC0008000,
> - LDAXRB_w = LoadStoreExclusiveFixed | 0x00408000,
> - LDAXRH_w = LoadStoreExclusiveFixed | 0x40408000,
> - LDAXR_w = LoadStoreExclusiveFixed | 0x80408000,
> - LDAXR_x = LoadStoreExclusiveFixed | 0xC0408000,
> - STLXP_w = LoadStoreExclusiveFixed | 0x80208000,
> - STLXP_x = LoadStoreExclusiveFixed | 0xC0208000,
> - LDAXP_w = LoadStoreExclusiveFixed | 0x80608000,
> - LDAXP_x = LoadStoreExclusiveFixed | 0xC0608000,
> - STLRB_w = LoadStoreExclusiveFixed | 0x00808000,
> - STLRH_w = LoadStoreExclusiveFixed | 0x40808000,
> - STLR_w = LoadStoreExclusiveFixed | 0x80808000,
> - STLR_x = LoadStoreExclusiveFixed | 0xC0808000,
> - LDARB_w = LoadStoreExclusiveFixed | 0x00C08000,
> - LDARH_w = LoadStoreExclusiveFixed | 0x40C08000,
> - LDAR_w = LoadStoreExclusiveFixed | 0x80C08000,
> - LDAR_x = LoadStoreExclusiveFixed | 0xC0C08000
> -};
> -
> -// Conditional compare.
> -enum ConditionalCompareOp {
> - ConditionalCompareMask = 0x60000000,
> - CCMN = 0x20000000,
> - CCMP = 0x60000000
> -};
> -
> -// Conditional compare register.
> -enum ConditionalCompareRegisterOp {
> - ConditionalCompareRegisterFixed = 0x1A400000,
> - ConditionalCompareRegisterFMask = 0x1FE00800,
> - ConditionalCompareRegisterMask = 0xFFE00C10,
> - CCMN_w = ConditionalCompareRegisterFixed | CCMN,
> - CCMN_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMN,
> - CCMP_w = ConditionalCompareRegisterFixed | CCMP,
> - CCMP_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMP
> -};
> -
> -// Conditional compare immediate.
> -enum ConditionalCompareImmediateOp {
> - ConditionalCompareImmediateFixed = 0x1A400800,
> - ConditionalCompareImmediateFMask = 0x1FE00800,
> - ConditionalCompareImmediateMask = 0xFFE00C10,
> - CCMN_w_imm = ConditionalCompareImmediateFixed | CCMN,
> - CCMN_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMN,
> - CCMP_w_imm = ConditionalCompareImmediateFixed | CCMP,
> - CCMP_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMP
> -};
> -
> -// Conditional select.
> -enum ConditionalSelectOp {
> - ConditionalSelectFixed = 0x1A800000,
> - ConditionalSelectFMask = 0x1FE00000,
> - ConditionalSelectMask = 0xFFE00C00,
> - CSEL_w = ConditionalSelectFixed | 0x00000000,
> - CSEL_x = ConditionalSelectFixed | 0x80000000,
> - CSEL = CSEL_w,
> - CSINC_w = ConditionalSelectFixed | 0x00000400,
> - CSINC_x = ConditionalSelectFixed | 0x80000400,
> - CSINC = CSINC_w,
> - CSINV_w = ConditionalSelectFixed | 0x40000000,
> - CSINV_x = ConditionalSelectFixed | 0xC0000000,
> - CSINV = CSINV_w,
> - CSNEG_w = ConditionalSelectFixed | 0x40000400,
> - CSNEG_x = ConditionalSelectFixed | 0xC0000400,
> - CSNEG = CSNEG_w
> -};
> -
> -// Data processing 1 source.
> -enum DataProcessing1SourceOp {
> - DataProcessing1SourceFixed = 0x5AC00000,
> - DataProcessing1SourceFMask = 0x5FE00000,
> - DataProcessing1SourceMask = 0xFFFFFC00,
> - RBIT = DataProcessing1SourceFixed | 0x00000000,
> - RBIT_w = RBIT,
> - RBIT_x = RBIT | SixtyFourBits,
> - REV16 = DataProcessing1SourceFixed | 0x00000400,
> - REV16_w = REV16,
> - REV16_x = REV16 | SixtyFourBits,
> - REV = DataProcessing1SourceFixed | 0x00000800,
> - REV_w = REV,
> - REV32_x = REV | SixtyFourBits,
> - REV_x = DataProcessing1SourceFixed | SixtyFourBits | 0x00000C00,
> - CLZ = DataProcessing1SourceFixed | 0x00001000,
> - CLZ_w = CLZ,
> - CLZ_x = CLZ | SixtyFourBits,
> - CLS = DataProcessing1SourceFixed | 0x00001400,
> - CLS_w = CLS,
> - CLS_x = CLS | SixtyFourBits
> -};
> -
> -// Data processing 2 source.
> -enum DataProcessing2SourceOp {
> - DataProcessing2SourceFixed = 0x1AC00000,
> - DataProcessing2SourceFMask = 0x5FE00000,
> - DataProcessing2SourceMask = 0xFFE0FC00,
> - UDIV_w = DataProcessing2SourceFixed | 0x00000800,
> - UDIV_x = DataProcessing2SourceFixed | 0x80000800,
> - UDIV = UDIV_w,
> - SDIV_w = DataProcessing2SourceFixed | 0x00000C00,
> - SDIV_x = DataProcessing2SourceFixed | 0x80000C00,
> - SDIV = SDIV_w,
> - LSLV_w = DataProcessing2SourceFixed | 0x00002000,
> - LSLV_x = DataProcessing2SourceFixed | 0x80002000,
> - LSLV = LSLV_w,
> - LSRV_w = DataProcessing2SourceFixed | 0x00002400,
> - LSRV_x = DataProcessing2SourceFixed | 0x80002400,
> - LSRV = LSRV_w,
> - ASRV_w = DataProcessing2SourceFixed | 0x00002800,
> - ASRV_x = DataProcessing2SourceFixed | 0x80002800,
> - ASRV = ASRV_w,
> - RORV_w = DataProcessing2SourceFixed | 0x00002C00,
> - RORV_x = DataProcessing2SourceFixed | 0x80002C00,
> - RORV = RORV_w,
> - CRC32B = DataProcessing2SourceFixed | 0x00004000,
> - CRC32H = DataProcessing2SourceFixed | 0x00004400,
> - CRC32W = DataProcessing2SourceFixed | 0x00004800,
> - CRC32X = DataProcessing2SourceFixed | SixtyFourBits | 0x00004C00,
> - CRC32CB = DataProcessing2SourceFixed | 0x00005000,
> - CRC32CH = DataProcessing2SourceFixed | 0x00005400,
> - CRC32CW = DataProcessing2SourceFixed | 0x00005800,
> - CRC32CX = DataProcessing2SourceFixed | SixtyFourBits | 0x00005C00
> -};
> -
> -// Data processing 3 source.
> -enum DataProcessing3SourceOp {
> - DataProcessing3SourceFixed = 0x1B000000,
> - DataProcessing3SourceFMask = 0x1F000000,
> - DataProcessing3SourceMask = 0xFFE08000,
> - MADD_w = DataProcessing3SourceFixed | 0x00000000,
> - MADD_x = DataProcessing3SourceFixed | 0x80000000,
> - MADD = MADD_w,
> - MSUB_w = DataProcessing3SourceFixed | 0x00008000,
> - MSUB_x = DataProcessing3SourceFixed | 0x80008000,
> - MSUB = MSUB_w,
> - SMADDL_x = DataProcessing3SourceFixed | 0x80200000,
> - SMSUBL_x = DataProcessing3SourceFixed | 0x80208000,
> - SMULH_x = DataProcessing3SourceFixed | 0x80400000,
> - UMADDL_x = DataProcessing3SourceFixed | 0x80A00000,
> - UMSUBL_x = DataProcessing3SourceFixed | 0x80A08000,
> - UMULH_x = DataProcessing3SourceFixed | 0x80C00000
> -};
> -
> -// Floating point compare.
> -enum FPCompareOp {
> - FPCompareFixed = 0x1E202000,
> - FPCompareFMask = 0x5F203C00,
> - FPCompareMask = 0xFFE0FC1F,
> - FCMP_s = FPCompareFixed | 0x00000000,
> - FCMP_d = FPCompareFixed | FP64 | 0x00000000,
> - FCMP = FCMP_s,
> - FCMP_s_zero = FPCompareFixed | 0x00000008,
> - FCMP_d_zero = FPCompareFixed | FP64 | 0x00000008,
> - FCMP_zero = FCMP_s_zero,
> - FCMPE_s = FPCompareFixed | 0x00000010,
> - FCMPE_d = FPCompareFixed | FP64 | 0x00000010,
> - FCMPE = FCMPE_s,
> - FCMPE_s_zero = FPCompareFixed | 0x00000018,
> - FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018,
> - FCMPE_zero = FCMPE_s_zero
> -};
> -
> -// Floating point conditional compare.
> -enum FPConditionalCompareOp {
> - FPConditionalCompareFixed = 0x1E200400,
> - FPConditionalCompareFMask = 0x5F200C00,
> - FPConditionalCompareMask = 0xFFE00C10,
> - FCCMP_s = FPConditionalCompareFixed | 0x00000000,
> - FCCMP_d = FPConditionalCompareFixed | FP64 | 0x00000000,
> - FCCMP = FCCMP_s,
> - FCCMPE_s = FPConditionalCompareFixed | 0x00000010,
> - FCCMPE_d = FPConditionalCompareFixed | FP64 | 0x00000010,
> - FCCMPE = FCCMPE_s
> -};
> -
> -// Floating point conditional select.
> -enum FPConditionalSelectOp {
> - FPConditionalSelectFixed = 0x1E200C00,
> - FPConditionalSelectFMask = 0x5F200C00,
> - FPConditionalSelectMask = 0xFFE00C00,
> - FCSEL_s = FPConditionalSelectFixed | 0x00000000,
> - FCSEL_d = FPConditionalSelectFixed | FP64 | 0x00000000,
> - FCSEL = FCSEL_s
> -};
> -
> -// Floating point immediate.
> -enum FPImmediateOp {
> - FPImmediateFixed = 0x1E201000,
> - FPImmediateFMask = 0x5F201C00,
> - FPImmediateMask = 0xFFE01C00,
> - FMOV_s_imm = FPImmediateFixed | 0x00000000,
> - FMOV_d_imm = FPImmediateFixed | FP64 | 0x00000000
> -};
> -
> -// Floating point data processing 1 source.
> -enum FPDataProcessing1SourceOp {
> - FPDataProcessing1SourceFixed = 0x1E204000,
> - FPDataProcessing1SourceFMask = 0x5F207C00,
> - FPDataProcessing1SourceMask = 0xFFFFFC00,
> - FMOV_s = FPDataProcessing1SourceFixed | 0x00000000,
> - FMOV_d = FPDataProcessing1SourceFixed | FP64 | 0x00000000,
> - FMOV = FMOV_s,
> - FABS_s = FPDataProcessing1SourceFixed | 0x00008000,
> - FABS_d = FPDataProcessing1SourceFixed | FP64 | 0x00008000,
> - FABS = FABS_s,
> - FNEG_s = FPDataProcessing1SourceFixed | 0x00010000,
> - FNEG_d = FPDataProcessing1SourceFixed | FP64 | 0x00010000,
> - FNEG = FNEG_s,
> - FSQRT_s = FPDataProcessing1SourceFixed | 0x00018000,
> - FSQRT_d = FPDataProcessing1SourceFixed | FP64 | 0x00018000,
> - FSQRT = FSQRT_s,
> - FCVT_ds = FPDataProcessing1SourceFixed | 0x00028000,
> - FCVT_sd = FPDataProcessing1SourceFixed | FP64 | 0x00020000,
> - FCVT_hs = FPDataProcessing1SourceFixed | 0x00038000,
> - FCVT_hd = FPDataProcessing1SourceFixed | FP64 | 0x00038000,
> - FCVT_sh = FPDataProcessing1SourceFixed | 0x00C20000,
> - FCVT_dh = FPDataProcessing1SourceFixed | 0x00C28000,
> - FRINTN_s = FPDataProcessing1SourceFixed | 0x00040000,
> - FRINTN_d = FPDataProcessing1SourceFixed | FP64 | 0x00040000,
> - FRINTN = FRINTN_s,
> - FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000,
> - FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000,
> - FRINTP = FRINTP_s,
> - FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000,
> - FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000,
> - FRINTM = FRINTM_s,
> - FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000,
> - FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000,
> - FRINTZ = FRINTZ_s,
> - FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000,
> - FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000,
> - FRINTA = FRINTA_s,
> - FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000,
> - FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000,
> - FRINTX = FRINTX_s,
> - FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000,
> - FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000,
> - FRINTI = FRINTI_s
> -};
> -
> -// Floating point data processing 2 source.
> -enum FPDataProcessing2SourceOp {
> - FPDataProcessing2SourceFixed = 0x1E200800,
> - FPDataProcessing2SourceFMask = 0x5F200C00,
> - FPDataProcessing2SourceMask = 0xFFE0FC00,
> - FMUL = FPDataProcessing2SourceFixed | 0x00000000,
> - FMUL_s = FMUL,
> - FMUL_d = FMUL | FP64,
> - FDIV = FPDataProcessing2SourceFixed | 0x00001000,
> - FDIV_s = FDIV,
> - FDIV_d = FDIV | FP64,
> - FADD = FPDataProcessing2SourceFixed | 0x00002000,
> - FADD_s = FADD,
> - FADD_d = FADD | FP64,
> - FSUB = FPDataProcessing2SourceFixed | 0x00003000,
> - FSUB_s = FSUB,
> - FSUB_d = FSUB | FP64,
> - FMAX = FPDataProcessing2SourceFixed | 0x00004000,
> - FMAX_s = FMAX,
> - FMAX_d = FMAX | FP64,
> - FMIN = FPDataProcessing2SourceFixed | 0x00005000,
> - FMIN_s = FMIN,
> - FMIN_d = FMIN | FP64,
> - FMAXNM = FPDataProcessing2SourceFixed | 0x00006000,
> - FMAXNM_s = FMAXNM,
> - FMAXNM_d = FMAXNM | FP64,
> - FMINNM = FPDataProcessing2SourceFixed | 0x00007000,
> - FMINNM_s = FMINNM,
> - FMINNM_d = FMINNM | FP64,
> - FNMUL = FPDataProcessing2SourceFixed | 0x00008000,
> - FNMUL_s = FNMUL,
> - FNMUL_d = FNMUL | FP64
> -};
> -
> -// Floating point data processing 3 source.
> -enum FPDataProcessing3SourceOp {
> - FPDataProcessing3SourceFixed = 0x1F000000,
> - FPDataProcessing3SourceFMask = 0x5F000000,
> - FPDataProcessing3SourceMask = 0xFFE08000,
> - FMADD_s = FPDataProcessing3SourceFixed | 0x00000000,
> - FMSUB_s = FPDataProcessing3SourceFixed | 0x00008000,
> - FNMADD_s = FPDataProcessing3SourceFixed | 0x00200000,
> - FNMSUB_s = FPDataProcessing3SourceFixed | 0x00208000,
> - FMADD_d = FPDataProcessing3SourceFixed | 0x00400000,
> - FMSUB_d = FPDataProcessing3SourceFixed | 0x00408000,
> - FNMADD_d = FPDataProcessing3SourceFixed | 0x00600000,
> - FNMSUB_d = FPDataProcessing3SourceFixed | 0x00608000
> -};
> -
> -// Conversion between floating point and integer.
> -enum FPIntegerConvertOp {
> - FPIntegerConvertFixed = 0x1E200000,
> - FPIntegerConvertFMask = 0x5F20FC00,
> - FPIntegerConvertMask = 0xFFFFFC00,
> - FCVTNS = FPIntegerConvertFixed | 0x00000000,
> - FCVTNS_ws = FCVTNS,
> - FCVTNS_xs = FCVTNS | SixtyFourBits,
> - FCVTNS_wd = FCVTNS | FP64,
> - FCVTNS_xd = FCVTNS | SixtyFourBits | FP64,
> - FCVTNU = FPIntegerConvertFixed | 0x00010000,
> - FCVTNU_ws = FCVTNU,
> - FCVTNU_xs = FCVTNU | SixtyFourBits,
> - FCVTNU_wd = FCVTNU | FP64,
> - FCVTNU_xd = FCVTNU | SixtyFourBits | FP64,
> - FCVTPS = FPIntegerConvertFixed | 0x00080000,
> - FCVTPS_ws = FCVTPS,
> - FCVTPS_xs = FCVTPS | SixtyFourBits,
> - FCVTPS_wd = FCVTPS | FP64,
> - FCVTPS_xd = FCVTPS | SixtyFourBits | FP64,
> - FCVTPU = FPIntegerConvertFixed | 0x00090000,
> - FCVTPU_ws = FCVTPU,
> - FCVTPU_xs = FCVTPU | SixtyFourBits,
> - FCVTPU_wd = FCVTPU | FP64,
> - FCVTPU_xd = FCVTPU | SixtyFourBits | FP64,
> - FCVTMS = FPIntegerConvertFixed | 0x00100000,
> - FCVTMS_ws = FCVTMS,
> - FCVTMS_xs = FCVTMS | SixtyFourBits,
> - FCVTMS_wd = FCVTMS | FP64,
> - FCVTMS_xd = FCVTMS | SixtyFourBits | FP64,
> - FCVTMU = FPIntegerConvertFixed | 0x00110000,
> - FCVTMU_ws = FCVTMU,
> - FCVTMU_xs = FCVTMU | SixtyFourBits,
> - FCVTMU_wd = FCVTMU | FP64,
> - FCVTMU_xd = FCVTMU | SixtyFourBits | FP64,
> - FCVTZS = FPIntegerConvertFixed | 0x00180000,
> - FCVTZS_ws = FCVTZS,
> - FCVTZS_xs = FCVTZS | SixtyFourBits,
> - FCVTZS_wd = FCVTZS | FP64,
> - FCVTZS_xd = FCVTZS | SixtyFourBits | FP64,
> - FCVTZU = FPIntegerConvertFixed | 0x00190000,
> - FCVTZU_ws = FCVTZU,
> - FCVTZU_xs = FCVTZU | SixtyFourBits,
> - FCVTZU_wd = FCVTZU | FP64,
> - FCVTZU_xd = FCVTZU | SixtyFourBits | FP64,
> - SCVTF = FPIntegerConvertFixed | 0x00020000,
> - SCVTF_sw = SCVTF,
> - SCVTF_sx = SCVTF | SixtyFourBits,
> - SCVTF_dw = SCVTF | FP64,
> - SCVTF_dx = SCVTF | SixtyFourBits | FP64,
> - UCVTF = FPIntegerConvertFixed | 0x00030000,
> - UCVTF_sw = UCVTF,
> - UCVTF_sx = UCVTF | SixtyFourBits,
> - UCVTF_dw = UCVTF | FP64,
> - UCVTF_dx = UCVTF | SixtyFourBits | FP64,
> - FCVTAS = FPIntegerConvertFixed | 0x00040000,
> - FCVTAS_ws = FCVTAS,
> - FCVTAS_xs = FCVTAS | SixtyFourBits,
> - FCVTAS_wd = FCVTAS | FP64,
> - FCVTAS_xd = FCVTAS | SixtyFourBits | FP64,
> - FCVTAU = FPIntegerConvertFixed | 0x00050000,
> - FCVTAU_ws = FCVTAU,
> - FCVTAU_xs = FCVTAU | SixtyFourBits,
> - FCVTAU_wd = FCVTAU | FP64,
> - FCVTAU_xd = FCVTAU | SixtyFourBits | FP64,
> - FMOV_ws = FPIntegerConvertFixed | 0x00060000,
> - FMOV_sw = FPIntegerConvertFixed | 0x00070000,
> - FMOV_xd = FMOV_ws | SixtyFourBits | FP64,
> - FMOV_dx = FMOV_sw | SixtyFourBits | FP64,
> - FMOV_d1_x = FPIntegerConvertFixed | SixtyFourBits | 0x008F0000,
> - FMOV_x_d1 = FPIntegerConvertFixed | SixtyFourBits | 0x008E0000
> -};
> -
> -// Conversion between fixed point and floating point.
> -enum FPFixedPointConvertOp {
> - FPFixedPointConvertFixed = 0x1E000000,
> - FPFixedPointConvertFMask = 0x5F200000,
> - FPFixedPointConvertMask = 0xFFFF0000,
> - FCVTZS_fixed = FPFixedPointConvertFixed | 0x00180000,
> - FCVTZS_ws_fixed = FCVTZS_fixed,
> - FCVTZS_xs_fixed = FCVTZS_fixed | SixtyFourBits,
> - FCVTZS_wd_fixed = FCVTZS_fixed | FP64,
> - FCVTZS_xd_fixed = FCVTZS_fixed | SixtyFourBits | FP64,
> - FCVTZU_fixed = FPFixedPointConvertFixed | 0x00190000,
> - FCVTZU_ws_fixed = FCVTZU_fixed,
> - FCVTZU_xs_fixed = FCVTZU_fixed | SixtyFourBits,
> - FCVTZU_wd_fixed = FCVTZU_fixed | FP64,
> - FCVTZU_xd_fixed = FCVTZU_fixed | SixtyFourBits | FP64,
> - SCVTF_fixed = FPFixedPointConvertFixed | 0x00020000,
> - SCVTF_sw_fixed = SCVTF_fixed,
> - SCVTF_sx_fixed = SCVTF_fixed | SixtyFourBits,
> - SCVTF_dw_fixed = SCVTF_fixed | FP64,
> - SCVTF_dx_fixed = SCVTF_fixed | SixtyFourBits | FP64,
> - UCVTF_fixed = FPFixedPointConvertFixed | 0x00030000,
> - UCVTF_sw_fixed = UCVTF_fixed,
> - UCVTF_sx_fixed = UCVTF_fixed | SixtyFourBits,
> - UCVTF_dw_fixed = UCVTF_fixed | FP64,
> - UCVTF_dx_fixed = UCVTF_fixed | SixtyFourBits | FP64
> -};
> -
> -// Crypto - two register SHA.
> -enum Crypto2RegSHAOp {
> - Crypto2RegSHAFixed = 0x5E280800,
> - Crypto2RegSHAFMask = 0xFF3E0C00
> -};
> -
> -// Crypto - three register SHA.
> -enum Crypto3RegSHAOp {
> - Crypto3RegSHAFixed = 0x5E000000,
> - Crypto3RegSHAFMask = 0xFF208C00
> -};
> -
> -// Crypto - AES.
> -enum CryptoAESOp {
> - CryptoAESFixed = 0x4E280800,
> - CryptoAESFMask = 0xFF3E0C00
> -};
> -
> -// NEON instructions with two register operands.
> -enum NEON2RegMiscOp {
> - NEON2RegMiscFixed = 0x0E200800,
> - NEON2RegMiscFMask = 0x9F3E0C00,
> - NEON2RegMiscMask = 0xBF3FFC00,
> - NEON2RegMiscUBit = 0x20000000,
> - NEON_REV64 = NEON2RegMiscFixed | 0x00000000,
> - NEON_REV32 = NEON2RegMiscFixed | 0x20000000,
> - NEON_REV16 = NEON2RegMiscFixed | 0x00001000,
> - NEON_SADDLP = NEON2RegMiscFixed | 0x00002000,
> - NEON_UADDLP = NEON_SADDLP | NEON2RegMiscUBit,
> - NEON_SUQADD = NEON2RegMiscFixed | 0x00003000,
> - NEON_USQADD = NEON_SUQADD | NEON2RegMiscUBit,
> - NEON_CLS = NEON2RegMiscFixed | 0x00004000,
> - NEON_CLZ = NEON2RegMiscFixed | 0x20004000,
> - NEON_CNT = NEON2RegMiscFixed | 0x00005000,
> - NEON_RBIT_NOT = NEON2RegMiscFixed | 0x20005000,
> - NEON_SADALP = NEON2RegMiscFixed | 0x00006000,
> - NEON_UADALP = NEON_SADALP | NEON2RegMiscUBit,
> - NEON_SQABS = NEON2RegMiscFixed | 0x00007000,
> - NEON_SQNEG = NEON2RegMiscFixed | 0x20007000,
> - NEON_CMGT_zero = NEON2RegMiscFixed | 0x00008000,
> - NEON_CMGE_zero = NEON2RegMiscFixed | 0x20008000,
> - NEON_CMEQ_zero = NEON2RegMiscFixed | 0x00009000,
> - NEON_CMLE_zero = NEON2RegMiscFixed | 0x20009000,
> - NEON_CMLT_zero = NEON2RegMiscFixed | 0x0000A000,
> - NEON_ABS = NEON2RegMiscFixed | 0x0000B000,
> - NEON_NEG = NEON2RegMiscFixed | 0x2000B000,
> - NEON_XTN = NEON2RegMiscFixed | 0x00012000,
> - NEON_SQXTUN = NEON2RegMiscFixed | 0x20012000,
> - NEON_SHLL = NEON2RegMiscFixed | 0x20013000,
> - NEON_SQXTN = NEON2RegMiscFixed | 0x00014000,
> - NEON_UQXTN = NEON_SQXTN | NEON2RegMiscUBit,
> -
> - NEON2RegMiscOpcode = 0x0001F000,
> - NEON_RBIT_NOT_opcode = NEON_RBIT_NOT & NEON2RegMiscOpcode,
> - NEON_NEG_opcode = NEON_NEG & NEON2RegMiscOpcode,
> - NEON_XTN_opcode = NEON_XTN & NEON2RegMiscOpcode,
> - NEON_UQXTN_opcode = NEON_UQXTN & NEON2RegMiscOpcode,
> -
> - // These instructions use only one bit of the size field. The other bit is
> - // used to distinguish between instructions.
> - NEON2RegMiscFPMask = NEON2RegMiscMask | 0x00800000,
> - NEON_FABS = NEON2RegMiscFixed | 0x0080F000,
> - NEON_FNEG = NEON2RegMiscFixed | 0x2080F000,
> - NEON_FCVTN = NEON2RegMiscFixed | 0x00016000,
> - NEON_FCVTXN = NEON2RegMiscFixed | 0x20016000,
> - NEON_FCVTL = NEON2RegMiscFixed | 0x00017000,
> - NEON_FRINTN = NEON2RegMiscFixed | 0x00018000,
> - NEON_FRINTA = NEON2RegMiscFixed | 0x20018000,
> - NEON_FRINTP = NEON2RegMiscFixed | 0x00818000,
> - NEON_FRINTM = NEON2RegMiscFixed | 0x00019000,
> - NEON_FRINTX = NEON2RegMiscFixed | 0x20019000,
> - NEON_FRINTZ = NEON2RegMiscFixed | 0x00819000,
> - NEON_FRINTI = NEON2RegMiscFixed | 0x20819000,
> - NEON_FCVTNS = NEON2RegMiscFixed | 0x0001A000,
> - NEON_FCVTNU = NEON_FCVTNS | NEON2RegMiscUBit,
> - NEON_FCVTPS = NEON2RegMiscFixed | 0x0081A000,
> - NEON_FCVTPU = NEON_FCVTPS | NEON2RegMiscUBit,
> - NEON_FCVTMS = NEON2RegMiscFixed | 0x0001B000,
> - NEON_FCVTMU = NEON_FCVTMS | NEON2RegMiscUBit,
> - NEON_FCVTZS = NEON2RegMiscFixed | 0x0081B000,
> - NEON_FCVTZU = NEON_FCVTZS | NEON2RegMiscUBit,
> - NEON_FCVTAS = NEON2RegMiscFixed | 0x0001C000,
> - NEON_FCVTAU = NEON_FCVTAS | NEON2RegMiscUBit,
> - NEON_FSQRT = NEON2RegMiscFixed | 0x2081F000,
> - NEON_SCVTF = NEON2RegMiscFixed | 0x0001D000,
> - NEON_UCVTF = NEON_SCVTF | NEON2RegMiscUBit,
> - NEON_URSQRTE = NEON2RegMiscFixed | 0x2081C000,
> - NEON_URECPE = NEON2RegMiscFixed | 0x0081C000,
> - NEON_FRSQRTE = NEON2RegMiscFixed | 0x2081D000,
> - NEON_FRECPE = NEON2RegMiscFixed | 0x0081D000,
> - NEON_FCMGT_zero = NEON2RegMiscFixed | 0x0080C000,
> - NEON_FCMGE_zero = NEON2RegMiscFixed | 0x2080C000,
> - NEON_FCMEQ_zero = NEON2RegMiscFixed | 0x0080D000,
> - NEON_FCMLE_zero = NEON2RegMiscFixed | 0x2080D000,
> - NEON_FCMLT_zero = NEON2RegMiscFixed | 0x0080E000,
> -
> - NEON_FCVTL_opcode = NEON_FCVTL & NEON2RegMiscOpcode,
> - NEON_FCVTN_opcode = NEON_FCVTN & NEON2RegMiscOpcode
> -};
> -
> -// NEON instructions with three same-type operands.
> -enum NEON3SameOp {
> - NEON3SameFixed = 0x0E200400,
> - NEON3SameFMask = 0x9F200400,
> - NEON3SameMask = 0xBF20FC00,
> - NEON3SameUBit = 0x20000000,
> - NEON_ADD = NEON3SameFixed | 0x00008000,
> - NEON_ADDP = NEON3SameFixed | 0x0000B800,
> - NEON_SHADD = NEON3SameFixed | 0x00000000,
> - NEON_SHSUB = NEON3SameFixed | 0x00002000,
> - NEON_SRHADD = NEON3SameFixed | 0x00001000,
> - NEON_CMEQ = NEON3SameFixed | NEON3SameUBit | 0x00008800,
> - NEON_CMGE = NEON3SameFixed | 0x00003800,
> - NEON_CMGT = NEON3SameFixed | 0x00003000,
> - NEON_CMHI = NEON3SameFixed | NEON3SameUBit | NEON_CMGT,
> - NEON_CMHS = NEON3SameFixed | NEON3SameUBit | NEON_CMGE,
> - NEON_CMTST = NEON3SameFixed | 0x00008800,
> - NEON_MLA = NEON3SameFixed | 0x00009000,
> - NEON_MLS = NEON3SameFixed | 0x20009000,
> - NEON_MUL = NEON3SameFixed | 0x00009800,
> - NEON_PMUL = NEON3SameFixed | 0x20009800,
> - NEON_SRSHL = NEON3SameFixed | 0x00005000,
> - NEON_SQSHL = NEON3SameFixed | 0x00004800,
> - NEON_SQRSHL = NEON3SameFixed | 0x00005800,
> - NEON_SSHL = NEON3SameFixed | 0x00004000,
> - NEON_SMAX = NEON3SameFixed | 0x00006000,
> - NEON_SMAXP = NEON3SameFixed | 0x0000A000,
> - NEON_SMIN = NEON3SameFixed | 0x00006800,
> - NEON_SMINP = NEON3SameFixed | 0x0000A800,
> - NEON_SABD = NEON3SameFixed | 0x00007000,
> - NEON_SABA = NEON3SameFixed | 0x00007800,
> - NEON_UABD = NEON3SameFixed | NEON3SameUBit | NEON_SABD,
> - NEON_UABA = NEON3SameFixed | NEON3SameUBit | NEON_SABA,
> - NEON_SQADD = NEON3SameFixed | 0x00000800,
> - NEON_SQSUB = NEON3SameFixed | 0x00002800,
> - NEON_SUB = NEON3SameFixed | NEON3SameUBit | 0x00008000,
> - NEON_UHADD = NEON3SameFixed | NEON3SameUBit | NEON_SHADD,
> - NEON_UHSUB = NEON3SameFixed | NEON3SameUBit | NEON_SHSUB,
> - NEON_URHADD = NEON3SameFixed | NEON3SameUBit | NEON_SRHADD,
> - NEON_UMAX = NEON3SameFixed | NEON3SameUBit | NEON_SMAX,
> - NEON_UMAXP = NEON3SameFixed | NEON3SameUBit | NEON_SMAXP,
> - NEON_UMIN = NEON3SameFixed | NEON3SameUBit | NEON_SMIN,
> - NEON_UMINP = NEON3SameFixed | NEON3SameUBit | NEON_SMINP,
> - NEON_URSHL = NEON3SameFixed | NEON3SameUBit | NEON_SRSHL,
> - NEON_UQADD = NEON3SameFixed | NEON3SameUBit | NEON_SQADD,
> - NEON_UQRSHL = NEON3SameFixed | NEON3SameUBit | NEON_SQRSHL,
> - NEON_UQSHL = NEON3SameFixed | NEON3SameUBit | NEON_SQSHL,
> - NEON_UQSUB = NEON3SameFixed | NEON3SameUBit | NEON_SQSUB,
> - NEON_USHL = NEON3SameFixed | NEON3SameUBit | NEON_SSHL,
> - NEON_SQDMULH = NEON3SameFixed | 0x0000B000,
> - NEON_SQRDMULH = NEON3SameFixed | 0x2000B000,
> -
> - // NEON floating point instructions with three same-type operands.
> - NEON3SameFPFixed = NEON3SameFixed | 0x0000C000,
> - NEON3SameFPFMask = NEON3SameFMask | 0x0000C000,
> - NEON3SameFPMask = NEON3SameMask | 0x00800000,
> - NEON_FADD = NEON3SameFixed | 0x0000D000,
> - NEON_FSUB = NEON3SameFixed | 0x0080D000,
> - NEON_FMUL = NEON3SameFixed | 0x2000D800,
> - NEON_FDIV = NEON3SameFixed | 0x2000F800,
> - NEON_FMAX = NEON3SameFixed | 0x0000F000,
> - NEON_FMAXNM = NEON3SameFixed | 0x0000C000,
> - NEON_FMAXP = NEON3SameFixed | 0x2000F000,
> - NEON_FMAXNMP = NEON3SameFixed | 0x2000C000,
> - NEON_FMIN = NEON3SameFixed | 0x0080F000,
> - NEON_FMINNM = NEON3SameFixed | 0x0080C000,
> - NEON_FMINP = NEON3SameFixed | 0x2080F000,
> - NEON_FMINNMP = NEON3SameFixed | 0x2080C000,
> - NEON_FMLA = NEON3SameFixed | 0x0000C800,
> - NEON_FMLS = NEON3SameFixed | 0x0080C800,
> - NEON_FMULX = NEON3SameFixed | 0x0000D800,
> - NEON_FRECPS = NEON3SameFixed | 0x0000F800,
> - NEON_FRSQRTS = NEON3SameFixed | 0x0080F800,
> - NEON_FABD = NEON3SameFixed | 0x2080D000,
> - NEON_FADDP = NEON3SameFixed | 0x2000D000,
> - NEON_FCMEQ = NEON3SameFixed | 0x0000E000,
> - NEON_FCMGE = NEON3SameFixed | 0x2000E000,
> - NEON_FCMGT = NEON3SameFixed | 0x2080E000,
> - NEON_FACGE = NEON3SameFixed | 0x2000E800,
> - NEON_FACGT = NEON3SameFixed | 0x2080E800,
> -
> - // NEON logical instructions with three same-type operands.
> - NEON3SameLogicalFixed = NEON3SameFixed | 0x00001800,
> - NEON3SameLogicalFMask = NEON3SameFMask | 0x0000F800,
> - NEON3SameLogicalMask = 0xBFE0FC00,
> - NEON3SameLogicalFormatMask = NEON_Q,
> - NEON_AND = NEON3SameLogicalFixed | 0x00000000,
> - NEON_ORR = NEON3SameLogicalFixed | 0x00A00000,
> - NEON_ORN = NEON3SameLogicalFixed | 0x00C00000,
> - NEON_EOR = NEON3SameLogicalFixed | 0x20000000,
> - NEON_BIC = NEON3SameLogicalFixed | 0x00400000,
> - NEON_BIF = NEON3SameLogicalFixed | 0x20C00000,
> - NEON_BIT = NEON3SameLogicalFixed | 0x20800000,
> - NEON_BSL = NEON3SameLogicalFixed | 0x20400000
> -};
> -
> -// NEON instructions with three different-type operands.
> -enum NEON3DifferentOp {
> - NEON3DifferentFixed = 0x0E200000,
> - NEON3DifferentFMask = 0x9F200C00,
> - NEON3DifferentMask = 0xFF20FC00,
> - NEON_ADDHN = NEON3DifferentFixed | 0x00004000,
> - NEON_ADDHN2 = NEON_ADDHN | NEON_Q,
> - NEON_PMULL = NEON3DifferentFixed | 0x0000E000,
> - NEON_PMULL2 = NEON_PMULL | NEON_Q,
> - NEON_RADDHN = NEON3DifferentFixed | 0x20004000,
> - NEON_RADDHN2 = NEON_RADDHN | NEON_Q,
> - NEON_RSUBHN = NEON3DifferentFixed | 0x20006000,
> - NEON_RSUBHN2 = NEON_RSUBHN | NEON_Q,
> - NEON_SABAL = NEON3DifferentFixed | 0x00005000,
> - NEON_SABAL2 = NEON_SABAL | NEON_Q,
> - NEON_SABDL = NEON3DifferentFixed | 0x00007000,
> - NEON_SABDL2 = NEON_SABDL | NEON_Q,
> - NEON_SADDL = NEON3DifferentFixed | 0x00000000,
> - NEON_SADDL2 = NEON_SADDL | NEON_Q,
> - NEON_SADDW = NEON3DifferentFixed | 0x00001000,
> - NEON_SADDW2 = NEON_SADDW | NEON_Q,
> - NEON_SMLAL = NEON3DifferentFixed | 0x00008000,
> - NEON_SMLAL2 = NEON_SMLAL | NEON_Q,
> - NEON_SMLSL = NEON3DifferentFixed | 0x0000A000,
> - NEON_SMLSL2 = NEON_SMLSL | NEON_Q,
> - NEON_SMULL = NEON3DifferentFixed | 0x0000C000,
> - NEON_SMULL2 = NEON_SMULL | NEON_Q,
> - NEON_SSUBL = NEON3DifferentFixed | 0x00002000,
> - NEON_SSUBL2 = NEON_SSUBL | NEON_Q,
> - NEON_SSUBW = NEON3DifferentFixed | 0x00003000,
> - NEON_SSUBW2 = NEON_SSUBW | NEON_Q,
> - NEON_SQDMLAL = NEON3DifferentFixed | 0x00009000,
> - NEON_SQDMLAL2 = NEON_SQDMLAL | NEON_Q,
> - NEON_SQDMLSL = NEON3DifferentFixed | 0x0000B000,
> - NEON_SQDMLSL2 = NEON_SQDMLSL | NEON_Q,
> - NEON_SQDMULL = NEON3DifferentFixed | 0x0000D000,
> - NEON_SQDMULL2 = NEON_SQDMULL | NEON_Q,
> - NEON_SUBHN = NEON3DifferentFixed | 0x00006000,
> - NEON_SUBHN2 = NEON_SUBHN | NEON_Q,
> - NEON_UABAL = NEON_SABAL | NEON3SameUBit,
> - NEON_UABAL2 = NEON_UABAL | NEON_Q,
> - NEON_UABDL = NEON_SABDL | NEON3SameUBit,
> - NEON_UABDL2 = NEON_UABDL | NEON_Q,
> - NEON_UADDL = NEON_SADDL | NEON3SameUBit,
> - NEON_UADDL2 = NEON_UADDL | NEON_Q,
> - NEON_UADDW = NEON_SADDW | NEON3SameUBit,
> - NEON_UADDW2 = NEON_UADDW | NEON_Q,
> - NEON_UMLAL = NEON_SMLAL | NEON3SameUBit,
> - NEON_UMLAL2 = NEON_UMLAL | NEON_Q,
> - NEON_UMLSL = NEON_SMLSL | NEON3SameUBit,
> - NEON_UMLSL2 = NEON_UMLSL | NEON_Q,
> - NEON_UMULL = NEON_SMULL | NEON3SameUBit,
> - NEON_UMULL2 = NEON_UMULL | NEON_Q,
> - NEON_USUBL = NEON_SSUBL | NEON3SameUBit,
> - NEON_USUBL2 = NEON_USUBL | NEON_Q,
> - NEON_USUBW = NEON_SSUBW | NEON3SameUBit,
> - NEON_USUBW2 = NEON_USUBW | NEON_Q
> -};
> -
> -// NEON instructions operating across vectors.
> -enum NEONAcrossLanesOp {
> - NEONAcrossLanesFixed = 0x0E300800,
> - NEONAcrossLanesFMask = 0x9F3E0C00,
> - NEONAcrossLanesMask = 0xBF3FFC00,
> - NEON_ADDV = NEONAcrossLanesFixed | 0x0001B000,
> - NEON_SADDLV = NEONAcrossLanesFixed | 0x00003000,
> - NEON_UADDLV = NEONAcrossLanesFixed | 0x20003000,
> - NEON_SMAXV = NEONAcrossLanesFixed | 0x0000A000,
> - NEON_SMINV = NEONAcrossLanesFixed | 0x0001A000,
> - NEON_UMAXV = NEONAcrossLanesFixed | 0x2000A000,
> - NEON_UMINV = NEONAcrossLanesFixed | 0x2001A000,
> -
> - // NEON floating point across instructions.
> - NEONAcrossLanesFPFixed = NEONAcrossLanesFixed | 0x0000C000,
> - NEONAcrossLanesFPFMask = NEONAcrossLanesFMask | 0x0000C000,
> - NEONAcrossLanesFPMask = NEONAcrossLanesMask | 0x00800000,
> -
> - NEON_FMAXV = NEONAcrossLanesFPFixed | 0x2000F000,
> - NEON_FMINV = NEONAcrossLanesFPFixed | 0x2080F000,
> - NEON_FMAXNMV = NEONAcrossLanesFPFixed | 0x2000C000,
> - NEON_FMINNMV = NEONAcrossLanesFPFixed | 0x2080C000
> -};
> -
> -// NEON instructions with indexed element operand.
> -enum NEONByIndexedElementOp {
> - NEONByIndexedElementFixed = 0x0F000000,
> - NEONByIndexedElementFMask = 0x9F000400,
> - NEONByIndexedElementMask = 0xBF00F400,
> - NEON_MUL_byelement = NEONByIndexedElementFixed | 0x00008000,
> - NEON_MLA_byelement = NEONByIndexedElementFixed | 0x20000000,
> - NEON_MLS_byelement = NEONByIndexedElementFixed | 0x20004000,
> - NEON_SMULL_byelement = NEONByIndexedElementFixed | 0x0000A000,
> - NEON_SMLAL_byelement = NEONByIndexedElementFixed | 0x00002000,
> - NEON_SMLSL_byelement = NEONByIndexedElementFixed | 0x00006000,
> - NEON_UMULL_byelement = NEONByIndexedElementFixed | 0x2000A000,
> - NEON_UMLAL_byelement = NEONByIndexedElementFixed | 0x20002000,
> - NEON_UMLSL_byelement = NEONByIndexedElementFixed | 0x20006000,
> - NEON_SQDMULL_byelement = NEONByIndexedElementFixed | 0x0000B000,
> - NEON_SQDMLAL_byelement = NEONByIndexedElementFixed | 0x00003000,
> - NEON_SQDMLSL_byelement = NEONByIndexedElementFixed | 0x00007000,
> - NEON_SQDMULH_byelement = NEONByIndexedElementFixed | 0x0000C000,
> - NEON_SQRDMULH_byelement = NEONByIndexedElementFixed | 0x0000D000,
> -
> - // Floating point instructions.
> - NEONByIndexedElementFPFixed = NEONByIndexedElementFixed | 0x00800000,
> - NEONByIndexedElementFPMask = NEONByIndexedElementMask | 0x00800000,
> - NEON_FMLA_byelement = NEONByIndexedElementFPFixed | 0x00001000,
> - NEON_FMLS_byelement = NEONByIndexedElementFPFixed | 0x00005000,
> - NEON_FMUL_byelement = NEONByIndexedElementFPFixed | 0x00009000,
> - NEON_FMULX_byelement = NEONByIndexedElementFPFixed | 0x20009000
> -};
> -
> -// NEON register copy.
> -enum NEONCopyOp {
> - NEONCopyFixed = 0x0E000400,
> - NEONCopyFMask = 0x9FE08400,
> - NEONCopyMask = 0x3FE08400,
> - NEONCopyInsElementMask = NEONCopyMask | 0x40000000,
> - NEONCopyInsGeneralMask = NEONCopyMask | 0x40007800,
> - NEONCopyDupElementMask = NEONCopyMask | 0x20007800,
> - NEONCopyDupGeneralMask = NEONCopyDupElementMask,
> - NEONCopyUmovMask = NEONCopyMask | 0x20007800,
> - NEONCopySmovMask = NEONCopyMask | 0x20007800,
> - NEON_INS_ELEMENT = NEONCopyFixed | 0x60000000,
> - NEON_INS_GENERAL = NEONCopyFixed | 0x40001800,
> - NEON_DUP_ELEMENT = NEONCopyFixed | 0x00000000,
> - NEON_DUP_GENERAL = NEONCopyFixed | 0x00000800,
> - NEON_SMOV = NEONCopyFixed | 0x00002800,
> - NEON_UMOV = NEONCopyFixed | 0x00003800
> -};
> -
> -// NEON extract.
> -enum NEONExtractOp {
> - NEONExtractFixed = 0x2E000000,
> - NEONExtractFMask = 0xBF208400,
> - NEONExtractMask = 0xBFE08400,
> - NEON_EXT = NEONExtractFixed | 0x00000000
> -};
> -
> -enum NEONLoadStoreMultiOp {
> - NEONLoadStoreMultiL = 0x00400000,
> - NEONLoadStoreMulti1_1v = 0x00007000,
> - NEONLoadStoreMulti1_2v = 0x0000A000,
> - NEONLoadStoreMulti1_3v = 0x00006000,
> - NEONLoadStoreMulti1_4v = 0x00002000,
> - NEONLoadStoreMulti2 = 0x00008000,
> - NEONLoadStoreMulti3 = 0x00004000,
> - NEONLoadStoreMulti4 = 0x00000000
> -};
> -
> -// NEON load/store multiple structures.
> -enum NEONLoadStoreMultiStructOp {
> - NEONLoadStoreMultiStructFixed = 0x0C000000,
> - NEONLoadStoreMultiStructFMask = 0xBFBF0000,
> - NEONLoadStoreMultiStructMask = 0xBFFFF000,
> - NEONLoadStoreMultiStructStore = NEONLoadStoreMultiStructFixed,
> - NEONLoadStoreMultiStructLoad = NEONLoadStoreMultiStructFixed |
> - NEONLoadStoreMultiL,
> - NEON_LD1_1v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_1v,
> - NEON_LD1_2v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_2v,
> - NEON_LD1_3v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_3v,
> - NEON_LD1_4v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_4v,
> - NEON_LD2 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti2,
> - NEON_LD3 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti3,
> - NEON_LD4 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti4,
> - NEON_ST1_1v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_1v,
> - NEON_ST1_2v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_2v,
> - NEON_ST1_3v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_3v,
> - NEON_ST1_4v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_4v,
> - NEON_ST2 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti2,
> - NEON_ST3 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti3,
> - NEON_ST4 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti4
> -};
> -
> -// NEON load/store multiple structures with post-index addressing.
> -enum NEONLoadStoreMultiStructPostIndexOp {
> - NEONLoadStoreMultiStructPostIndexFixed = 0x0C800000,
> - NEONLoadStoreMultiStructPostIndexFMask = 0xBFA00000,
> - NEONLoadStoreMultiStructPostIndexMask = 0xBFE0F000,
> - NEONLoadStoreMultiStructPostIndex = 0x00800000,
> - NEON_LD1_1v_post = NEON_LD1_1v | NEONLoadStoreMultiStructPostIndex,
> - NEON_LD1_2v_post = NEON_LD1_2v | NEONLoadStoreMultiStructPostIndex,
> - NEON_LD1_3v_post = NEON_LD1_3v | NEONLoadStoreMultiStructPostIndex,
> - NEON_LD1_4v_post = NEON_LD1_4v | NEONLoadStoreMultiStructPostIndex,
> - NEON_LD2_post = NEON_LD2 | NEONLoadStoreMultiStructPostIndex,
> - NEON_LD3_post = NEON_LD3 | NEONLoadStoreMultiStructPostIndex,
> - NEON_LD4_post = NEON_LD4 | NEONLoadStoreMultiStructPostIndex,
> - NEON_ST1_1v_post = NEON_ST1_1v | NEONLoadStoreMultiStructPostIndex,
> - NEON_ST1_2v_post = NEON_ST1_2v | NEONLoadStoreMultiStructPostIndex,
> - NEON_ST1_3v_post = NEON_ST1_3v | NEONLoadStoreMultiStructPostIndex,
> - NEON_ST1_4v_post = NEON_ST1_4v | NEONLoadStoreMultiStructPostIndex,
> - NEON_ST2_post = NEON_ST2 | NEONLoadStoreMultiStructPostIndex,
> - NEON_ST3_post = NEON_ST3 | NEONLoadStoreMultiStructPostIndex,
> - NEON_ST4_post = NEON_ST4 | NEONLoadStoreMultiStructPostIndex
> -};
> -
> -enum NEONLoadStoreSingleOp {
> - NEONLoadStoreSingle1 = 0x00000000,
> - NEONLoadStoreSingle2 = 0x00200000,
> - NEONLoadStoreSingle3 = 0x00002000,
> - NEONLoadStoreSingle4 = 0x00202000,
> - NEONLoadStoreSingleL = 0x00400000,
> - NEONLoadStoreSingle_b = 0x00000000,
> - NEONLoadStoreSingle_h = 0x00004000,
> - NEONLoadStoreSingle_s = 0x00008000,
> - NEONLoadStoreSingle_d = 0x00008400,
> - NEONLoadStoreSingleAllLanes = 0x0000C000,
> - NEONLoadStoreSingleLenMask = 0x00202000
> -};
> -
> -// NEON load/store single structure.
> -enum NEONLoadStoreSingleStructOp {
> - NEONLoadStoreSingleStructFixed = 0x0D000000,
> - NEONLoadStoreSingleStructFMask = 0xBF9F0000,
> - NEONLoadStoreSingleStructMask = 0xBFFFE000,
> - NEONLoadStoreSingleStructStore = NEONLoadStoreSingleStructFixed,
> - NEONLoadStoreSingleStructLoad = NEONLoadStoreSingleStructFixed |
> - NEONLoadStoreSingleL,
> - NEONLoadStoreSingleStructLoad1 = NEONLoadStoreSingle1 |
> - NEONLoadStoreSingleStructLoad,
> - NEONLoadStoreSingleStructLoad2 = NEONLoadStoreSingle2 |
> - NEONLoadStoreSingleStructLoad,
> - NEONLoadStoreSingleStructLoad3 = NEONLoadStoreSingle3 |
> - NEONLoadStoreSingleStructLoad,
> - NEONLoadStoreSingleStructLoad4 = NEONLoadStoreSingle4 |
> - NEONLoadStoreSingleStructLoad,
> - NEONLoadStoreSingleStructStore1 = NEONLoadStoreSingle1 |
> - NEONLoadStoreSingleStructFixed,
> - NEONLoadStoreSingleStructStore2 = NEONLoadStoreSingle2 |
> - NEONLoadStoreSingleStructFixed,
> - NEONLoadStoreSingleStructStore3 = NEONLoadStoreSingle3 |
> - NEONLoadStoreSingleStructFixed,
> - NEONLoadStoreSingleStructStore4 = NEONLoadStoreSingle4 |
> - NEONLoadStoreSingleStructFixed,
> - NEON_LD1_b = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_b,
> - NEON_LD1_h = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_h,
> - NEON_LD1_s = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_s,
> - NEON_LD1_d = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_d,
> - NEON_LD1R = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingleAllLanes,
> - NEON_ST1_b = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_b,
> - NEON_ST1_h = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_h,
> - NEON_ST1_s = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_s,
> - NEON_ST1_d = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_d,
> -
> - NEON_LD2_b = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_b,
> - NEON_LD2_h = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_h,
> - NEON_LD2_s = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_s,
> - NEON_LD2_d = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_d,
> - NEON_LD2R = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingleAllLanes,
> - NEON_ST2_b = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_b,
> - NEON_ST2_h = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_h,
> - NEON_ST2_s = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_s,
> - NEON_ST2_d = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_d,
> -
> - NEON_LD3_b = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_b,
> - NEON_LD3_h = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_h,
> - NEON_LD3_s = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_s,
> - NEON_LD3_d = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_d,
> - NEON_LD3R = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingleAllLanes,
> - NEON_ST3_b = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_b,
> - NEON_ST3_h = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_h,
> - NEON_ST3_s = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_s,
> - NEON_ST3_d = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_d,
> -
> - NEON_LD4_b = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_b,
> - NEON_LD4_h = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_h,
> - NEON_LD4_s = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_s,
> - NEON_LD4_d = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_d,
> - NEON_LD4R = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingleAllLanes,
> - NEON_ST4_b = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_b,
> - NEON_ST4_h = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_h,
> - NEON_ST4_s = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_s,
> - NEON_ST4_d = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_d
> -};
> -
> -// NEON load/store single structure with post-index addressing.
> -enum NEONLoadStoreSingleStructPostIndexOp {
> - NEONLoadStoreSingleStructPostIndexFixed = 0x0D800000,
> - NEONLoadStoreSingleStructPostIndexFMask = 0xBF800000,
> - NEONLoadStoreSingleStructPostIndexMask = 0xBFE0E000,
> - NEONLoadStoreSingleStructPostIndex = 0x00800000,
> - NEON_LD1_b_post = NEON_LD1_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD1_h_post = NEON_LD1_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD1_s_post = NEON_LD1_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD1_d_post = NEON_LD1_d | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD1R_post = NEON_LD1R | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST1_b_post = NEON_ST1_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST1_h_post = NEON_ST1_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST1_s_post = NEON_ST1_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST1_d_post = NEON_ST1_d | NEONLoadStoreSingleStructPostIndex,
> -
> - NEON_LD2_b_post = NEON_LD2_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD2_h_post = NEON_LD2_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD2_s_post = NEON_LD2_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD2_d_post = NEON_LD2_d | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD2R_post = NEON_LD2R | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST2_b_post = NEON_ST2_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST2_h_post = NEON_ST2_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST2_s_post = NEON_ST2_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST2_d_post = NEON_ST2_d | NEONLoadStoreSingleStructPostIndex,
> -
> - NEON_LD3_b_post = NEON_LD3_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD3_h_post = NEON_LD3_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD3_s_post = NEON_LD3_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD3_d_post = NEON_LD3_d | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD3R_post = NEON_LD3R | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST3_b_post = NEON_ST3_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST3_h_post = NEON_ST3_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST3_s_post = NEON_ST3_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST3_d_post = NEON_ST3_d | NEONLoadStoreSingleStructPostIndex,
> -
> - NEON_LD4_b_post = NEON_LD4_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD4_h_post = NEON_LD4_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD4_s_post = NEON_LD4_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD4_d_post = NEON_LD4_d | NEONLoadStoreSingleStructPostIndex,
> - NEON_LD4R_post = NEON_LD4R | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST4_b_post = NEON_ST4_b | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST4_h_post = NEON_ST4_h | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST4_s_post = NEON_ST4_s | NEONLoadStoreSingleStructPostIndex,
> - NEON_ST4_d_post = NEON_ST4_d | NEONLoadStoreSingleStructPostIndex
> -};
> -
> -// NEON modified immediate.
> -enum NEONModifiedImmediateOp {
> - NEONModifiedImmediateFixed = 0x0F000400,
> - NEONModifiedImmediateFMask = 0x9FF80400,
> - NEONModifiedImmediateOpBit = 0x20000000,
> - NEONModifiedImmediate_MOVI = NEONModifiedImmediateFixed | 0x00000000,
> - NEONModifiedImmediate_MVNI = NEONModifiedImmediateFixed | 0x20000000,
> - NEONModifiedImmediate_ORR = NEONModifiedImmediateFixed | 0x00001000,
> - NEONModifiedImmediate_BIC = NEONModifiedImmediateFixed | 0x20001000
> -};
> -
> -// NEON shift immediate.
> -enum NEONShiftImmediateOp {
> - NEONShiftImmediateFixed = 0x0F000400,
> - NEONShiftImmediateFMask = 0x9F800400,
> - NEONShiftImmediateMask = 0xBF80FC00,
> - NEONShiftImmediateUBit = 0x20000000,
> - NEON_SHL = NEONShiftImmediateFixed | 0x00005000,
> - NEON_SSHLL = NEONShiftImmediateFixed | 0x0000A000,
> - NEON_USHLL = NEONShiftImmediateFixed | 0x2000A000,
> - NEON_SLI = NEONShiftImmediateFixed | 0x20005000,
> - NEON_SRI = NEONShiftImmediateFixed | 0x20004000,
> - NEON_SHRN = NEONShiftImmediateFixed | 0x00008000,
> - NEON_RSHRN = NEONShiftImmediateFixed | 0x00008800,
> - NEON_UQSHRN = NEONShiftImmediateFixed | 0x20009000,
> - NEON_UQRSHRN = NEONShiftImmediateFixed | 0x20009800,
> - NEON_SQSHRN = NEONShiftImmediateFixed | 0x00009000,
> - NEON_SQRSHRN = NEONShiftImmediateFixed | 0x00009800,
> - NEON_SQSHRUN = NEONShiftImmediateFixed | 0x20008000,
> - NEON_SQRSHRUN = NEONShiftImmediateFixed | 0x20008800,
> - NEON_SSHR = NEONShiftImmediateFixed | 0x00000000,
> - NEON_SRSHR = NEONShiftImmediateFixed | 0x00002000,
> - NEON_USHR = NEONShiftImmediateFixed | 0x20000000,
> - NEON_URSHR = NEONShiftImmediateFixed | 0x20002000,
> - NEON_SSRA = NEONShiftImmediateFixed | 0x00001000,
> - NEON_SRSRA = NEONShiftImmediateFixed | 0x00003000,
> - NEON_USRA = NEONShiftImmediateFixed | 0x20001000,
> - NEON_URSRA = NEONShiftImmediateFixed | 0x20003000,
> - NEON_SQSHLU = NEONShiftImmediateFixed | 0x20006000,
> - NEON_SCVTF_imm = NEONShiftImmediateFixed | 0x0000E000,
> - NEON_UCVTF_imm = NEONShiftImmediateFixed | 0x2000E000,
> - NEON_FCVTZS_imm = NEONShiftImmediateFixed | 0x0000F800,
> - NEON_FCVTZU_imm = NEONShiftImmediateFixed | 0x2000F800,
> - NEON_SQSHL_imm = NEONShiftImmediateFixed | 0x00007000,
> - NEON_UQSHL_imm = NEONShiftImmediateFixed | 0x20007000
> -};
> -
> -// NEON table.
> -enum NEONTableOp {
> - NEONTableFixed = 0x0E000000,
> - NEONTableFMask = 0xBF208C00,
> - NEONTableExt = 0x00001000,
> - NEONTableMask = 0xBF20FC00,
> - NEON_TBL_1v = NEONTableFixed | 0x00000000,
> - NEON_TBL_2v = NEONTableFixed | 0x00002000,
> - NEON_TBL_3v = NEONTableFixed | 0x00004000,
> - NEON_TBL_4v = NEONTableFixed | 0x00006000,
> - NEON_TBX_1v = NEON_TBL_1v | NEONTableExt,
> - NEON_TBX_2v = NEON_TBL_2v | NEONTableExt,
> - NEON_TBX_3v = NEON_TBL_3v | NEONTableExt,
> - NEON_TBX_4v = NEON_TBL_4v | NEONTableExt
> -};
> -
> -// NEON perm.
> -enum NEONPermOp {
> - NEONPermFixed = 0x0E000800,
> - NEONPermFMask = 0xBF208C00,
> - NEONPermMask = 0x3F20FC00,
> - NEON_UZP1 = NEONPermFixed | 0x00001000,
> - NEON_TRN1 = NEONPermFixed | 0x00002000,
> - NEON_ZIP1 = NEONPermFixed | 0x00003000,
> - NEON_UZP2 = NEONPermFixed | 0x00005000,
> - NEON_TRN2 = NEONPermFixed | 0x00006000,
> - NEON_ZIP2 = NEONPermFixed | 0x00007000
> -};
> -
> -// NEON scalar instructions with two register operands.
> -enum NEONScalar2RegMiscOp {
> - NEONScalar2RegMiscFixed = 0x5E200800,
> - NEONScalar2RegMiscFMask = 0xDF3E0C00,
> - NEONScalar2RegMiscMask = NEON_Q | NEONScalar | NEON2RegMiscMask,
> - NEON_CMGT_zero_scalar = NEON_Q | NEONScalar | NEON_CMGT_zero,
> - NEON_CMEQ_zero_scalar = NEON_Q | NEONScalar | NEON_CMEQ_zero,
> - NEON_CMLT_zero_scalar = NEON_Q | NEONScalar | NEON_CMLT_zero,
> - NEON_CMGE_zero_scalar = NEON_Q | NEONScalar | NEON_CMGE_zero,
> - NEON_CMLE_zero_scalar = NEON_Q | NEONScalar | NEON_CMLE_zero,
> - NEON_ABS_scalar = NEON_Q | NEONScalar | NEON_ABS,
> - NEON_SQABS_scalar = NEON_Q | NEONScalar | NEON_SQABS,
> - NEON_NEG_scalar = NEON_Q | NEONScalar | NEON_NEG,
> - NEON_SQNEG_scalar = NEON_Q | NEONScalar | NEON_SQNEG,
> - NEON_SQXTN_scalar = NEON_Q | NEONScalar | NEON_SQXTN,
> - NEON_UQXTN_scalar = NEON_Q | NEONScalar | NEON_UQXTN,
> - NEON_SQXTUN_scalar = NEON_Q | NEONScalar | NEON_SQXTUN,
> - NEON_SUQADD_scalar = NEON_Q | NEONScalar | NEON_SUQADD,
> - NEON_USQADD_scalar = NEON_Q | NEONScalar | NEON_USQADD,
> -
> - NEONScalar2RegMiscOpcode = NEON2RegMiscOpcode,
> - NEON_NEG_scalar_opcode = NEON_NEG_scalar & NEONScalar2RegMiscOpcode,
> -
> - NEONScalar2RegMiscFPMask = NEONScalar2RegMiscMask | 0x00800000,
> - NEON_FRSQRTE_scalar = NEON_Q | NEONScalar | NEON_FRSQRTE,
> - NEON_FRECPE_scalar = NEON_Q | NEONScalar | NEON_FRECPE,
> - NEON_SCVTF_scalar = NEON_Q | NEONScalar | NEON_SCVTF,
> - NEON_UCVTF_scalar = NEON_Q | NEONScalar | NEON_UCVTF,
> - NEON_FCMGT_zero_scalar = NEON_Q | NEONScalar | NEON_FCMGT_zero,
> - NEON_FCMEQ_zero_scalar = NEON_Q | NEONScalar | NEON_FCMEQ_zero,
> - NEON_FCMLT_zero_scalar = NEON_Q | NEONScalar | NEON_FCMLT_zero,
> - NEON_FCMGE_zero_scalar = NEON_Q | NEONScalar | NEON_FCMGE_zero,
> - NEON_FCMLE_zero_scalar = NEON_Q | NEONScalar | NEON_FCMLE_zero,
> - NEON_FRECPX_scalar = NEONScalar2RegMiscFixed | 0x0081F000,
> - NEON_FCVTNS_scalar = NEON_Q | NEONScalar | NEON_FCVTNS,
> - NEON_FCVTNU_scalar = NEON_Q | NEONScalar | NEON_FCVTNU,
> - NEON_FCVTPS_scalar = NEON_Q | NEONScalar | NEON_FCVTPS,
> - NEON_FCVTPU_scalar = NEON_Q | NEONScalar | NEON_FCVTPU,
> - NEON_FCVTMS_scalar = NEON_Q | NEONScalar | NEON_FCVTMS,
> - NEON_FCVTMU_scalar = NEON_Q | NEONScalar | NEON_FCVTMU,
> - NEON_FCVTZS_scalar = NEON_Q | NEONScalar | NEON_FCVTZS,
> - NEON_FCVTZU_scalar = NEON_Q | NEONScalar | NEON_FCVTZU,
> - NEON_FCVTAS_scalar = NEON_Q | NEONScalar | NEON_FCVTAS,
> - NEON_FCVTAU_scalar = NEON_Q | NEONScalar | NEON_FCVTAU,
> - NEON_FCVTXN_scalar = NEON_Q | NEONScalar | NEON_FCVTXN
> -};
> -
> -// NEON scalar instructions with three same-type operands.
> -enum NEONScalar3SameOp {
> - NEONScalar3SameFixed = 0x5E200400,
> - NEONScalar3SameFMask = 0xDF200400,
> - NEONScalar3SameMask = 0xFF20FC00,
> - NEON_ADD_scalar = NEON_Q | NEONScalar | NEON_ADD,
> - NEON_CMEQ_scalar = NEON_Q | NEONScalar | NEON_CMEQ,
> - NEON_CMGE_scalar = NEON_Q | NEONScalar | NEON_CMGE,
> - NEON_CMGT_scalar = NEON_Q | NEONScalar | NEON_CMGT,
> - NEON_CMHI_scalar = NEON_Q | NEONScalar | NEON_CMHI,
> - NEON_CMHS_scalar = NEON_Q | NEONScalar | NEON_CMHS,
> - NEON_CMTST_scalar = NEON_Q | NEONScalar | NEON_CMTST,
> - NEON_SUB_scalar = NEON_Q | NEONScalar | NEON_SUB,
> - NEON_UQADD_scalar = NEON_Q | NEONScalar | NEON_UQADD,
> - NEON_SQADD_scalar = NEON_Q | NEONScalar | NEON_SQADD,
> - NEON_UQSUB_scalar = NEON_Q | NEONScalar | NEON_UQSUB,
> - NEON_SQSUB_scalar = NEON_Q | NEONScalar | NEON_SQSUB,
> - NEON_USHL_scalar = NEON_Q | NEONScalar | NEON_USHL,
> - NEON_SSHL_scalar = NEON_Q | NEONScalar | NEON_SSHL,
> - NEON_UQSHL_scalar = NEON_Q | NEONScalar | NEON_UQSHL,
> - NEON_SQSHL_scalar = NEON_Q | NEONScalar | NEON_SQSHL,
> - NEON_URSHL_scalar = NEON_Q | NEONScalar | NEON_URSHL,
> - NEON_SRSHL_scalar = NEON_Q | NEONScalar | NEON_SRSHL,
> - NEON_UQRSHL_scalar = NEON_Q | NEONScalar | NEON_UQRSHL,
> - NEON_SQRSHL_scalar = NEON_Q | NEONScalar | NEON_SQRSHL,
> - NEON_SQDMULH_scalar = NEON_Q | NEONScalar | NEON_SQDMULH,
> - NEON_SQRDMULH_scalar = NEON_Q | NEONScalar | NEON_SQRDMULH,
> -
> - // NEON floating point scalar instructions with three same-type operands.
> - NEONScalar3SameFPFixed = NEONScalar3SameFixed | 0x0000C000,
> - NEONScalar3SameFPFMask = NEONScalar3SameFMask | 0x0000C000,
> - NEONScalar3SameFPMask = NEONScalar3SameMask | 0x00800000,
> - NEON_FACGE_scalar = NEON_Q | NEONScalar | NEON_FACGE,
> - NEON_FACGT_scalar = NEON_Q | NEONScalar | NEON_FACGT,
> - NEON_FCMEQ_scalar = NEON_Q | NEONScalar | NEON_FCMEQ,
> - NEON_FCMGE_scalar = NEON_Q | NEONScalar | NEON_FCMGE,
> - NEON_FCMGT_scalar = NEON_Q | NEONScalar | NEON_FCMGT,
> - NEON_FMULX_scalar = NEON_Q | NEONScalar | NEON_FMULX,
> - NEON_FRECPS_scalar = NEON_Q | NEONScalar | NEON_FRECPS,
> - NEON_FRSQRTS_scalar = NEON_Q | NEONScalar | NEON_FRSQRTS,
> - NEON_FABD_scalar = NEON_Q | NEONScalar | NEON_FABD
> -};
> -
> -// NEON scalar instructions with three different-type operands.
> -enum NEONScalar3DiffOp {
> - NEONScalar3DiffFixed = 0x5E200000,
> - NEONScalar3DiffFMask = 0xDF200C00,
> - NEONScalar3DiffMask = NEON_Q | NEONScalar | NEON3DifferentMask,
> - NEON_SQDMLAL_scalar = NEON_Q | NEONScalar | NEON_SQDMLAL,
> - NEON_SQDMLSL_scalar = NEON_Q | NEONScalar | NEON_SQDMLSL,
> - NEON_SQDMULL_scalar = NEON_Q | NEONScalar | NEON_SQDMULL
> -};
> -
> -// NEON scalar instructions with indexed element operand.
> -enum NEONScalarByIndexedElementOp {
> - NEONScalarByIndexedElementFixed = 0x5F000000,
> - NEONScalarByIndexedElementFMask = 0xDF000400,
> - NEONScalarByIndexedElementMask = 0xFF00F400,
> - NEON_SQDMLAL_byelement_scalar = NEON_Q | NEONScalar |
> NEON_SQDMLAL_byelement,
> - NEON_SQDMLSL_byelement_scalar = NEON_Q | NEONScalar |
> NEON_SQDMLSL_byelement,
> - NEON_SQDMULL_byelement_scalar = NEON_Q | NEONScalar |
> NEON_SQDMULL_byelement,
> - NEON_SQDMULH_byelement_scalar = NEON_Q | NEONScalar |
> NEON_SQDMULH_byelement,
> - NEON_SQRDMULH_byelement_scalar
> - = NEON_Q | NEONScalar | NEON_SQRDMULH_byelement,
> -
> - // Floating point instructions.
> - NEONScalarByIndexedElementFPFixed
> - = NEONScalarByIndexedElementFixed | 0x00800000,
> - NEONScalarByIndexedElementFPMask
> - = NEONScalarByIndexedElementMask | 0x00800000,
> - NEON_FMLA_byelement_scalar = NEON_Q | NEONScalar | NEON_FMLA_byelement,
> - NEON_FMLS_byelement_scalar = NEON_Q | NEONScalar | NEON_FMLS_byelement,
> - NEON_FMUL_byelement_scalar = NEON_Q | NEONScalar | NEON_FMUL_byelement,
> - NEON_FMULX_byelement_scalar = NEON_Q | NEONScalar | NEON_FMULX_byelement
> -};
> -
> -// NEON scalar register copy.
> -enum NEONScalarCopyOp {
> - NEONScalarCopyFixed = 0x5E000400,
> - NEONScalarCopyFMask = 0xDFE08400,
> - NEONScalarCopyMask = 0xFFE0FC00,
> - NEON_DUP_ELEMENT_scalar = NEON_Q | NEONScalar | NEON_DUP_ELEMENT
> -};
> -
> -// NEON scalar pairwise instructions.
> -enum NEONScalarPairwiseOp {
> - NEONScalarPairwiseFixed = 0x5E300800,
> - NEONScalarPairwiseFMask = 0xDF3E0C00,
> - NEONScalarPairwiseMask = 0xFFB1F800,
> - NEON_ADDP_scalar = NEONScalarPairwiseFixed | 0x0081B000,
> - NEON_FMAXNMP_scalar = NEONScalarPairwiseFixed | 0x2000C000,
> - NEON_FMINNMP_scalar = NEONScalarPairwiseFixed | 0x2080C000,
> - NEON_FADDP_scalar = NEONScalarPairwiseFixed | 0x2000D000,
> - NEON_FMAXP_scalar = NEONScalarPairwiseFixed | 0x2000F000,
> - NEON_FMINP_scalar = NEONScalarPairwiseFixed | 0x2080F000
> -};
> -
> -// NEON scalar shift immediate.
> -enum NEONScalarShiftImmediateOp {
> - NEONScalarShiftImmediateFixed = 0x5F000400,
> - NEONScalarShiftImmediateFMask = 0xDF800400,
> - NEONScalarShiftImmediateMask = 0xFF80FC00,
> - NEON_SHL_scalar = NEON_Q | NEONScalar | NEON_SHL,
> - NEON_SLI_scalar = NEON_Q | NEONScalar | NEON_SLI,
> - NEON_SRI_scalar = NEON_Q | NEONScalar | NEON_SRI,
> - NEON_SSHR_scalar = NEON_Q | NEONScalar | NEON_SSHR,
> - NEON_USHR_scalar = NEON_Q | NEONScalar | NEON_USHR,
> - NEON_SRSHR_scalar = NEON_Q | NEONScalar | NEON_SRSHR,
> - NEON_URSHR_scalar = NEON_Q | NEONScalar | NEON_URSHR,
> - NEON_SSRA_scalar = NEON_Q | NEONScalar | NEON_SSRA,
> - NEON_USRA_scalar = NEON_Q | NEONScalar | NEON_USRA,
> - NEON_SRSRA_scalar = NEON_Q | NEONScalar | NEON_SRSRA,
> - NEON_URSRA_scalar = NEON_Q | NEONScalar | NEON_URSRA,
> - NEON_UQSHRN_scalar = NEON_Q | NEONScalar | NEON_UQSHRN,
> - NEON_UQRSHRN_scalar = NEON_Q | NEONScalar | NEON_UQRSHRN,
> - NEON_SQSHRN_scalar = NEON_Q | NEONScalar | NEON_SQSHRN,
> - NEON_SQRSHRN_scalar = NEON_Q | NEONScalar | NEON_SQRSHRN,
> - NEON_SQSHRUN_scalar = NEON_Q | NEONScalar | NEON_SQSHRUN,
> - NEON_SQRSHRUN_scalar = NEON_Q | NEONScalar | NEON_SQRSHRUN,
> - NEON_SQSHLU_scalar = NEON_Q | NEONScalar | NEON_SQSHLU,
> - NEON_SQSHL_imm_scalar = NEON_Q | NEONScalar | NEON_SQSHL_imm,
> - NEON_UQSHL_imm_scalar = NEON_Q | NEONScalar | NEON_UQSHL_imm,
> - NEON_SCVTF_imm_scalar = NEON_Q | NEONScalar | NEON_SCVTF_imm,
> - NEON_UCVTF_imm_scalar = NEON_Q | NEONScalar | NEON_UCVTF_imm,
> - NEON_FCVTZS_imm_scalar = NEON_Q | NEONScalar | NEON_FCVTZS_imm,
> - NEON_FCVTZU_imm_scalar = NEON_Q | NEONScalar | NEON_FCVTZU_imm
> -};
> -
> -// Unimplemented and unallocated instructions. These are defined to make
> fixed
> -// bit assertion easier.
> -enum UnimplementedOp {
> - UnimplementedFixed = 0x00000000,
> - UnimplementedFMask = 0x00000000
> -};
> -
> -enum UnallocatedOp {
> - UnallocatedFixed = 0x00000000,
> - UnallocatedFMask = 0x00000000
> -};
> -
> -} // namespace vixl
> -
> -#endif // VIXL_A64_CONSTANTS_A64_H_
> diff --git a/disas/libvixl/vixl/a64/cpu-a64.h
> b/disas/libvixl/vixl/a64/cpu-a64.h
> deleted file mode 100644
> index cdf09a6af1..0000000000
> --- a/disas/libvixl/vixl/a64/cpu-a64.h
> +++ /dev/null
> @@ -1,83 +0,0 @@
> -// Copyright 2014, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_CPU_A64_H
> -#define VIXL_CPU_A64_H
> -
> -#include "vixl/globals.h"
> -#include "vixl/a64/instructions-a64.h"
> -
> -namespace vixl {
> -
> -class CPU {
> - public:
> - // Initialise CPU support.
> - static void SetUp();
> -
> - // Ensures the data at a given address and with a given size is the same
> for
> - // the I and D caches. I and D caches are not automatically coherent on ARM
> - // so this operation is required before any dynamically generated code can
> - // safely run.
> - static void EnsureIAndDCacheCoherency(void *address, size_t length);
> -
> - // Handle tagged pointers.
> - template <typename T>
> - static T SetPointerTag(T pointer, uint64_t tag) {
> - VIXL_ASSERT(is_uintn(kAddressTagWidth, tag));
> -
> - // Use C-style casts to get static_cast behaviour for integral types (T),
> - // and reinterpret_cast behaviour for other types.
> -
> - uint64_t raw = (uint64_t)pointer;
> - VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(raw));
> -
> - raw = (raw & ~kAddressTagMask) | (tag << kAddressTagOffset);
> - return (T)raw;
> - }
> -
> - template <typename T>
> - static uint64_t GetPointerTag(T pointer) {
> - // Use C-style casts to get static_cast behaviour for integral types (T),
> - // and reinterpret_cast behaviour for other types.
> -
> - uint64_t raw = (uint64_t)pointer;
> - VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(raw));
> -
> - return (raw & kAddressTagMask) >> kAddressTagOffset;
> - }
> -
> - private:
> - // Return the content of the cache type register.
> - static uint32_t GetCacheType();
> -
> - // I and D cache line size in bytes.
> - static unsigned icache_line_size_;
> - static unsigned dcache_line_size_;
> -};
> -
> -} // namespace vixl
> -
> -#endif // VIXL_CPU_A64_H
> diff --git a/disas/libvixl/vixl/a64/decoder-a64.h
> b/disas/libvixl/vixl/a64/decoder-a64.h
> deleted file mode 100644
> index b3f04f68fc..0000000000
> --- a/disas/libvixl/vixl/a64/decoder-a64.h
> +++ /dev/null
> @@ -1,275 +0,0 @@
> -// Copyright 2014, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_A64_DECODER_A64_H_
> -#define VIXL_A64_DECODER_A64_H_
> -
> -#include <list>
> -
> -#include "vixl/globals.h"
> -#include "vixl/a64/instructions-a64.h"
> -
> -
> -// List macro containing all visitors needed by the decoder class.
> -
> -#define VISITOR_LIST_THAT_RETURN(V) \
> - V(PCRelAddressing) \
> - V(AddSubImmediate) \
> - V(LogicalImmediate) \
> - V(MoveWideImmediate) \
> - V(Bitfield) \
> - V(Extract) \
> - V(UnconditionalBranch) \
> - V(UnconditionalBranchToRegister) \
> - V(CompareBranch) \
> - V(TestBranch) \
> - V(ConditionalBranch) \
> - V(System) \
> - V(Exception) \
> - V(LoadStorePairPostIndex) \
> - V(LoadStorePairOffset) \
> - V(LoadStorePairPreIndex) \
> - V(LoadStorePairNonTemporal) \
> - V(LoadLiteral) \
> - V(LoadStoreUnscaledOffset) \
> - V(LoadStorePostIndex) \
> - V(LoadStorePreIndex) \
> - V(LoadStoreRegisterOffset) \
> - V(LoadStoreUnsignedOffset) \
> - V(LoadStoreExclusive) \
> - V(LogicalShifted) \
> - V(AddSubShifted) \
> - V(AddSubExtended) \
> - V(AddSubWithCarry) \
> - V(ConditionalCompareRegister) \
> - V(ConditionalCompareImmediate) \
> - V(ConditionalSelect) \
> - V(DataProcessing1Source) \
> - V(DataProcessing2Source) \
> - V(DataProcessing3Source) \
> - V(FPCompare) \
> - V(FPConditionalCompare) \
> - V(FPConditionalSelect) \
> - V(FPImmediate) \
> - V(FPDataProcessing1Source) \
> - V(FPDataProcessing2Source) \
> - V(FPDataProcessing3Source) \
> - V(FPIntegerConvert) \
> - V(FPFixedPointConvert) \
> - V(Crypto2RegSHA) \
> - V(Crypto3RegSHA) \
> - V(CryptoAES) \
> - V(NEON2RegMisc) \
> - V(NEON3Different) \
> - V(NEON3Same) \
> - V(NEONAcrossLanes) \
> - V(NEONByIndexedElement) \
> - V(NEONCopy) \
> - V(NEONExtract) \
> - V(NEONLoadStoreMultiStruct) \
> - V(NEONLoadStoreMultiStructPostIndex) \
> - V(NEONLoadStoreSingleStruct) \
> - V(NEONLoadStoreSingleStructPostIndex) \
> - V(NEONModifiedImmediate) \
> - V(NEONScalar2RegMisc) \
> - V(NEONScalar3Diff) \
> - V(NEONScalar3Same) \
> - V(NEONScalarByIndexedElement) \
> - V(NEONScalarCopy) \
> - V(NEONScalarPairwise) \
> - V(NEONScalarShiftImmediate) \
> - V(NEONShiftImmediate) \
> - V(NEONTable) \
> - V(NEONPerm) \
> -
> -#define VISITOR_LIST_THAT_DONT_RETURN(V) \
> - V(Unallocated) \
> - V(Unimplemented) \
> -
> -#define VISITOR_LIST(V) \
> - VISITOR_LIST_THAT_RETURN(V) \
> - VISITOR_LIST_THAT_DONT_RETURN(V) \
> -
> -namespace vixl {
> -
> -// The Visitor interface. Disassembler and simulator (and other tools)
> -// must provide implementations for all of these functions.
> -class DecoderVisitor {
> - public:
> - enum VisitorConstness {
> - kConstVisitor,
> - kNonConstVisitor
> - };
> - explicit DecoderVisitor(VisitorConstness constness = kConstVisitor)
> - : constness_(constness) {}
> -
> - virtual ~DecoderVisitor() {}
> -
> - #define DECLARE(A) virtual void Visit##A(const Instruction* instr) = 0;
> - VISITOR_LIST(DECLARE)
> - #undef DECLARE
> -
> - bool IsConstVisitor() const { return constness_ == kConstVisitor; }
> - Instruction* MutableInstruction(const Instruction* instr) {
> - VIXL_ASSERT(!IsConstVisitor());
> - return const_cast<Instruction*>(instr);
> - }
> -
> - private:
> - const VisitorConstness constness_;
> -};
> -
> -
> -class Decoder {
> - public:
> - Decoder() {}
> -
> - // Top-level wrappers around the actual decoding function.
> - void Decode(const Instruction* instr) {
> - std::list<DecoderVisitor*>::iterator it;
> - for (it = visitors_.begin(); it != visitors_.end(); it++) {
> - VIXL_ASSERT((*it)->IsConstVisitor());
> - }
> - DecodeInstruction(instr);
> - }
> - void Decode(Instruction* instr) {
> - DecodeInstruction(const_cast<const Instruction*>(instr));
> - }
> -
> - // Register a new visitor class with the decoder.
> - // Decode() will call the corresponding visitor method from all registered
> - // visitor classes when decoding reaches the leaf node of the instruction
> - // decode tree.
> - // Visitors are called in order.
> - // A visitor can be registered multiple times.
> - //
> - // d.AppendVisitor(V1);
> - // d.AppendVisitor(V2);
> - // d.PrependVisitor(V2);
> - // d.AppendVisitor(V3);
> - //
> - // d.Decode(i);
> - //
> - // will call in order visitor methods in V2, V1, V2, V3.
> - void AppendVisitor(DecoderVisitor* visitor);
> - void PrependVisitor(DecoderVisitor* visitor);
> - // These helpers register `new_visitor` before or after the first instance
> of
> - // `registered_visiter` in the list.
> - // So if
> - // V1, V2, V1, V2
> - // are registered in this order in the decoder, calls to
> - // d.InsertVisitorAfter(V3, V1);
> - // d.InsertVisitorBefore(V4, V2);
> - // will yield the order
> - // V1, V3, V4, V2, V1, V2
> - //
> - // For more complex modifications of the order of registered visitors, one
> can
> - // directly access and modify the list of visitors via the `visitors()'
> - // accessor.
> - void InsertVisitorBefore(DecoderVisitor* new_visitor,
> - DecoderVisitor* registered_visitor);
> - void InsertVisitorAfter(DecoderVisitor* new_visitor,
> - DecoderVisitor* registered_visitor);
> -
> - // Remove all instances of a previously registered visitor class from the
> list
> - // of visitors stored by the decoder.
> - void RemoveVisitor(DecoderVisitor* visitor);
> -
> - #define DECLARE(A) void Visit##A(const Instruction* instr);
> - VISITOR_LIST(DECLARE)
> - #undef DECLARE
> -
> -
> - std::list<DecoderVisitor*>* visitors() { return &visitors_; }
> -
> - private:
> - // Decodes an instruction and calls the visitor functions registered with
> the
> - // Decoder class.
> - void DecodeInstruction(const Instruction* instr);
> -
> - // Decode the PC relative addressing instruction, and call the
> corresponding
> - // visitors.
> - // On entry, instruction bits 27:24 = 0x0.
> - void DecodePCRelAddressing(const Instruction* instr);
> -
> - // Decode the add/subtract immediate instruction, and call the correspoding
> - // visitors.
> - // On entry, instruction bits 27:24 = 0x1.
> - void DecodeAddSubImmediate(const Instruction* instr);
> -
> - // Decode the branch, system command, and exception generation parts of
> - // the instruction tree, and call the corresponding visitors.
> - // On entry, instruction bits 27:24 = {0x4, 0x5, 0x6, 0x7}.
> - void DecodeBranchSystemException(const Instruction* instr);
> -
> - // Decode the load and store parts of the instruction tree, and call
> - // the corresponding visitors.
> - // On entry, instruction bits 27:24 = {0x8, 0x9, 0xC, 0xD}.
> - void DecodeLoadStore(const Instruction* instr);
> -
> - // Decode the logical immediate and move wide immediate parts of the
> - // instruction tree, and call the corresponding visitors.
> - // On entry, instruction bits 27:24 = 0x2.
> - void DecodeLogical(const Instruction* instr);
> -
> - // Decode the bitfield and extraction parts of the instruction tree,
> - // and call the corresponding visitors.
> - // On entry, instruction bits 27:24 = 0x3.
> - void DecodeBitfieldExtract(const Instruction* instr);
> -
> - // Decode the data processing parts of the instruction tree, and call the
> - // corresponding visitors.
> - // On entry, instruction bits 27:24 = {0x1, 0xA, 0xB}.
> - void DecodeDataProcessing(const Instruction* instr);
> -
> - // Decode the floating point parts of the instruction tree, and call the
> - // corresponding visitors.
> - // On entry, instruction bits 27:24 = {0xE, 0xF}.
> - void DecodeFP(const Instruction* instr);
> -
> - // Decode the Advanced SIMD (NEON) load/store part of the instruction tree,
> - // and call the corresponding visitors.
> - // On entry, instruction bits 29:25 = 0x6.
> - void DecodeNEONLoadStore(const Instruction* instr);
> -
> - // Decode the Advanced SIMD (NEON) vector data processing part of the
> - // instruction tree, and call the corresponding visitors.
> - // On entry, instruction bits 28:25 = 0x7.
> - void DecodeNEONVectorDataProcessing(const Instruction* instr);
> -
> - // Decode the Advanced SIMD (NEON) scalar data processing part of the
> - // instruction tree, and call the corresponding visitors.
> - // On entry, instruction bits 28:25 = 0xF.
> - void DecodeNEONScalarDataProcessing(const Instruction* instr);
> -
> - private:
> - // Visitors are registered in a list.
> - std::list<DecoderVisitor*> visitors_;
> -};
> -
> -} // namespace vixl
> -
> -#endif // VIXL_A64_DECODER_A64_H_
> diff --git a/disas/libvixl/vixl/a64/disasm-a64.h
> b/disas/libvixl/vixl/a64/disasm-a64.h
> deleted file mode 100644
> index 930df6ea6a..0000000000
> --- a/disas/libvixl/vixl/a64/disasm-a64.h
> +++ /dev/null
> @@ -1,177 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_A64_DISASM_A64_H
> -#define VIXL_A64_DISASM_A64_H
> -
> -#include "vixl/globals.h"
> -#include "vixl/utils.h"
> -#include "vixl/a64/instructions-a64.h"
> -#include "vixl/a64/decoder-a64.h"
> -#include "vixl/a64/assembler-a64.h"
> -
> -namespace vixl {
> -
> -class Disassembler: public DecoderVisitor {
> - public:
> - Disassembler();
> - Disassembler(char* text_buffer, int buffer_size);
> - virtual ~Disassembler();
> - char* GetOutput();
> -
> - // Declare all Visitor functions.
> - #define DECLARE(A) virtual void Visit##A(const Instruction* instr);
> - VISITOR_LIST(DECLARE)
> - #undef DECLARE
> -
> - protected:
> - virtual void ProcessOutput(const Instruction* instr);
> -
> - // Default output functions. The functions below implement a default way
> of
> - // printing elements in the disassembly. A sub-class can override these to
> - // customize the disassembly output.
> -
> - // Prints the name of a register.
> - // TODO: This currently doesn't allow renaming of V registers.
> - virtual void AppendRegisterNameToOutput(const Instruction* instr,
> - const CPURegister& reg);
> -
> - // Prints a PC-relative offset. This is used for example when disassembling
> - // branches to immediate offsets.
> - virtual void AppendPCRelativeOffsetToOutput(const Instruction* instr,
> - int64_t offset);
> -
> - // Prints an address, in the general case. It can be code or data. This is
> - // used for example to print the target address of an ADR instruction.
> - virtual void AppendCodeRelativeAddressToOutput(const Instruction* instr,
> - const void* addr);
> -
> - // Prints the address of some code.
> - // This is used for example to print the target address of a branch to an
> - // immediate offset.
> - // A sub-class can for example override this method to lookup the address
> and
> - // print an appropriate name.
> - virtual void AppendCodeRelativeCodeAddressToOutput(const Instruction*
> instr,
> - const void* addr);
> -
> - // Prints the address of some data.
> - // This is used for example to print the source address of a load literal
> - // instruction.
> - virtual void AppendCodeRelativeDataAddressToOutput(const Instruction*
> instr,
> - const void* addr);
> -
> - // Same as the above, but for addresses that are not relative to the code
> - // buffer. They are currently not used by VIXL.
> - virtual void AppendAddressToOutput(const Instruction* instr,
> - const void* addr);
> - virtual void AppendCodeAddressToOutput(const Instruction* instr,
> - const void* addr);
> - virtual void AppendDataAddressToOutput(const Instruction* instr,
> - const void* addr);
> -
> - public:
> - // Get/Set the offset that should be added to code addresses when printing
> - // code-relative addresses in the AppendCodeRelative<Type>AddressToOutput()
> - // helpers.
> - // Below is an example of how a branch immediate instruction in memory at
> - // address 0xb010200 would disassemble with different offsets.
> - // Base address | Disassembly
> - // 0x0 | 0xb010200: b #+0xcc (addr 0xb0102cc)
> - // 0x10000 | 0xb000200: b #+0xcc (addr 0xb0002cc)
> - // 0xb010200 | 0x0: b #+0xcc (addr 0xcc)
> - void MapCodeAddress(int64_t base_address, const Instruction*
> instr_address);
> - int64_t CodeRelativeAddress(const void* instr);
> -
> - private:
> - void Format(
> - const Instruction* instr, const char* mnemonic, const char* format);
> - void Substitute(const Instruction* instr, const char* string);
> - int SubstituteField(const Instruction* instr, const char* format);
> - int SubstituteRegisterField(const Instruction* instr, const char* format);
> - int SubstituteImmediateField(const Instruction* instr, const char* format);
> - int SubstituteLiteralField(const Instruction* instr, const char* format);
> - int SubstituteBitfieldImmediateField(
> - const Instruction* instr, const char* format);
> - int SubstituteShiftField(const Instruction* instr, const char* format);
> - int SubstituteExtendField(const Instruction* instr, const char* format);
> - int SubstituteConditionField(const Instruction* instr, const char* format);
> - int SubstitutePCRelAddressField(const Instruction* instr, const char*
> format);
> - int SubstituteBranchTargetField(const Instruction* instr, const char*
> format);
> - int SubstituteLSRegOffsetField(const Instruction* instr, const char*
> format);
> - int SubstitutePrefetchField(const Instruction* instr, const char* format);
> - int SubstituteBarrierField(const Instruction* instr, const char* format);
> - int SubstituteSysOpField(const Instruction* instr, const char* format);
> - int SubstituteCrField(const Instruction* instr, const char* format);
> - bool RdIsZROrSP(const Instruction* instr) const {
> - return (instr->Rd() == kZeroRegCode);
> - }
> -
> - bool RnIsZROrSP(const Instruction* instr) const {
> - return (instr->Rn() == kZeroRegCode);
> - }
> -
> - bool RmIsZROrSP(const Instruction* instr) const {
> - return (instr->Rm() == kZeroRegCode);
> - }
> -
> - bool RaIsZROrSP(const Instruction* instr) const {
> - return (instr->Ra() == kZeroRegCode);
> - }
> -
> - bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
> -
> - int64_t code_address_offset() const { return code_address_offset_; }
> -
> - protected:
> - void ResetOutput();
> - void AppendToOutput(const char* string, ...) PRINTF_CHECK(2, 3);
> -
> - void set_code_address_offset(int64_t code_address_offset) {
> - code_address_offset_ = code_address_offset;
> - }
> -
> - char* buffer_;
> - uint32_t buffer_pos_;
> - uint32_t buffer_size_;
> - bool own_buffer_;
> -
> - int64_t code_address_offset_;
> -};
> -
> -
> -class PrintDisassembler: public Disassembler {
> - public:
> - explicit PrintDisassembler(FILE* stream) : stream_(stream) { }
> -
> - protected:
> - virtual void ProcessOutput(const Instruction* instr);
> -
> - private:
> - FILE *stream_;
> -};
> -} // namespace vixl
> -
> -#endif // VIXL_A64_DISASM_A64_H
> diff --git a/disas/libvixl/vixl/a64/instructions-a64.h
> b/disas/libvixl/vixl/a64/instructions-a64.h
> deleted file mode 100644
> index 7e0dbae36a..0000000000
> --- a/disas/libvixl/vixl/a64/instructions-a64.h
> +++ /dev/null
> @@ -1,757 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
> -#define VIXL_A64_INSTRUCTIONS_A64_H_
> -
> -#include "vixl/globals.h"
> -#include "vixl/utils.h"
> -#include "vixl/a64/constants-a64.h"
> -
> -namespace vixl {
> -// ISA constants.
> --------------------------------------------------------------
> -
> -typedef uint32_t Instr;
> -const unsigned kInstructionSize = 4;
> -const unsigned kInstructionSizeLog2 = 2;
> -const unsigned kLiteralEntrySize = 4;
> -const unsigned kLiteralEntrySizeLog2 = 2;
> -const unsigned kMaxLoadLiteralRange = 1 * MBytes;
> -
> -// This is the nominal page size (as used by the adrp instruction); the
> actual
> -// size of the memory pages allocated by the kernel is likely to differ.
> -const unsigned kPageSize = 4 * KBytes;
> -const unsigned kPageSizeLog2 = 12;
> -
> -const unsigned kBRegSize = 8;
> -const unsigned kBRegSizeLog2 = 3;
> -const unsigned kBRegSizeInBytes = kBRegSize / 8;
> -const unsigned kBRegSizeInBytesLog2 = kBRegSizeLog2 - 3;
> -const unsigned kHRegSize = 16;
> -const unsigned kHRegSizeLog2 = 4;
> -const unsigned kHRegSizeInBytes = kHRegSize / 8;
> -const unsigned kHRegSizeInBytesLog2 = kHRegSizeLog2 - 3;
> -const unsigned kWRegSize = 32;
> -const unsigned kWRegSizeLog2 = 5;
> -const unsigned kWRegSizeInBytes = kWRegSize / 8;
> -const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
> -const unsigned kXRegSize = 64;
> -const unsigned kXRegSizeLog2 = 6;
> -const unsigned kXRegSizeInBytes = kXRegSize / 8;
> -const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
> -const unsigned kSRegSize = 32;
> -const unsigned kSRegSizeLog2 = 5;
> -const unsigned kSRegSizeInBytes = kSRegSize / 8;
> -const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
> -const unsigned kDRegSize = 64;
> -const unsigned kDRegSizeLog2 = 6;
> -const unsigned kDRegSizeInBytes = kDRegSize / 8;
> -const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
> -const unsigned kQRegSize = 128;
> -const unsigned kQRegSizeLog2 = 7;
> -const unsigned kQRegSizeInBytes = kQRegSize / 8;
> -const unsigned kQRegSizeInBytesLog2 = kQRegSizeLog2 - 3;
> -const uint64_t kWRegMask = UINT64_C(0xffffffff);
> -const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
> -const uint64_t kSRegMask = UINT64_C(0xffffffff);
> -const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
> -const uint64_t kSSignMask = UINT64_C(0x80000000);
> -const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
> -const uint64_t kWSignMask = UINT64_C(0x80000000);
> -const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
> -const uint64_t kByteMask = UINT64_C(0xff);
> -const uint64_t kHalfWordMask = UINT64_C(0xffff);
> -const uint64_t kWordMask = UINT64_C(0xffffffff);
> -const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
> -const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
> -const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
> -const int64_t kXMinInt = INT64_C(0x8000000000000000);
> -const int32_t kWMaxInt = INT32_C(0x7fffffff);
> -const int32_t kWMinInt = INT32_C(0x80000000);
> -const unsigned kLinkRegCode = 30;
> -const unsigned kZeroRegCode = 31;
> -const unsigned kSPRegInternalCode = 63;
> -const unsigned kRegCodeMask = 0x1f;
> -
> -const unsigned kAddressTagOffset = 56;
> -const unsigned kAddressTagWidth = 8;
> -const uint64_t kAddressTagMask =
> - ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
> -VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
> -
> -// AArch64 floating-point specifics. These match IEEE-754.
> -const unsigned kDoubleMantissaBits = 52;
> -const unsigned kDoubleExponentBits = 11;
> -const unsigned kFloatMantissaBits = 23;
> -const unsigned kFloatExponentBits = 8;
> -const unsigned kFloat16MantissaBits = 10;
> -const unsigned kFloat16ExponentBits = 5;
> -
> -// Floating-point infinity values.
> -extern const float16 kFP16PositiveInfinity;
> -extern const float16 kFP16NegativeInfinity;
> -extern const float kFP32PositiveInfinity;
> -extern const float kFP32NegativeInfinity;
> -extern const double kFP64PositiveInfinity;
> -extern const double kFP64NegativeInfinity;
> -
> -// The default NaN values (for FPCR.DN=1).
> -extern const float16 kFP16DefaultNaN;
> -extern const float kFP32DefaultNaN;
> -extern const double kFP64DefaultNaN;
> -
> -unsigned CalcLSDataSize(LoadStoreOp op);
> -unsigned CalcLSPairDataSize(LoadStorePairOp op);
> -
> -enum ImmBranchType {
> - UnknownBranchType = 0,
> - CondBranchType = 1,
> - UncondBranchType = 2,
> - CompareBranchType = 3,
> - TestBranchType = 4
> -};
> -
> -enum AddrMode {
> - Offset,
> - PreIndex,
> - PostIndex
> -};
> -
> -enum FPRounding {
> - // The first four values are encodable directly by FPCR<RMode>.
> - FPTieEven = 0x0,
> - FPPositiveInfinity = 0x1,
> - FPNegativeInfinity = 0x2,
> - FPZero = 0x3,
> -
> - // The final rounding modes are only available when explicitly specified by
> - // the instruction (such as with fcvta). It cannot be set in FPCR.
> - FPTieAway,
> - FPRoundOdd
> -};
> -
> -enum Reg31Mode {
> - Reg31IsStackPointer,
> - Reg31IsZeroRegister
> -};
> -
> -// Instructions.
> ---------------------------------------------------------------
> -
> -class Instruction {
> - public:
> - Instr InstructionBits() const {
> - return *(reinterpret_cast<const Instr*>(this));
> - }
> -
> - void SetInstructionBits(Instr new_instr) {
> - *(reinterpret_cast<Instr*>(this)) = new_instr;
> - }
> -
> - int Bit(int pos) const {
> - return (InstructionBits() >> pos) & 1;
> - }
> -
> - uint32_t Bits(int msb, int lsb) const {
> - return unsigned_bitextract_32(msb, lsb, InstructionBits());
> - }
> -
> - int32_t SignedBits(int msb, int lsb) const {
> - int32_t bits = *(reinterpret_cast<const int32_t*>(this));
> - return signed_bitextract_32(msb, lsb, bits);
> - }
> -
> - Instr Mask(uint32_t mask) const {
> - return InstructionBits() & mask;
> - }
> -
> - #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
> - int32_t Name() const { return Func(HighBit, LowBit); }
> - INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
> - #undef DEFINE_GETTER
> -
> - // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
> - // formed from ImmPCRelLo and ImmPCRelHi.
> - int ImmPCRel() const {
> - int offset =
> - static_cast<int>((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
> - int width = ImmPCRelLo_width + ImmPCRelHi_width;
> - return signed_bitextract_32(width - 1, 0, offset);
> - }
> -
> - uint64_t ImmLogical() const;
> - unsigned ImmNEONabcdefgh() const;
> - float ImmFP32() const;
> - double ImmFP64() const;
> - float ImmNEONFP32() const;
> - double ImmNEONFP64() const;
> -
> - unsigned SizeLS() const {
> - return CalcLSDataSize(static_cast<LoadStoreOp>(Mask(LoadStoreMask)));
> - }
> -
> - unsigned SizeLSPair() const {
> - return CalcLSPairDataSize(
> - static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
> - }
> -
> - int NEONLSIndex(int access_size_shift) const {
> - int64_t q = NEONQ();
> - int64_t s = NEONS();
> - int64_t size = NEONLSSize();
> - int64_t index = (q << 3) | (s << 2) | size;
> - return static_cast<int>(index >> access_size_shift);
> - }
> -
> - // Helpers.
> - bool IsCondBranchImm() const {
> - return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
> - }
> -
> - bool IsUncondBranchImm() const {
> - return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
> - }
> -
> - bool IsCompareBranch() const {
> - return Mask(CompareBranchFMask) == CompareBranchFixed;
> - }
> -
> - bool IsTestBranch() const {
> - return Mask(TestBranchFMask) == TestBranchFixed;
> - }
> -
> - bool IsImmBranch() const {
> - return BranchType() != UnknownBranchType;
> - }
> -
> - bool IsPCRelAddressing() const {
> - return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
> - }
> -
> - bool IsLogicalImmediate() const {
> - return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
> - }
> -
> - bool IsAddSubImmediate() const {
> - return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
> - }
> -
> - bool IsAddSubExtended() const {
> - return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
> - }
> -
> - bool IsLoadOrStore() const {
> - return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
> - }
> -
> - bool IsLoad() const;
> - bool IsStore() const;
> -
> - bool IsLoadLiteral() const {
> - // This includes PRFM_lit.
> - return Mask(LoadLiteralFMask) == LoadLiteralFixed;
> - }
> -
> - bool IsMovn() const {
> - return (Mask(MoveWideImmediateMask) == MOVN_x) ||
> - (Mask(MoveWideImmediateMask) == MOVN_w);
> - }
> -
> - static int ImmBranchRangeBitwidth(ImmBranchType branch_type);
> - static int32_t ImmBranchForwardRange(ImmBranchType branch_type);
> - static bool IsValidImmPCOffset(ImmBranchType branch_type, int64_t offset);
> -
> - // Indicate whether Rd can be the stack pointer or the zero register. This
> - // does not check that the instruction actually has an Rd field.
> - Reg31Mode RdMode() const {
> - // The following instructions use sp or wsp as Rd:
> - // Add/sub (immediate) when not setting the flags.
> - // Add/sub (extended) when not setting the flags.
> - // Logical (immediate) when not setting the flags.
> - // Otherwise, r31 is the zero register.
> - if (IsAddSubImmediate() || IsAddSubExtended()) {
> - if (Mask(AddSubSetFlagsBit)) {
> - return Reg31IsZeroRegister;
> - } else {
> - return Reg31IsStackPointer;
> - }
> - }
> - if (IsLogicalImmediate()) {
> - // Of the logical (immediate) instructions, only ANDS (and its aliases)
> - // can set the flags. The others can all write into sp.
> - // Note that some logical operations are not available to
> - // immediate-operand instructions, so we have to combine two masks
> here.
> - if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
> - return Reg31IsZeroRegister;
> - } else {
> - return Reg31IsStackPointer;
> - }
> - }
> - return Reg31IsZeroRegister;
> - }
> -
> - // Indicate whether Rn can be the stack pointer or the zero register. This
> - // does not check that the instruction actually has an Rn field.
> - Reg31Mode RnMode() const {
> - // The following instructions use sp or wsp as Rn:
> - // All loads and stores.
> - // Add/sub (immediate).
> - // Add/sub (extended).
> - // Otherwise, r31 is the zero register.
> - if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
> - return Reg31IsStackPointer;
> - }
> - return Reg31IsZeroRegister;
> - }
> -
> - ImmBranchType BranchType() const {
> - if (IsCondBranchImm()) {
> - return CondBranchType;
> - } else if (IsUncondBranchImm()) {
> - return UncondBranchType;
> - } else if (IsCompareBranch()) {
> - return CompareBranchType;
> - } else if (IsTestBranch()) {
> - return TestBranchType;
> - } else {
> - return UnknownBranchType;
> - }
> - }
> -
> - // Find the target of this instruction. 'this' may be a branch or a
> - // PC-relative addressing instruction.
> - const Instruction* ImmPCOffsetTarget() const;
> -
> - // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch
> or
> - // a PC-relative addressing instruction.
> - void SetImmPCOffsetTarget(const Instruction* target);
> - // Patch a literal load instruction to load from 'source'.
> - void SetImmLLiteral(const Instruction* source);
> -
> - // The range of a load literal instruction, expressed as 'instr +- range'.
> - // The range is actually the 'positive' range; the branch instruction can
> - // target [instr - range - kInstructionSize, instr + range].
> - static const int kLoadLiteralImmBitwidth = 19;
> - static const int kLoadLiteralRange =
> - (1 << kLoadLiteralImmBitwidth) / 2 - kInstructionSize;
> -
> - // Calculate the address of a literal referred to by a load-literal
> - // instruction, and return it as the specified type.
> - //
> - // The literal itself is safely mutable only if the backing buffer is
> safely
> - // mutable.
> - template <typename T>
> - T LiteralAddress() const {
> - uint64_t base_raw = reinterpret_cast<uint64_t>(this);
> - int64_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
> - uint64_t address_raw = base_raw + offset;
> -
> - // Cast the address using a C-style cast. A reinterpret_cast would be
> - // appropriate, but it can't cast one integral type to another.
> - T address = (T)(address_raw);
> -
> - // Assert that the address can be represented by the specified type.
> - VIXL_ASSERT((uint64_t)(address) == address_raw);
> -
> - return address;
> - }
> -
> - uint32_t Literal32() const {
> - uint32_t literal;
> - memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
> - return literal;
> - }
> -
> - uint64_t Literal64() const {
> - uint64_t literal;
> - memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
> - return literal;
> - }
> -
> - float LiteralFP32() const {
> - return rawbits_to_float(Literal32());
> - }
> -
> - double LiteralFP64() const {
> - return rawbits_to_double(Literal64());
> - }
> -
> - const Instruction* NextInstruction() const {
> - return this + kInstructionSize;
> - }
> -
> - const Instruction* InstructionAtOffset(int64_t offset) const {
> - VIXL_ASSERT(IsWordAligned(this + offset));
> - return this + offset;
> - }
> -
> - template<typename T> static Instruction* Cast(T src) {
> - return reinterpret_cast<Instruction*>(src);
> - }
> -
> - template<typename T> static const Instruction* CastConst(T src) {
> - return reinterpret_cast<const Instruction*>(src);
> - }
> -
> - private:
> - int ImmBranch() const;
> -
> - static float Imm8ToFP32(uint32_t imm8);
> - static double Imm8ToFP64(uint32_t imm8);
> -
> - void SetPCRelImmTarget(const Instruction* target);
> - void SetBranchImmTarget(const Instruction* target);
> -};
> -
> -
> -// Functions for handling NEON vector format information.
> -enum VectorFormat {
> - kFormatUndefined = 0xffffffff,
> - kFormat8B = NEON_8B,
> - kFormat16B = NEON_16B,
> - kFormat4H = NEON_4H,
> - kFormat8H = NEON_8H,
> - kFormat2S = NEON_2S,
> - kFormat4S = NEON_4S,
> - kFormat1D = NEON_1D,
> - kFormat2D = NEON_2D,
> -
> - // Scalar formats. We add the scalar bit to distinguish between scalar and
> - // vector enumerations; the bit is always set in the encoding of scalar ops
> - // and always clear for vector ops. Although kFormatD and kFormat1D appear
> - // to be the same, their meaning is subtly different. The first is a scalar
> - // operation, the second a vector operation that only affects one lane.
> - kFormatB = NEON_B | NEONScalar,
> - kFormatH = NEON_H | NEONScalar,
> - kFormatS = NEON_S | NEONScalar,
> - kFormatD = NEON_D | NEONScalar
> -};
> -
> -VectorFormat VectorFormatHalfWidth(const VectorFormat vform);
> -VectorFormat VectorFormatDoubleWidth(const VectorFormat vform);
> -VectorFormat VectorFormatDoubleLanes(const VectorFormat vform);
> -VectorFormat VectorFormatHalfLanes(const VectorFormat vform);
> -VectorFormat ScalarFormatFromLaneSize(int lanesize);
> -VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform);
> -VectorFormat VectorFormatFillQ(const VectorFormat vform);
> -unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
> -unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
> -// TODO: Make the return types of these functions consistent.
> -unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
> -int LaneSizeInBytesFromFormat(VectorFormat vform);
> -int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
> -int LaneCountFromFormat(VectorFormat vform);
> -int MaxLaneCountFromFormat(VectorFormat vform);
> -bool IsVectorFormat(VectorFormat vform);
> -int64_t MaxIntFromFormat(VectorFormat vform);
> -int64_t MinIntFromFormat(VectorFormat vform);
> -uint64_t MaxUintFromFormat(VectorFormat vform);
> -
> -
> -enum NEONFormat {
> - NF_UNDEF = 0,
> - NF_8B = 1,
> - NF_16B = 2,
> - NF_4H = 3,
> - NF_8H = 4,
> - NF_2S = 5,
> - NF_4S = 6,
> - NF_1D = 7,
> - NF_2D = 8,
> - NF_B = 9,
> - NF_H = 10,
> - NF_S = 11,
> - NF_D = 12
> -};
> -
> -static const unsigned kNEONFormatMaxBits = 6;
> -
> -struct NEONFormatMap {
> - // The bit positions in the instruction to consider.
> - uint8_t bits[kNEONFormatMaxBits];
> -
> - // Mapping from concatenated bits to format.
> - NEONFormat map[1 << kNEONFormatMaxBits];
> -};
> -
> -class NEONFormatDecoder {
> - public:
> - enum SubstitutionMode {
> - kPlaceholder,
> - kFormat
> - };
> -
> - // Construct a format decoder with increasingly specific format maps for
> each
> - // subsitution. If no format map is specified, the default is the integer
> - // format map.
> - explicit NEONFormatDecoder(const Instruction* instr) {
> - instrbits_ = instr->InstructionBits();
> - SetFormatMaps(IntegerFormatMap());
> - }
> - NEONFormatDecoder(const Instruction* instr,
> - const NEONFormatMap* format) {
> - instrbits_ = instr->InstructionBits();
> - SetFormatMaps(format);
> - }
> - NEONFormatDecoder(const Instruction* instr,
> - const NEONFormatMap* format0,
> - const NEONFormatMap* format1) {
> - instrbits_ = instr->InstructionBits();
> - SetFormatMaps(format0, format1);
> - }
> - NEONFormatDecoder(const Instruction* instr,
> - const NEONFormatMap* format0,
> - const NEONFormatMap* format1,
> - const NEONFormatMap* format2) {
> - instrbits_ = instr->InstructionBits();
> - SetFormatMaps(format0, format1, format2);
> - }
> -
> - // Set the format mapping for all or individual substitutions.
> - void SetFormatMaps(const NEONFormatMap* format0,
> - const NEONFormatMap* format1 = NULL,
> - const NEONFormatMap* format2 = NULL) {
> - VIXL_ASSERT(format0 != NULL);
> - formats_[0] = format0;
> - formats_[1] = (format1 == NULL) ? formats_[0] : format1;
> - formats_[2] = (format2 == NULL) ? formats_[1] : format2;
> - }
> - void SetFormatMap(unsigned index, const NEONFormatMap* format) {
> - VIXL_ASSERT(index <= (sizeof(formats_) / sizeof(formats_[0])));
> - VIXL_ASSERT(format != NULL);
> - formats_[index] = format;
> - }
> -
> - // Substitute %s in the input string with the placeholder string for each
> - // register, ie. "'B", "'H", etc.
> - const char* SubstitutePlaceholders(const char* string) {
> - return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
> - }
> -
> - // Substitute %s in the input string with a new string based on the
> - // substitution mode.
> - const char* Substitute(const char* string,
> - SubstitutionMode mode0 = kFormat,
> - SubstitutionMode mode1 = kFormat,
> - SubstitutionMode mode2 = kFormat) {
> - snprintf(form_buffer_, sizeof(form_buffer_), string,
> - GetSubstitute(0, mode0),
> - GetSubstitute(1, mode1),
> - GetSubstitute(2, mode2));
> - return form_buffer_;
> - }
> -
> - // Append a "2" to a mnemonic string based of the state of the Q bit.
> - const char* Mnemonic(const char* mnemonic) {
> - if ((instrbits_ & NEON_Q) != 0) {
> - snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
> - return mne_buffer_;
> - }
> - return mnemonic;
> - }
> -
> - VectorFormat GetVectorFormat(int format_index = 0) {
> - return GetVectorFormat(formats_[format_index]);
> - }
> -
> - VectorFormat GetVectorFormat(const NEONFormatMap* format_map) {
> - static const VectorFormat vform[] = {
> - kFormatUndefined,
> - kFormat8B, kFormat16B, kFormat4H, kFormat8H,
> - kFormat2S, kFormat4S, kFormat1D, kFormat2D,
> - kFormatB, kFormatH, kFormatS, kFormatD
> - };
> - VIXL_ASSERT(GetNEONFormat(format_map) < (sizeof(vform) /
> sizeof(vform[0])));
> - return vform[GetNEONFormat(format_map)];
> - }
> -
> - // Built in mappings for common cases.
> -
> - // The integer format map uses three bits (Q, size<1:0>) to encode the
> - // "standard" set of NEON integer vector formats.
> - static const NEONFormatMap* IntegerFormatMap() {
> - static const NEONFormatMap map = {
> - {23, 22, 30},
> - {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_UNDEF, NF_2D}
> - };
> - return ↦
> - }
> -
> - // The long integer format map uses two bits (size<1:0>) to encode the
> - // long set of NEON integer vector formats. These are used in narrow, wide
> - // and long operations.
> - static const NEONFormatMap* LongIntegerFormatMap() {
> - static const NEONFormatMap map = {
> - {23, 22}, {NF_8H, NF_4S, NF_2D}
> - };
> - return ↦
> - }
> -
> - // The FP format map uses two bits (Q, size<0>) to encode the NEON FP
> vector
> - // formats: NF_2S, NF_4S, NF_2D.
> - static const NEONFormatMap* FPFormatMap() {
> - // The FP format map assumes two bits (Q, size<0>) are used to encode the
> - // NEON FP vector formats: NF_2S, NF_4S, NF_2D.
> - static const NEONFormatMap map = {
> - {22, 30}, {NF_2S, NF_4S, NF_UNDEF, NF_2D}
> - };
> - return ↦
> - }
> -
> - // The load/store format map uses three bits (Q, 11, 10) to encode the
> - // set of NEON vector formats.
> - static const NEONFormatMap* LoadStoreFormatMap() {
> - static const NEONFormatMap map = {
> - {11, 10, 30},
> - {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
> - };
> - return ↦
> - }
> -
> - // The logical format map uses one bit (Q) to encode the NEON vector
> format:
> - // NF_8B, NF_16B.
> - static const NEONFormatMap* LogicalFormatMap() {
> - static const NEONFormatMap map = {
> - {30}, {NF_8B, NF_16B}
> - };
> - return ↦
> - }
> -
> - // The triangular format map uses between two and five bits to encode the
> NEON
> - // vector format:
> - // xxx10->8B, xxx11->16B, xx100->4H, xx101->8H
> - // x1000->2S, x1001->4S, 10001->2D, all others undefined.
> - static const NEONFormatMap* TriangularFormatMap() {
> - static const NEONFormatMap map = {
> - {19, 18, 17, 16, 30},
> - {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S,
> - NF_4S, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_UNDEF, NF_2D,
> - NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S, NF_4S, NF_8B,
> NF_16B,
> - NF_4H, NF_8H, NF_8B, NF_16B}
> - };
> - return ↦
> - }
> -
> - // The scalar format map uses two bits (size<1:0>) to encode the NEON
> scalar
> - // formats: NF_B, NF_H, NF_S, NF_D.
> - static const NEONFormatMap* ScalarFormatMap() {
> - static const NEONFormatMap map = {
> - {23, 22}, {NF_B, NF_H, NF_S, NF_D}
> - };
> - return ↦
> - }
> -
> - // The long scalar format map uses two bits (size<1:0>) to encode the
> longer
> - // NEON scalar formats: NF_H, NF_S, NF_D.
> - static const NEONFormatMap* LongScalarFormatMap() {
> - static const NEONFormatMap map = {
> - {23, 22}, {NF_H, NF_S, NF_D}
> - };
> - return ↦
> - }
> -
> - // The FP scalar format map assumes one bit (size<0>) is used to encode the
> - // NEON FP scalar formats: NF_S, NF_D.
> - static const NEONFormatMap* FPScalarFormatMap() {
> - static const NEONFormatMap map = {
> - {22}, {NF_S, NF_D}
> - };
> - return ↦
> - }
> -
> - // The triangular scalar format map uses between one and four bits to
> encode
> - // the NEON FP scalar formats:
> - // xxx1->B, xx10->H, x100->S, 1000->D, all others undefined.
> - static const NEONFormatMap* TriangularScalarFormatMap() {
> - static const NEONFormatMap map = {
> - {19, 18, 17, 16},
> - {NF_UNDEF, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B,
> - NF_D, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B}
> - };
> - return ↦
> - }
> -
> - private:
> - // Get a pointer to a string that represents the format or placeholder for
> - // the specified substitution index, based on the format map and
> instruction.
> - const char* GetSubstitute(int index, SubstitutionMode mode) {
> - if (mode == kFormat) {
> - return NEONFormatAsString(GetNEONFormat(formats_[index]));
> - }
> - VIXL_ASSERT(mode == kPlaceholder);
> - return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
> - }
> -
> - // Get the NEONFormat enumerated value for bits obtained from the
> - // instruction based on the specified format mapping.
> - NEONFormat GetNEONFormat(const NEONFormatMap* format_map) {
> - return format_map->map[PickBits(format_map->bits)];
> - }
> -
> - // Convert a NEONFormat into a string.
> - static const char* NEONFormatAsString(NEONFormat format) {
> - static const char* formats[] = {
> - "undefined",
> - "8b", "16b", "4h", "8h", "2s", "4s", "1d", "2d",
> - "b", "h", "s", "d"
> - };
> - VIXL_ASSERT(format < (sizeof(formats) / sizeof(formats[0])));
> - return formats[format];
> - }
> -
> - // Convert a NEONFormat into a register placeholder string.
> - static const char* NEONFormatAsPlaceholder(NEONFormat format) {
> - VIXL_ASSERT((format == NF_B) || (format == NF_H) ||
> - (format == NF_S) || (format == NF_D) ||
> - (format == NF_UNDEF));
> - static const char* formats[] = {
> - "undefined",
> - "undefined", "undefined", "undefined", "undefined",
> - "undefined", "undefined", "undefined", "undefined",
> - "'B", "'H", "'S", "'D"
> - };
> - return formats[format];
> - }
> -
> - // Select bits from instrbits_ defined by the bits array, concatenate them,
> - // and return the value.
> - uint8_t PickBits(const uint8_t bits[]) {
> - uint8_t result = 0;
> - for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
> - if (bits[b] == 0) break;
> - result <<= 1;
> - result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
> - }
> - return result;
> - }
> -
> - Instr instrbits_;
> - const NEONFormatMap* formats_[3];
> - char form_buffer_[64];
> - char mne_buffer_[16];
> -};
> -} // namespace vixl
> -
> -#endif // VIXL_A64_INSTRUCTIONS_A64_H_
> diff --git a/disas/libvixl/vixl/code-buffer.h
> b/disas/libvixl/vixl/code-buffer.h
> deleted file mode 100644
> index b95babbdee..0000000000
> --- a/disas/libvixl/vixl/code-buffer.h
> +++ /dev/null
> @@ -1,113 +0,0 @@
> -// Copyright 2014, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_CODE_BUFFER_H
> -#define VIXL_CODE_BUFFER_H
> -
> -#include <cstring>
> -#include "vixl/globals.h"
> -
> -namespace vixl {
> -
> -class CodeBuffer {
> - public:
> - explicit CodeBuffer(size_t capacity = 4 * KBytes);
> - CodeBuffer(void* buffer, size_t capacity);
> - ~CodeBuffer();
> -
> - void Reset();
> -
> - ptrdiff_t OffsetFrom(ptrdiff_t offset) const {
> - ptrdiff_t cursor_offset = cursor_ - buffer_;
> - VIXL_ASSERT((offset >= 0) && (offset <= cursor_offset));
> - return cursor_offset - offset;
> - }
> -
> - ptrdiff_t CursorOffset() const {
> - return OffsetFrom(0);
> - }
> -
> - template <typename T>
> - T GetOffsetAddress(ptrdiff_t offset) const {
> - VIXL_ASSERT((offset >= 0) && (offset <= (cursor_ - buffer_)));
> - return reinterpret_cast<T>(buffer_ + offset);
> - }
> -
> - size_t RemainingBytes() const {
> - VIXL_ASSERT((cursor_ >= buffer_) && (cursor_ <= (buffer_ + capacity_)));
> - return (buffer_ + capacity_) - cursor_;
> - }
> -
> - // A code buffer can emit:
> - // * 32-bit data: instruction and constant.
> - // * 64-bit data: constant.
> - // * string: debug info.
> - void Emit32(uint32_t data) { Emit(data); }
> -
> - void Emit64(uint64_t data) { Emit(data); }
> -
> - void EmitString(const char* string);
> -
> - // Align to kInstructionSize.
> - void Align();
> -
> - size_t capacity() const { return capacity_; }
> -
> - bool IsManaged() const { return managed_; }
> -
> - void Grow(size_t new_capacity);
> -
> - bool IsDirty() const { return dirty_; }
> -
> - void SetClean() { dirty_ = false; }
> -
> - private:
> - template <typename T>
> - void Emit(T value) {
> - VIXL_ASSERT(RemainingBytes() >= sizeof(value));
> - dirty_ = true;
> - memcpy(cursor_, &value, sizeof(value));
> - cursor_ += sizeof(value);
> - }
> -
> - // Backing store of the buffer.
> - byte* buffer_;
> - // If true the backing store is allocated and deallocated by the buffer.
> The
> - // backing store can then grow on demand. If false the backing store is
> - // provided by the user and cannot be resized internally.
> - bool managed_;
> - // Pointer to the next location to be written.
> - byte* cursor_;
> - // True if there has been any write since the buffer was created or
> cleaned.
> - bool dirty_;
> - // Capacity in bytes of the backing store.
> - size_t capacity_;
> -};
> -
> -} // namespace vixl
> -
> -#endif // VIXL_CODE_BUFFER_H
> -
> diff --git a/disas/libvixl/vixl/compiler-intrinsics.h
> b/disas/libvixl/vixl/compiler-intrinsics.h
> deleted file mode 100644
> index 9431beddb9..0000000000
> --- a/disas/libvixl/vixl/compiler-intrinsics.h
> +++ /dev/null
> @@ -1,155 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -
> -#ifndef VIXL_COMPILER_INTRINSICS_H
> -#define VIXL_COMPILER_INTRINSICS_H
> -
> -#include "globals.h"
> -
> -namespace vixl {
> -
> -// Helper to check whether the version of GCC used is greater than the
> specified
> -// requirement.
> -#define MAJOR 1000000
> -#define MINOR 1000
> -#if defined(__GNUC__) && defined(__GNUC_MINOR__) &&
> defined(__GNUC_PATCHLEVEL__)
> -#define GCC_VERSION_OR_NEWER(major, minor, patchlevel)
> \
> - ((__GNUC__ * MAJOR + __GNUC_MINOR__ * MINOR + __GNUC_PATCHLEVEL__) >=
> \
> - ((major) * MAJOR + (minor) * MINOR + (patchlevel)))
> -#elif defined(__GNUC__) && defined(__GNUC_MINOR__)
> -#define GCC_VERSION_OR_NEWER(major, minor, patchlevel)
> \
> - ((__GNUC__ * MAJOR + __GNUC_MINOR__ * MINOR) >=
> \
> - ((major) * MAJOR + (minor) * MINOR + (patchlevel)))
> -#else
> -#define GCC_VERSION_OR_NEWER(major, minor, patchlevel) 0
> -#endif
> -
> -
> -#if defined(__clang__) && !defined(VIXL_NO_COMPILER_BUILTINS)
> -
> -#define COMPILER_HAS_BUILTIN_CLRSB (__has_builtin(__builtin_clrsb))
> -#define COMPILER_HAS_BUILTIN_CLZ (__has_builtin(__builtin_clz))
> -#define COMPILER_HAS_BUILTIN_CTZ (__has_builtin(__builtin_ctz))
> -#define COMPILER_HAS_BUILTIN_FFS (__has_builtin(__builtin_ffs))
> -#define COMPILER_HAS_BUILTIN_POPCOUNT (__has_builtin(__builtin_popcount))
> -
> -#elif defined(__GNUC__) && !defined(VIXL_NO_COMPILER_BUILTINS)
> -// The documentation for these builtins is available at:
> -//
> https://gcc.gnu.org/onlinedocs/gcc-$MAJOR.$MINOR.$PATCHLEVEL/gcc//Other-Builtins.html
> -
> -# define COMPILER_HAS_BUILTIN_CLRSB (GCC_VERSION_OR_NEWER(4, 7, 0))
> -# define COMPILER_HAS_BUILTIN_CLZ (GCC_VERSION_OR_NEWER(3, 4, 0))
> -# define COMPILER_HAS_BUILTIN_CTZ (GCC_VERSION_OR_NEWER(3, 4, 0))
> -# define COMPILER_HAS_BUILTIN_FFS (GCC_VERSION_OR_NEWER(3, 4, 0))
> -# define COMPILER_HAS_BUILTIN_POPCOUNT (GCC_VERSION_OR_NEWER(3, 4, 0))
> -
> -#else
> -// One can define VIXL_NO_COMPILER_BUILTINS to force using the manually
> -// implemented C++ methods.
> -
> -#define COMPILER_HAS_BUILTIN_BSWAP false
> -#define COMPILER_HAS_BUILTIN_CLRSB false
> -#define COMPILER_HAS_BUILTIN_CLZ false
> -#define COMPILER_HAS_BUILTIN_CTZ false
> -#define COMPILER_HAS_BUILTIN_FFS false
> -#define COMPILER_HAS_BUILTIN_POPCOUNT false
> -
> -#endif
> -
> -
> -template<typename V>
> -inline bool IsPowerOf2(V value) {
> - return (value != 0) && ((value & (value - 1)) == 0);
> -}
> -
> -
> -// Declaration of fallback functions.
> -int CountLeadingSignBitsFallBack(int64_t value, int width);
> -int CountLeadingZerosFallBack(uint64_t value, int width);
> -int CountSetBitsFallBack(uint64_t value, int width);
> -int CountTrailingZerosFallBack(uint64_t value, int width);
> -
> -
> -// Implementation of intrinsics functions.
> -// TODO: The implementations could be improved for sizes different from 32bit
> -// and 64bit: we could mask the values and call the appropriate builtin.
> -
> -template<typename V>
> -inline int CountLeadingSignBits(V value, int width = (sizeof(V) * 8)) {
> -#if COMPILER_HAS_BUILTIN_CLRSB
> - if (width == 32) {
> - return __builtin_clrsb(value);
> - } else if (width == 64) {
> - return __builtin_clrsbll(value);
> - }
> -#endif
> - return CountLeadingSignBitsFallBack(value, width);
> -}
> -
> -
> -template<typename V>
> -inline int CountLeadingZeros(V value, int width = (sizeof(V) * 8)) {
> -#if COMPILER_HAS_BUILTIN_CLZ
> - if (width == 32) {
> - return (value == 0) ? 32 : __builtin_clz(static_cast<unsigned>(value));
> - } else if (width == 64) {
> - return (value == 0) ? 64 : __builtin_clzll(value);
> - }
> -#endif
> - return CountLeadingZerosFallBack(value, width);
> -}
> -
> -
> -template<typename V>
> -inline int CountSetBits(V value, int width = (sizeof(V) * 8)) {
> -#if COMPILER_HAS_BUILTIN_POPCOUNT
> - if (width == 32) {
> - return __builtin_popcount(static_cast<unsigned>(value));
> - } else if (width == 64) {
> - return __builtin_popcountll(value);
> - }
> -#endif
> - return CountSetBitsFallBack(value, width);
> -}
> -
> -
> -template<typename V>
> -inline int CountTrailingZeros(V value, int width = (sizeof(V) * 8)) {
> -#if COMPILER_HAS_BUILTIN_CTZ
> - if (width == 32) {
> - return (value == 0) ? 32 : __builtin_ctz(static_cast<unsigned>(value));
> - } else if (width == 64) {
> - return (value == 0) ? 64 : __builtin_ctzll(value);
> - }
> -#endif
> - return CountTrailingZerosFallBack(value, width);
> -}
> -
> -} // namespace vixl
> -
> -#endif // VIXL_COMPILER_INTRINSICS_H
> -
> diff --git a/disas/libvixl/vixl/globals.h b/disas/libvixl/vixl/globals.h
> deleted file mode 100644
> index 3a71942f1e..0000000000
> --- a/disas/libvixl/vixl/globals.h
> +++ /dev/null
> @@ -1,155 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_GLOBALS_H
> -#define VIXL_GLOBALS_H
> -
> -// Get standard C99 macros for integer types.
> -#ifndef __STDC_CONSTANT_MACROS
> -#define __STDC_CONSTANT_MACROS
> -#endif
> -
> -#ifndef __STDC_LIMIT_MACROS
> -#define __STDC_LIMIT_MACROS
> -#endif
> -
> -#ifndef __STDC_FORMAT_MACROS
> -#define __STDC_FORMAT_MACROS
> -#endif
> -
> -extern "C" {
> -#include <inttypes.h>
> -#include <stdint.h>
> -}
> -
> -#include <cassert>
> -#include <cstdarg>
> -#include <cstddef>
> -#include <cstdio>
> -#include <cstdlib>
> -
> -#include "vixl/platform.h"
> -
> -
> -typedef uint8_t byte;
> -
> -// Type for half-precision (16 bit) floating point numbers.
> -typedef uint16_t float16;
> -
> -const int KBytes = 1024;
> -const int MBytes = 1024 * KBytes;
> -
> -#define VIXL_ABORT() \
> - do { printf("in %s, line %i", __FILE__, __LINE__); abort(); } while
> (false)
> -#ifdef VIXL_DEBUG
> - #define VIXL_ASSERT(condition) assert(condition)
> - #define VIXL_CHECK(condition) VIXL_ASSERT(condition)
> - #define VIXL_UNIMPLEMENTED() \
> - do { fprintf(stderr, "UNIMPLEMENTED\t"); VIXL_ABORT(); } while (false)
> - #define VIXL_UNREACHABLE() \
> - do { fprintf(stderr, "UNREACHABLE\t"); VIXL_ABORT(); } while (false)
> -#else
> - #define VIXL_ASSERT(condition) ((void) 0)
> - #define VIXL_CHECK(condition) assert(condition)
> - #define VIXL_UNIMPLEMENTED() ((void) 0)
> - #define VIXL_UNREACHABLE() ((void) 0)
> -#endif
> -// This is not as powerful as template based assertions, but it is simple.
> -// It assumes that the descriptions are unique. If this starts being a
> problem,
> -// we can switch to a different implemention.
> -#define VIXL_CONCAT(a, b) a##b
> -#define VIXL_STATIC_ASSERT_LINE(line, condition) \
> - typedef char VIXL_CONCAT(STATIC_ASSERT_LINE_, line)[(condition) ? 1 : -1] \
> - __attribute__((unused))
> -#define VIXL_STATIC_ASSERT(condition) \
> - VIXL_STATIC_ASSERT_LINE(__LINE__, condition)
> -
> -template <typename T1>
> -inline void USE(T1) {}
> -
> -template <typename T1, typename T2>
> -inline void USE(T1, T2) {}
> -
> -template <typename T1, typename T2, typename T3>
> -inline void USE(T1, T2, T3) {}
> -
> -template <typename T1, typename T2, typename T3, typename T4>
> -inline void USE(T1, T2, T3, T4) {}
> -
> -#define VIXL_ALIGNMENT_EXCEPTION() \
> - do { fprintf(stderr, "ALIGNMENT EXCEPTION\t"); VIXL_ABORT(); } while (0)
> -
> -// The clang::fallthrough attribute is used along with the
> Wimplicit-fallthrough
> -// argument to annotate intentional fall-through between switch labels.
> -// For more information please refer to:
> -//
> http://clang.llvm.org/docs/AttributeReference.html#fallthrough-clang-fallthrough
> -#ifndef __has_warning
> - #define __has_warning(x) 0
> -#endif
> -
> -// Fallthrough annotation for Clang and C++11(201103L).
> -#if __has_warning("-Wimplicit-fallthrough") && __cplusplus >= 201103L
> - #define VIXL_FALLTHROUGH() [[clang::fallthrough]] //NOLINT
> -// Fallthrough annotation for GCC >= 7.
> -#elif __GNUC__ >= 7
> - #define VIXL_FALLTHROUGH() __attribute__((fallthrough))
> -#else
> - #define VIXL_FALLTHROUGH() do {} while (0)
> -#endif
> -
> -#if __cplusplus >= 201103L
> - #define VIXL_NO_RETURN [[noreturn]] //NOLINT
> -#else
> - #define VIXL_NO_RETURN __attribute__((noreturn))
> -#endif
> -
> -// Some functions might only be marked as "noreturn" for the DEBUG build.
> This
> -// macro should be used for such cases (for more details see what
> -// VIXL_UNREACHABLE expands to).
> -#ifdef VIXL_DEBUG
> - #define VIXL_DEBUG_NO_RETURN VIXL_NO_RETURN
> -#else
> - #define VIXL_DEBUG_NO_RETURN
> -#endif
> -
> -#ifdef VIXL_INCLUDE_SIMULATOR
> -#ifndef VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
> - #define VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE 1
> -#endif
> -#else
> -#ifndef VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
> - #define VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE 0
> -#endif
> -#if VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
> - #warning "Generating Simulator instructions without Simulator support."
> -#endif
> -#endif
> -
> -#ifdef USE_SIMULATOR
> - #error "Please see the release notes for USE_SIMULATOR."
> -#endif
> -
> -#endif // VIXL_GLOBALS_H
> diff --git a/disas/libvixl/vixl/invalset.h b/disas/libvixl/vixl/invalset.h
> deleted file mode 100644
> index 2e0871f8c3..0000000000
> --- a/disas/libvixl/vixl/invalset.h
> +++ /dev/null
> @@ -1,775 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_INVALSET_H_
> -#define VIXL_INVALSET_H_
> -
> -#include <cstring>
> -
> -#include <algorithm>
> -#include <vector>
> -
> -#include "vixl/globals.h"
> -
> -namespace vixl {
> -
> -// We define a custom data structure template and its iterator as `std`
> -// containers do not fit the performance requirements for some of our use
> cases.
> -//
> -// The structure behaves like an iterable unordered set with special
> properties
> -// and restrictions. "InvalSet" stands for "Invalidatable Set".
> -//
> -// Restrictions and requirements:
> -// - Adding an element already present in the set is illegal. In debug mode,
> -// this is checked at insertion time.
> -// - The templated class `ElementType` must provide comparison operators so
> that
> -// `std::sort()` can be used.
> -// - A key must be available to represent invalid elements.
> -// - Elements with an invalid key must compare higher or equal to any other
> -// element.
> -//
> -// Use cases and performance considerations:
> -// Our use cases present two specificities that allow us to design this
> -// structure to provide fast insertion *and* fast search and deletion
> -// operations:
> -// - Elements are (generally) inserted in order (sorted according to their
> key).
> -// - A key is available to mark elements as invalid (deleted).
> -// The backing `std::vector` allows for fast insertions. When
> -// searching for an element we ensure the elements are sorted (this is
> generally
> -// the case) and perform a binary search. When deleting an element we do not
> -// free the associated memory immediately. Instead, an element to be deleted
> is
> -// marked with the 'invalid' key. Other methods of the container take care of
> -// ignoring entries marked as invalid.
> -// To avoid the overhead of the `std::vector` container when only few entries
> -// are used, a number of elements are preallocated.
> -
> -// 'ElementType' and 'KeyType' are respectively the types of the elements and
> -// their key. The structure only reclaims memory when safe to do so, if the
> -// number of elements that can be reclaimed is greater than `RECLAIM_FROM`
> and
> -// greater than `<total number of elements> / RECLAIM_FACTOR.
> -#define TEMPLATE_INVALSET_P_DECL
> \
> - class ElementType,
> \
> - unsigned N_PREALLOCATED_ELEMENTS,
> \
> - class KeyType,
> \
> - KeyType INVALID_KEY,
> \
> - size_t RECLAIM_FROM,
> \
> - unsigned RECLAIM_FACTOR
> -
> -#define TEMPLATE_INVALSET_P_DEF
> \
> -ElementType, N_PREALLOCATED_ELEMENTS,
> \
> -KeyType, INVALID_KEY, RECLAIM_FROM, RECLAIM_FACTOR
> -
> -template<class S> class InvalSetIterator; // Forward declaration.
> -
> -template<TEMPLATE_INVALSET_P_DECL> class InvalSet {
> - public:
> - InvalSet();
> - ~InvalSet();
> -
> - static const size_t kNPreallocatedElements = N_PREALLOCATED_ELEMENTS;
> - static const KeyType kInvalidKey = INVALID_KEY;
> -
> - // It is illegal to insert an element already present in the set.
> - void insert(const ElementType& element);
> -
> - // Looks for the specified element in the set and - if found - deletes it.
> - void erase(const ElementType& element);
> -
> - // This indicates the number of (valid) elements stored in this set.
> - size_t size() const;
> -
> - // Returns true if no elements are stored in the set.
> - // Note that this does not mean the the backing storage is empty: it can
> still
> - // contain invalid elements.
> - bool empty() const;
> -
> - void clear();
> -
> - const ElementType min_element();
> -
> - // This returns the key of the minimum element in the set.
> - KeyType min_element_key();
> -
> - static bool IsValid(const ElementType& element);
> - static KeyType Key(const ElementType& element);
> - static void SetKey(ElementType* element, KeyType key);
> -
> - protected:
> - // Returns a pointer to the element in vector_ if it was found, or NULL
> - // otherwise.
> - ElementType* Search(const ElementType& element);
> -
> - // The argument *must* point to an element stored in *this* set.
> - // This function is not allowed to move elements in the backing vector
> - // storage.
> - void EraseInternal(ElementType* element);
> -
> - // The elements in the range searched must be sorted.
> - ElementType* BinarySearch(const ElementType& element,
> - ElementType* start,
> - ElementType* end) const;
> -
> - // Sort the elements.
> - enum SortType {
> - // The 'hard' version guarantees that invalid elements are moved to the
> end
> - // of the container.
> - kHardSort,
> - // The 'soft' version only guarantees that the elements will be sorted.
> - // Invalid elements may still be present anywhere in the set.
> - kSoftSort
> - };
> - void Sort(SortType sort_type);
> -
> - // Delete the elements that have an invalid key. The complexity is linear
> - // with the size of the vector.
> - void Clean();
> -
> - const ElementType Front() const;
> - const ElementType Back() const;
> -
> - // Delete invalid trailing elements and return the last valid element in
> the
> - // set.
> - const ElementType CleanBack();
> -
> - // Returns a pointer to the start or end of the backing storage.
> - const ElementType* StorageBegin() const;
> - const ElementType* StorageEnd() const;
> - ElementType* StorageBegin();
> - ElementType* StorageEnd();
> -
> - // Returns the index of the element within the backing storage. The element
> - // must belong to the backing storage.
> - size_t ElementIndex(const ElementType* element) const;
> -
> - // Returns the element at the specified index in the backing storage.
> - const ElementType* ElementAt(size_t index) const;
> - ElementType* ElementAt(size_t index);
> -
> - static const ElementType* FirstValidElement(const ElementType* from,
> - const ElementType* end);
> -
> - void CacheMinElement();
> - const ElementType CachedMinElement() const;
> -
> - bool ShouldReclaimMemory() const;
> - void ReclaimMemory();
> -
> - bool IsUsingVector() const { return vector_ != NULL; }
> - void set_sorted(bool sorted) { sorted_ = sorted; }
> -
> - // We cache some data commonly required by users to improve performance.
> - // We cannot cache pointers to elements as we do not control the backing
> - // storage.
> - bool valid_cached_min_;
> - size_t cached_min_index_; // Valid iff `valid_cached_min_` is true.
> - KeyType cached_min_key_; // Valid iff `valid_cached_min_` is true.
> -
> - // Indicates whether the elements are sorted.
> - bool sorted_;
> -
> - // This represents the number of (valid) elements in this set.
> - size_t size_;
> -
> - // The backing storage is either the array of preallocated elements or the
> - // vector. The structure starts by using the preallocated elements, and
> - // transitions (permanently) to using the vector once more than
> - // kNPreallocatedElements are used.
> - // Elements are only invalidated when using the vector. The preallocated
> - // storage always only contains valid elements.
> - ElementType preallocated_[kNPreallocatedElements];
> - std::vector<ElementType>* vector_;
> -
> -#ifdef VIXL_DEBUG
> - // Iterators acquire and release this monitor. While a set is acquired,
> - // certain operations are illegal to ensure that the iterator will
> - // correctly iterate over the elements in the set.
> - int monitor_;
> - int monitor() const { return monitor_; }
> - void Acquire() { monitor_++; }
> - void Release() {
> - monitor_--;
> - VIXL_ASSERT(monitor_ >= 0);
> - }
> -#endif
> -
> - friend class InvalSetIterator<InvalSet<TEMPLATE_INVALSET_P_DEF> >;
> - typedef ElementType _ElementType;
> - typedef KeyType _KeyType;
> -};
> -
> -
> -template<class S> class InvalSetIterator {
> - private:
> - // Redefine types to mirror the associated set types.
> - typedef typename S::_ElementType ElementType;
> - typedef typename S::_KeyType KeyType;
> -
> - public:
> - explicit InvalSetIterator(S* inval_set);
> - ~InvalSetIterator();
> -
> - ElementType* Current() const;
> - void Advance();
> - bool Done() const;
> -
> - // Mark this iterator as 'done'.
> - void Finish();
> -
> - // Delete the current element and advance the iterator to point to the next
> - // element.
> - void DeleteCurrentAndAdvance();
> -
> - static bool IsValid(const ElementType& element);
> - static KeyType Key(const ElementType& element);
> -
> - protected:
> - void MoveToValidElement();
> -
> - // Indicates if the iterator is looking at the vector or at the
> preallocated
> - // elements.
> - const bool using_vector_;
> - // Used when looking at the preallocated elements, or in debug mode when
> using
> - // the vector to track how many times the iterator has advanced.
> - size_t index_;
> - typename std::vector<ElementType>::iterator iterator_;
> - S* inval_set_;
> -};
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -InvalSet<TEMPLATE_INVALSET_P_DEF>::InvalSet()
> - : valid_cached_min_(false),
> - sorted_(true), size_(0), vector_(NULL) {
> -#ifdef VIXL_DEBUG
> - monitor_ = 0;
> -#endif
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -InvalSet<TEMPLATE_INVALSET_P_DEF>::~InvalSet() {
> - VIXL_ASSERT(monitor_ == 0);
> - delete vector_;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::insert(const ElementType& element) {
> - VIXL_ASSERT(monitor() == 0);
> - VIXL_ASSERT(IsValid(element));
> - VIXL_ASSERT(Search(element) == NULL);
> - set_sorted(empty() || (sorted_ && (element > CleanBack())));
> - if (IsUsingVector()) {
> - vector_->push_back(element);
> - } else {
> - if (size_ < kNPreallocatedElements) {
> - preallocated_[size_] = element;
> - } else {
> - // Transition to using the vector.
> - vector_ = new std::vector<ElementType>(preallocated_,
> - preallocated_ + size_);
> - vector_->push_back(element);
> - }
> - }
> - size_++;
> -
> - if (valid_cached_min_ && (element < min_element())) {
> - cached_min_index_ = IsUsingVector() ? vector_->size() - 1 : size_ - 1;
> - cached_min_key_ = Key(element);
> - valid_cached_min_ = true;
> - }
> -
> - if (ShouldReclaimMemory()) {
> - ReclaimMemory();
> - }
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::erase(const ElementType& element) {
> - VIXL_ASSERT(monitor() == 0);
> - VIXL_ASSERT(IsValid(element));
> - ElementType* local_element = Search(element);
> - if (local_element != NULL) {
> - EraseInternal(local_element);
> - }
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::Search(
> - const ElementType& element) {
> - VIXL_ASSERT(monitor() == 0);
> - if (empty()) {
> - return NULL;
> - }
> - if (ShouldReclaimMemory()) {
> - ReclaimMemory();
> - }
> - if (!sorted_) {
> - Sort(kHardSort);
> - }
> - if (!valid_cached_min_) {
> - CacheMinElement();
> - }
> - return BinarySearch(element, ElementAt(cached_min_index_), StorageEnd());
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::size() const {
> - return size_;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -bool InvalSet<TEMPLATE_INVALSET_P_DEF>::empty() const {
> - return size_ == 0;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::clear() {
> - VIXL_ASSERT(monitor() == 0);
> - size_ = 0;
> - if (IsUsingVector()) {
> - vector_->clear();
> - }
> - set_sorted(true);
> - valid_cached_min_ = false;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element() {
> - VIXL_ASSERT(monitor() == 0);
> - VIXL_ASSERT(!empty());
> - CacheMinElement();
> - return *ElementAt(cached_min_index_);
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -KeyType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element_key() {
> - VIXL_ASSERT(monitor() == 0);
> - if (valid_cached_min_) {
> - return cached_min_key_;
> - } else {
> - return Key(min_element());
> - }
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -bool InvalSet<TEMPLATE_INVALSET_P_DEF>::IsValid(const ElementType& element) {
> - return Key(element) != kInvalidKey;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::EraseInternal(ElementType* element) {
> - // Note that this function must be safe even while an iterator has acquired
> - // this set.
> - VIXL_ASSERT(element != NULL);
> - size_t deleted_index = ElementIndex(element);
> - if (IsUsingVector()) {
> - VIXL_ASSERT((&(vector_->front()) <= element) &&
> - (element <= &(vector_->back())));
> - SetKey(element, kInvalidKey);
> - } else {
> - VIXL_ASSERT((preallocated_ <= element) &&
> - (element < (preallocated_ + kNPreallocatedElements)));
> - ElementType* end = preallocated_ + kNPreallocatedElements;
> - size_t copy_size = sizeof(*element) * (end - element - 1);
> - memmove(element, element + 1, copy_size);
> - }
> - size_--;
> -
> - if (valid_cached_min_ &&
> - (deleted_index == cached_min_index_)) {
> - if (sorted_ && !empty()) {
> - const ElementType* min = FirstValidElement(element, StorageEnd());
> - cached_min_index_ = ElementIndex(min);
> - cached_min_key_ = Key(*min);
> - valid_cached_min_ = true;
> - } else {
> - valid_cached_min_ = false;
> - }
> - }
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::BinarySearch(
> - const ElementType& element, ElementType* start, ElementType* end) const {
> - if (start == end) {
> - return NULL;
> - }
> - VIXL_ASSERT(sorted_);
> - VIXL_ASSERT(start < end);
> - VIXL_ASSERT(!empty());
> -
> - // Perform a binary search through the elements while ignoring invalid
> - // elements.
> - ElementType* elements = start;
> - size_t low = 0;
> - size_t high = (end - start) - 1;
> - while (low < high) {
> - // Find valid bounds.
> - while (!IsValid(elements[low]) && (low < high)) ++low;
> - while (!IsValid(elements[high]) && (low < high)) --high;
> - VIXL_ASSERT(low <= high);
> - // Avoid overflow when computing the middle index.
> - size_t middle = low / 2 + high / 2 + (low & high & 1);
> - if ((middle == low) || (middle == high)) {
> - break;
> - }
> - while (!IsValid(elements[middle]) && (middle < high - 1)) ++middle;
> - while (!IsValid(elements[middle]) && (low + 1 < middle)) --middle;
> - if (!IsValid(elements[middle])) {
> - break;
> - }
> - if (elements[middle] < element) {
> - low = middle;
> - } else {
> - high = middle;
> - }
> - }
> -
> - if (elements[low] == element) return &elements[low];
> - if (elements[high] == element) return &elements[high];
> - return NULL;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::Sort(SortType sort_type) {
> - VIXL_ASSERT(monitor() == 0);
> - if (sort_type == kSoftSort) {
> - if (sorted_) {
> - return;
> - }
> - }
> - if (empty()) {
> - return;
> - }
> -
> - Clean();
> - std::sort(StorageBegin(), StorageEnd());
> -
> - set_sorted(true);
> - cached_min_index_ = 0;
> - cached_min_key_ = Key(Front());
> - valid_cached_min_ = true;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::Clean() {
> - VIXL_ASSERT(monitor() == 0);
> - if (empty() || !IsUsingVector()) {
> - return;
> - }
> - // Manually iterate through the vector storage to discard invalid elements.
> - ElementType* start = &(vector_->front());
> - ElementType* end = start + vector_->size();
> - ElementType* c = start;
> - ElementType* first_invalid;
> - ElementType* first_valid;
> - ElementType* next_invalid;
> -
> - while (c < end && IsValid(*c)) { c++; }
> - first_invalid = c;
> -
> - while (c < end) {
> - while (c < end && !IsValid(*c)) { c++; }
> - first_valid = c;
> - while (c < end && IsValid(*c)) { c++; }
> - next_invalid = c;
> -
> - ptrdiff_t n_moved_elements = (next_invalid - first_valid);
> - memmove(first_invalid, first_valid, n_moved_elements * sizeof(*c));
> - first_invalid = first_invalid + n_moved_elements;
> - c = next_invalid;
> - }
> -
> - // Delete the trailing invalid elements.
> - vector_->erase(vector_->begin() + (first_invalid - start), vector_->end());
> - VIXL_ASSERT(vector_->size() == size_);
> -
> - if (sorted_) {
> - valid_cached_min_ = true;
> - cached_min_index_ = 0;
> - cached_min_key_ = Key(*ElementAt(0));
> - } else {
> - valid_cached_min_ = false;
> - }
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Front() const {
> - VIXL_ASSERT(!empty());
> - return IsUsingVector() ? vector_->front() : preallocated_[0];
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Back() const {
> - VIXL_ASSERT(!empty());
> - return IsUsingVector() ? vector_->back() : preallocated_[size_ - 1];
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::CleanBack() {
> - VIXL_ASSERT(monitor() == 0);
> - if (IsUsingVector()) {
> - // Delete the invalid trailing elements.
> - typename std::vector<ElementType>::reverse_iterator it =
> vector_->rbegin();
> - while (!IsValid(*it)) {
> - it++;
> - }
> - vector_->erase(it.base(), vector_->end());
> - }
> - return Back();
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() const {
> - return IsUsingVector() ? &(vector_->front()) : preallocated_;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() const {
> - return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() {
> - return IsUsingVector() ? &(vector_->front()) : preallocated_;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() {
> - return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementIndex(
> - const ElementType* element) const {
> - VIXL_ASSERT((StorageBegin() <= element) && (element < StorageEnd()));
> - return element - StorageBegin();
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(
> - size_t index) const {
> - VIXL_ASSERT(
> - (IsUsingVector() && (index < vector_->size())) || (index < size_));
> - return StorageBegin() + index;
> -}
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(size_t index) {
> - VIXL_ASSERT(
> - (IsUsingVector() && (index < vector_->size())) || (index < size_));
> - return StorageBegin() + index;
> -}
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::FirstValidElement(
> - const ElementType* from, const ElementType* end) {
> - while ((from < end) && !IsValid(*from)) {
> - from++;
> - }
> - return from;
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::CacheMinElement() {
> - VIXL_ASSERT(monitor() == 0);
> - VIXL_ASSERT(!empty());
> -
> - if (valid_cached_min_) {
> - return;
> - }
> -
> - if (sorted_) {
> - const ElementType* min = FirstValidElement(StorageBegin(), StorageEnd());
> - cached_min_index_ = ElementIndex(min);
> - cached_min_key_ = Key(*min);
> - valid_cached_min_ = true;
> - } else {
> - Sort(kHardSort);
> - }
> - VIXL_ASSERT(valid_cached_min_);
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -bool InvalSet<TEMPLATE_INVALSET_P_DEF>::ShouldReclaimMemory() const {
> - if (!IsUsingVector()) {
> - return false;
> - }
> - size_t n_invalid_elements = vector_->size() - size_;
> - return (n_invalid_elements > RECLAIM_FROM) &&
> - (n_invalid_elements > vector_->size() / RECLAIM_FACTOR);
> -}
> -
> -
> -template<TEMPLATE_INVALSET_P_DECL>
> -void InvalSet<TEMPLATE_INVALSET_P_DEF>::ReclaimMemory() {
> - VIXL_ASSERT(monitor() == 0);
> - Clean();
> -}
> -
> -
> -template<class S>
> -InvalSetIterator<S>::InvalSetIterator(S* inval_set)
> - : using_vector_((inval_set != NULL) && inval_set->IsUsingVector()),
> - index_(0),
> - inval_set_(inval_set) {
> - if (inval_set != NULL) {
> - inval_set->Sort(S::kSoftSort);
> -#ifdef VIXL_DEBUG
> - inval_set->Acquire();
> -#endif
> - if (using_vector_) {
> - iterator_ = typename std::vector<ElementType>::iterator(
> - inval_set_->vector_->begin());
> - }
> - MoveToValidElement();
> - }
> -}
> -
> -
> -template<class S>
> -InvalSetIterator<S>::~InvalSetIterator() {
> -#ifdef VIXL_DEBUG
> - if (inval_set_ != NULL) {
> - inval_set_->Release();
> - }
> -#endif
> -}
> -
> -
> -template<class S>
> -typename S::_ElementType* InvalSetIterator<S>::Current() const {
> - VIXL_ASSERT(!Done());
> - if (using_vector_) {
> - return &(*iterator_);
> - } else {
> - return &(inval_set_->preallocated_[index_]);
> - }
> -}
> -
> -
> -template<class S>
> -void InvalSetIterator<S>::Advance() {
> - VIXL_ASSERT(!Done());
> - if (using_vector_) {
> - iterator_++;
> -#ifdef VIXL_DEBUG
> - index_++;
> -#endif
> - MoveToValidElement();
> - } else {
> - index_++;
> - }
> -}
> -
> -
> -template<class S>
> -bool InvalSetIterator<S>::Done() const {
> - if (using_vector_) {
> - bool done = (iterator_ == inval_set_->vector_->end());
> - VIXL_ASSERT(done == (index_ == inval_set_->size()));
> - return done;
> - } else {
> - return index_ == inval_set_->size();
> - }
> -}
> -
> -
> -template<class S>
> -void InvalSetIterator<S>::Finish() {
> - VIXL_ASSERT(inval_set_->sorted_);
> - if (using_vector_) {
> - iterator_ = inval_set_->vector_->end();
> - }
> - index_ = inval_set_->size();
> -}
> -
> -
> -template<class S>
> -void InvalSetIterator<S>::DeleteCurrentAndAdvance() {
> - if (using_vector_) {
> - inval_set_->EraseInternal(&(*iterator_));
> - MoveToValidElement();
> - } else {
> - inval_set_->EraseInternal(inval_set_->preallocated_ + index_);
> - }
> -}
> -
> -
> -template<class S>
> -bool InvalSetIterator<S>::IsValid(const ElementType& element) {
> - return S::IsValid(element);
> -}
> -
> -
> -template<class S>
> -typename S::_KeyType InvalSetIterator<S>::Key(const ElementType& element) {
> - return S::Key(element);
> -}
> -
> -
> -template<class S>
> -void InvalSetIterator<S>::MoveToValidElement() {
> - if (using_vector_) {
> - while ((iterator_ != inval_set_->vector_->end()) &&
> !IsValid(*iterator_)) {
> - iterator_++;
> - }
> - } else {
> - VIXL_ASSERT(inval_set_->empty() ||
> IsValid(inval_set_->preallocated_[0]));
> - // Nothing to do.
> - }
> -}
> -
> -#undef TEMPLATE_INVALSET_P_DECL
> -#undef TEMPLATE_INVALSET_P_DEF
> -
> -} // namespace vixl
> -
> -#endif // VIXL_INVALSET_H_
> diff --git a/disas/libvixl/vixl/platform.h b/disas/libvixl/vixl/platform.h
> deleted file mode 100644
> index 26a74de81b..0000000000
> --- a/disas/libvixl/vixl/platform.h
> +++ /dev/null
> @@ -1,39 +0,0 @@
> -// Copyright 2014, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef PLATFORM_H
> -#define PLATFORM_H
> -
> -// Define platform specific functionalities.
> -extern "C" {
> -#include <signal.h>
> -}
> -
> -namespace vixl {
> -inline void HostBreakpoint() { raise(SIGINT); }
> -} // namespace vixl
> -
> -#endif
> diff --git a/disas/libvixl/vixl/utils.h b/disas/libvixl/vixl/utils.h
> deleted file mode 100644
> index ecb0f1014a..0000000000
> --- a/disas/libvixl/vixl/utils.h
> +++ /dev/null
> @@ -1,286 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#ifndef VIXL_UTILS_H
> -#define VIXL_UTILS_H
> -
> -#include <cmath>
> -#include <cstring>
> -#include "vixl/globals.h"
> -#include "vixl/compiler-intrinsics.h"
> -
> -namespace vixl {
> -
> -// Macros for compile-time format checking.
> -#if GCC_VERSION_OR_NEWER(4, 4, 0)
> -#define PRINTF_CHECK(format_index, varargs_index) \
> - __attribute__((format(gnu_printf, format_index, varargs_index)))
> -#else
> -#define PRINTF_CHECK(format_index, varargs_index)
> -#endif
> -
> -// Check number width.
> -inline bool is_intn(unsigned n, int64_t x) {
> - VIXL_ASSERT((0 < n) && (n < 64));
> - int64_t limit = INT64_C(1) << (n - 1);
> - return (-limit <= x) && (x < limit);
> -}
> -
> -inline bool is_uintn(unsigned n, int64_t x) {
> - VIXL_ASSERT((0 < n) && (n < 64));
> - return !(x >> n);
> -}
> -
> -inline uint32_t truncate_to_intn(unsigned n, int64_t x) {
> - VIXL_ASSERT((0 < n) && (n < 64));
> - return static_cast<uint32_t>(x & ((INT64_C(1) << n) - 1));
> -}
> -
> -#define INT_1_TO_63_LIST(V)
> \
> -V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8)
> \
> -V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16)
> \
> -V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)
> \
> -V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
> \
> -V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)
> \
> -V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)
> \
> -V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)
> \
> -V(57) V(58) V(59) V(60) V(61) V(62) V(63)
> -
> -#define DECLARE_IS_INT_N(N)
> \
> -inline bool is_int##N(int64_t x) { return is_intn(N, x); }
> -#define DECLARE_IS_UINT_N(N)
> \
> -inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
> -#define DECLARE_TRUNCATE_TO_INT_N(N)
> \
> -inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
> -INT_1_TO_63_LIST(DECLARE_IS_INT_N)
> -INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
> -INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
> -#undef DECLARE_IS_INT_N
> -#undef DECLARE_IS_UINT_N
> -#undef DECLARE_TRUNCATE_TO_INT_N
> -
> -// Bit field extraction.
> -inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
> - return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
> -}
> -
> -inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
> - return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
> -}
> -
> -inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
> - return (x << (31 - msb)) >> (lsb + 31 - msb);
> -}
> -
> -inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
> - return (x << (63 - msb)) >> (lsb + 63 - msb);
> -}
> -
> -// Floating point representation.
> -uint32_t float_to_rawbits(float value);
> -uint64_t double_to_rawbits(double value);
> -float rawbits_to_float(uint32_t bits);
> -double rawbits_to_double(uint64_t bits);
> -
> -uint32_t float_sign(float val);
> -uint32_t float_exp(float val);
> -uint32_t float_mantissa(float val);
> -uint32_t double_sign(double val);
> -uint32_t double_exp(double val);
> -uint64_t double_mantissa(double val);
> -
> -float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa);
> -double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa);
> -
> -// An fpclassify() function for 16-bit half-precision floats.
> -int float16classify(float16 value);
> -
> -// NaN tests.
> -inline bool IsSignallingNaN(double num) {
> - const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
> - uint64_t raw = double_to_rawbits(num);
> - if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
> - return true;
> - }
> - return false;
> -}
> -
> -
> -inline bool IsSignallingNaN(float num) {
> - const uint32_t kFP32QuietNaNMask = 0x00400000;
> - uint32_t raw = float_to_rawbits(num);
> - if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
> - return true;
> - }
> - return false;
> -}
> -
> -
> -inline bool IsSignallingNaN(float16 num) {
> - const uint16_t kFP16QuietNaNMask = 0x0200;
> - return (float16classify(num) == FP_NAN) &&
> - ((num & kFP16QuietNaNMask) == 0);
> -}
> -
> -
> -template <typename T>
> -inline bool IsQuietNaN(T num) {
> - return std::isnan(num) && !IsSignallingNaN(num);
> -}
> -
> -
> -// Convert the NaN in 'num' to a quiet NaN.
> -inline double ToQuietNaN(double num) {
> - const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
> - VIXL_ASSERT(std::isnan(num));
> - return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
> -}
> -
> -
> -inline float ToQuietNaN(float num) {
> - const uint32_t kFP32QuietNaNMask = 0x00400000;
> - VIXL_ASSERT(std::isnan(num));
> - return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
> -}
> -
> -
> -// Fused multiply-add.
> -inline double FusedMultiplyAdd(double op1, double op2, double a) {
> - return fma(op1, op2, a);
> -}
> -
> -
> -inline float FusedMultiplyAdd(float op1, float op2, float a) {
> - return fmaf(op1, op2, a);
> -}
> -
> -
> -inline uint64_t LowestSetBit(uint64_t value) {
> - return value & -value;
> -}
> -
> -
> -template<typename T>
> -inline int HighestSetBitPosition(T value) {
> - VIXL_ASSERT(value != 0);
> - return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
> -}
> -
> -
> -template<typename V>
> -inline int WhichPowerOf2(V value) {
> - VIXL_ASSERT(IsPowerOf2(value));
> - return CountTrailingZeros(value);
> -}
> -
> -
> -unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
> -
> -
> -template <typename T>
> -T ReverseBits(T value) {
> - VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
> - (sizeof(value) == 4) || (sizeof(value) == 8));
> - T result = 0;
> - for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
> - result = (result << 1) | (value & 1);
> - value >>= 1;
> - }
> - return result;
> -}
> -
> -
> -template <typename T>
> -T ReverseBytes(T value, int block_bytes_log2) {
> - VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
> - VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
> - // Split the 64-bit value into an 8-bit array, where b[0] is the least
> - // significant byte, and b[7] is the most significant.
> - uint8_t bytes[8];
> - uint64_t mask = UINT64_C(0xff00000000000000);
> - for (int i = 7; i >= 0; i--) {
> - bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
> - mask >>= 8;
> - }
> -
> - // Permutation tables for REV instructions.
> - // permute_table[0] is used by REV16_x, REV16_w
> - // permute_table[1] is used by REV32_x, REV_w
> - // permute_table[2] is used by REV_x
> - VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
> - static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
> - {4, 5, 6, 7, 0, 1, 2, 3},
> - {0, 1, 2, 3, 4, 5, 6, 7} };
> - T result = 0;
> - for (int i = 0; i < 8; i++) {
> - result <<= 8;
> - result |= bytes[permute_table[block_bytes_log2 - 1][i]];
> - }
> - return result;
> -}
> -
> -
> -// Pointer alignment
> -// TODO: rename/refactor to make it specific to instructions.
> -template<typename T>
> -bool IsWordAligned(T pointer) {
> - VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); //
> NOLINT(runtime/sizeof)
> - return ((intptr_t)(pointer) & 3) == 0;
> -}
> -
> -// Increment a pointer (up to 64 bits) until it has the specified alignment.
> -template<class T>
> -T AlignUp(T pointer, size_t alignment) {
> - // Use C-style casts to get static_cast behaviour for integral types (T),
> and
> - // reinterpret_cast behaviour for other types.
> -
> - uint64_t pointer_raw = (uint64_t)pointer;
> - VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
> -
> - size_t align_step = (alignment - pointer_raw) % alignment;
> - VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
> -
> - return (T)(pointer_raw + align_step);
> -}
> -
> -// Decrement a pointer (up to 64 bits) until it has the specified alignment.
> -template<class T>
> -T AlignDown(T pointer, size_t alignment) {
> - // Use C-style casts to get static_cast behaviour for integral types (T),
> and
> - // reinterpret_cast behaviour for other types.
> -
> - uint64_t pointer_raw = (uint64_t)pointer;
> - VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
> -
> - size_t align_step = pointer_raw % alignment;
> - VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
> -
> - return (T)(pointer_raw - align_step);
> -}
> -
> -} // namespace vixl
> -
> -#endif // VIXL_UTILS_H
> diff --git a/include/exec/poison.h b/include/exec/poison.h
> index 9f1ca3409c..ec7fbc67e1 100644
> --- a/include/exec/poison.h
> +++ b/include/exec/poison.h
> @@ -65,8 +65,6 @@
> #pragma GCC poison CPU_INTERRUPT_TGT_INT_2
>
> #pragma GCC poison CONFIG_ALPHA_DIS
> -#pragma GCC poison CONFIG_ARM_A64_DIS
> -#pragma GCC poison CONFIG_ARM_DIS
> #pragma GCC poison CONFIG_CRIS_DIS
> #pragma GCC poison CONFIG_HPPA_DIS
> #pragma GCC poison CONFIG_I386_DIS
> diff --git a/disas.c b/disas.c
> index b2753e1902..e31438f349 100644
> --- a/disas.c
> +++ b/disas.c
> @@ -178,9 +178,6 @@ static void initialize_debug_host(CPUDebug *s)
> #endif
> #elif defined(__aarch64__)
> s->info.cap_arch = CS_ARCH_ARM64;
> -# ifdef CONFIG_ARM_A64_DIS
> - s->info.print_insn = print_insn_arm_a64;
> -# endif
> #elif defined(__alpha__)
> s->info.print_insn = print_insn_alpha;
> #elif defined(__sparc__)
> diff --git a/target/arm/cpu.c b/target/arm/cpu.c
> index d2bd74c2ed..b57beb1536 100644
> --- a/target/arm/cpu.c
> +++ b/target/arm/cpu.c
> @@ -828,13 +828,6 @@ static void arm_disas_set_info(CPUState *cpu,
> disassemble_info *info)
> bool sctlr_b;
>
> if (is_a64(env)) {
> - /* We might not be compiled with the A64 disassembler
> - * because it needs a C++ compiler. Leave print_insn
> - * unset in this case to use the caller default behaviour.
> - */
> -#if defined(CONFIG_ARM_A64_DIS)
> - info->print_insn = print_insn_arm_a64;
> -#endif
> info->cap_arch = CS_ARCH_ARM64;
> info->cap_insn_unit = 4;
> info->cap_insn_split = 4;
> diff --git a/MAINTAINERS b/MAINTAINERS
> index 5fe8f7eca2..fcf398e695 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -165,8 +165,6 @@ F: tests/qtest/arm-cpu-features.c
> F: hw/arm/
> F: hw/cpu/a*mpcore.c
> F: include/hw/cpu/a*mpcore.h
> -F: disas/arm-a64.cc
> -F: disas/libvixl/
> F: docs/system/target-arm.rst
> F: docs/system/arm/cpu-features.rst
>
> @@ -3271,8 +3269,6 @@ M: Richard Henderson <richard.henderson@linaro.org>
> S: Maintained
> L: qemu-arm@nongnu.org
> F: tcg/aarch64/
> -F: disas/arm-a64.cc
> -F: disas/libvixl/
>
> ARM TCG target
> M: Richard Henderson <richard.henderson@linaro.org>
> diff --git a/disas/arm-a64.cc b/disas/arm-a64.cc
> deleted file mode 100644
> index a1402a2e07..0000000000
> --- a/disas/arm-a64.cc
> +++ /dev/null
> @@ -1,101 +0,0 @@
> -/*
> - * ARM A64 disassembly output wrapper to libvixl
> - * Copyright (c) 2013 Linaro Limited
> - * Written by Claudio Fontana
> - *
> - * This program is free software: you can redistribute it and/or modify
> - * it under the terms of the GNU General Public License as published by
> - * the Free Software Foundation, either version 2 of the License, or
> - * (at your option) any later version.
> - *
> - * This program is distributed in the hope that it will be useful,
> - * but WITHOUT ANY WARRANTY; without even the implied warranty of
> - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> - * GNU General Public License for more details.
> - *
> - * You should have received a copy of the GNU General Public License
> - * along with this program. If not, see <http://www.gnu.org/licenses/>.
> - */
> -
> -#include "qemu/osdep.h"
> -#include "disas/dis-asm.h"
> -
> -#include "vixl/a64/disasm-a64.h"
> -
> -using namespace vixl;
> -
> -static Decoder *vixl_decoder = NULL;
> -static Disassembler *vixl_disasm = NULL;
> -
> -/* We don't use libvixl's PrintDisassembler because its output
> - * is a little unhelpful (trailing newlines, for example).
> - * Instead we use our own very similar variant so we have
> - * control over the format.
> - */
> -class QEMUDisassembler : public Disassembler {
> -public:
> - QEMUDisassembler() : printf_(NULL), stream_(NULL) { }
> - ~QEMUDisassembler() { }
> -
> - void SetStream(FILE *stream) {
> - stream_ = stream;
> - }
> -
> - void SetPrintf(fprintf_function printf_fn) {
> - printf_ = printf_fn;
> - }
> -
> -protected:
> - virtual void ProcessOutput(const Instruction *instr) {
> - printf_(stream_, "%08" PRIx32 " %s",
> - instr->InstructionBits(), GetOutput());
> - }
> -
> -private:
> - fprintf_function printf_;
> - FILE *stream_;
> -};
> -
> -static int vixl_is_initialized(void)
> -{
> - return vixl_decoder != NULL;
> -}
> -
> -static void vixl_init() {
> - vixl_decoder = new Decoder();
> - vixl_disasm = new QEMUDisassembler();
> - vixl_decoder->AppendVisitor(vixl_disasm);
> -}
> -
> -#define INSN_SIZE 4
> -
> -/* Disassemble ARM A64 instruction. This is our only entry
> - * point from QEMU's C code.
> - */
> -int print_insn_arm_a64(uint64_t addr, disassemble_info *info)
> -{
> - uint8_t bytes[INSN_SIZE];
> - uint32_t instrval;
> - const Instruction *instr;
> - int status;
> -
> - status = info->read_memory_func(addr, bytes, INSN_SIZE, info);
> - if (status != 0) {
> - info->memory_error_func(status, addr, info);
> - return -1;
> - }
> -
> - if (!vixl_is_initialized()) {
> - vixl_init();
> - }
> -
> - ((QEMUDisassembler *)vixl_disasm)->SetPrintf(info->fprintf_func);
> - ((QEMUDisassembler *)vixl_disasm)->SetStream(info->stream);
> -
> - instrval = bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24;
> - instr = reinterpret_cast<const Instruction *>(&instrval);
> - vixl_disasm->MapCodeAddress(addr, instr);
> - vixl_decoder->Decode(instr);
> -
> - return INSN_SIZE;
> -}
> diff --git a/disas/libvixl/LICENCE b/disas/libvixl/LICENCE
> deleted file mode 100644
> index b7e160a3f5..0000000000
> --- a/disas/libvixl/LICENCE
> +++ /dev/null
> @@ -1,30 +0,0 @@
> -LICENCE
> -=======
> -
> -The software in this repository is covered by the following licence.
> -
> -// Copyright 2013, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> diff --git a/disas/libvixl/README b/disas/libvixl/README
> deleted file mode 100644
> index 932a41adf7..0000000000
> --- a/disas/libvixl/README
> +++ /dev/null
> @@ -1,11 +0,0 @@
> -
> -The code in this directory is a subset of libvixl:
> - https://github.com/armvixl/vixl
> -(specifically, it is the set of files needed for disassembly only,
> -taken from libvixl 1.12).
> -Bugfixes should preferably be sent upstream initially.
> -
> -The disassembler does not currently support the entire A64 instruction
> -set. Notably:
> - * Limited support for system instructions.
> - * A few miscellaneous integer and floating point instructions are missing.
> diff --git a/disas/libvixl/meson.build b/disas/libvixl/meson.build
> deleted file mode 100644
> index 5e2eb33e8e..0000000000
> --- a/disas/libvixl/meson.build
> +++ /dev/null
> @@ -1,7 +0,0 @@
> -libvixl_ss.add(files(
> - 'vixl/a64/decoder-a64.cc',
> - 'vixl/a64/disasm-a64.cc',
> - 'vixl/a64/instructions-a64.cc',
> - 'vixl/compiler-intrinsics.cc',
> - 'vixl/utils.cc',
> -))
> diff --git a/disas/libvixl/vixl/a64/decoder-a64.cc
> b/disas/libvixl/vixl/a64/decoder-a64.cc
> deleted file mode 100644
> index 5ba2d3ce04..0000000000
> --- a/disas/libvixl/vixl/a64/decoder-a64.cc
> +++ /dev/null
> @@ -1,877 +0,0 @@
> -// Copyright 2014, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#include "vixl/globals.h"
> -#include "vixl/utils.h"
> -#include "vixl/a64/decoder-a64.h"
> -
> -namespace vixl {
> -
> -void Decoder::DecodeInstruction(const Instruction *instr) {
> - if (instr->Bits(28, 27) == 0) {
> - VisitUnallocated(instr);
> - } else {
> - switch (instr->Bits(27, 24)) {
> - // 0: PC relative addressing.
> - case 0x0: DecodePCRelAddressing(instr); break;
> -
> - // 1: Add/sub immediate.
> - case 0x1: DecodeAddSubImmediate(instr); break;
> -
> - // A: Logical shifted register.
> - // Add/sub with carry.
> - // Conditional compare register.
> - // Conditional compare immediate.
> - // Conditional select.
> - // Data processing 1 source.
> - // Data processing 2 source.
> - // B: Add/sub shifted register.
> - // Add/sub extended register.
> - // Data processing 3 source.
> - case 0xA:
> - case 0xB: DecodeDataProcessing(instr); break;
> -
> - // 2: Logical immediate.
> - // Move wide immediate.
> - case 0x2: DecodeLogical(instr); break;
> -
> - // 3: Bitfield.
> - // Extract.
> - case 0x3: DecodeBitfieldExtract(instr); break;
> -
> - // 4: Unconditional branch immediate.
> - // Exception generation.
> - // Compare and branch immediate.
> - // 5: Compare and branch immediate.
> - // Conditional branch.
> - // System.
> - // 6,7: Unconditional branch.
> - // Test and branch immediate.
> - case 0x4:
> - case 0x5:
> - case 0x6:
> - case 0x7: DecodeBranchSystemException(instr); break;
> -
> - // 8,9: Load/store register pair post-index.
> - // Load register literal.
> - // Load/store register unscaled immediate.
> - // Load/store register immediate post-index.
> - // Load/store register immediate pre-index.
> - // Load/store register offset.
> - // Load/store exclusive.
> - // C,D: Load/store register pair offset.
> - // Load/store register pair pre-index.
> - // Load/store register unsigned immediate.
> - // Advanced SIMD.
> - case 0x8:
> - case 0x9:
> - case 0xC:
> - case 0xD: DecodeLoadStore(instr); break;
> -
> - // E: FP fixed point conversion.
> - // FP integer conversion.
> - // FP data processing 1 source.
> - // FP compare.
> - // FP immediate.
> - // FP data processing 2 source.
> - // FP conditional compare.
> - // FP conditional select.
> - // Advanced SIMD.
> - // F: FP data processing 3 source.
> - // Advanced SIMD.
> - case 0xE:
> - case 0xF: DecodeFP(instr); break;
> - }
> - }
> -}
> -
> -void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
> - visitors_.push_back(new_visitor);
> -}
> -
> -
> -void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
> - visitors_.push_front(new_visitor);
> -}
> -
> -
> -void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
> - DecoderVisitor* registered_visitor) {
> - std::list<DecoderVisitor*>::iterator it;
> - for (it = visitors_.begin(); it != visitors_.end(); it++) {
> - if (*it == registered_visitor) {
> - visitors_.insert(it, new_visitor);
> - return;
> - }
> - }
> - // We reached the end of the list. The last element must be
> - // registered_visitor.
> - VIXL_ASSERT(*it == registered_visitor);
> - visitors_.insert(it, new_visitor);
> -}
> -
> -
> -void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
> - DecoderVisitor* registered_visitor) {
> - std::list<DecoderVisitor*>::iterator it;
> - for (it = visitors_.begin(); it != visitors_.end(); it++) {
> - if (*it == registered_visitor) {
> - it++;
> - visitors_.insert(it, new_visitor);
> - return;
> - }
> - }
> - // We reached the end of the list. The last element must be
> - // registered_visitor.
> - VIXL_ASSERT(*it == registered_visitor);
> - visitors_.push_back(new_visitor);
> -}
> -
> -
> -void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
> - visitors_.remove(visitor);
> -}
> -
> -
> -void Decoder::DecodePCRelAddressing(const Instruction* instr) {
> - VIXL_ASSERT(instr->Bits(27, 24) == 0x0);
> - // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
> - // decode.
> - VIXL_ASSERT(instr->Bit(28) == 0x1);
> - VisitPCRelAddressing(instr);
> -}
> -
> -
> -void Decoder::DecodeBranchSystemException(const Instruction* instr) {
> - VIXL_ASSERT((instr->Bits(27, 24) == 0x4) ||
> - (instr->Bits(27, 24) == 0x5) ||
> - (instr->Bits(27, 24) == 0x6) ||
> - (instr->Bits(27, 24) == 0x7) );
> -
> - switch (instr->Bits(31, 29)) {
> - case 0:
> - case 4: {
> - VisitUnconditionalBranch(instr);
> - break;
> - }
> - case 1:
> - case 5: {
> - if (instr->Bit(25) == 0) {
> - VisitCompareBranch(instr);
> - } else {
> - VisitTestBranch(instr);
> - }
> - break;
> - }
> - case 2: {
> - if (instr->Bit(25) == 0) {
> - if ((instr->Bit(24) == 0x1) ||
> - (instr->Mask(0x01000010) == 0x00000010)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitConditionalBranch(instr);
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - break;
> - }
> - case 6: {
> - if (instr->Bit(25) == 0) {
> - if (instr->Bit(24) == 0) {
> - if ((instr->Bits(4, 2) != 0) ||
> - (instr->Mask(0x00E0001D) == 0x00200001) ||
> - (instr->Mask(0x00E0001D) == 0x00400001) ||
> - (instr->Mask(0x00E0001E) == 0x00200002) ||
> - (instr->Mask(0x00E0001E) == 0x00400002) ||
> - (instr->Mask(0x00E0001C) == 0x00600000) ||
> - (instr->Mask(0x00E0001C) == 0x00800000) ||
> - (instr->Mask(0x00E0001F) == 0x00A00000) ||
> - (instr->Mask(0x00C0001C) == 0x00C00000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitException(instr);
> - }
> - } else {
> - if (instr->Bits(23, 22) == 0) {
> - const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0);
> - if ((instr->Bits(21, 19) == 0x4) ||
> - (masked_003FF0E0 == 0x00033000) ||
> - (masked_003FF0E0 == 0x003FF020) ||
> - (masked_003FF0E0 == 0x003FF060) ||
> - (masked_003FF0E0 == 0x003FF0E0) ||
> - (instr->Mask(0x00388000) == 0x00008000) ||
> - (instr->Mask(0x0038E000) == 0x00000000) ||
> - (instr->Mask(0x0039E000) == 0x00002000) ||
> - (instr->Mask(0x003AE000) == 0x00002000) ||
> - (instr->Mask(0x003CE000) == 0x00042000) ||
> - (instr->Mask(0x003FFFC0) == 0x000320C0) ||
> - (instr->Mask(0x003FF100) == 0x00032100) ||
> - (instr->Mask(0x003FF200) == 0x00032200) ||
> - (instr->Mask(0x003FF400) == 0x00032400) ||
> - (instr->Mask(0x003FF800) == 0x00032800) ||
> - (instr->Mask(0x0038F000) == 0x00005000) ||
> - (instr->Mask(0x0038E000) == 0x00006000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitSystem(instr);
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - if ((instr->Bit(24) == 0x1) ||
> - (instr->Bits(20, 16) != 0x1F) ||
> - (instr->Bits(15, 10) != 0) ||
> - (instr->Bits(4, 0) != 0) ||
> - (instr->Bits(24, 21) == 0x3) ||
> - (instr->Bits(24, 22) == 0x3)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitUnconditionalBranchToRegister(instr);
> - }
> - }
> - break;
> - }
> - case 3:
> - case 7: {
> - VisitUnallocated(instr);
> - break;
> - }
> - }
> -}
> -
> -
> -void Decoder::DecodeLoadStore(const Instruction* instr) {
> - VIXL_ASSERT((instr->Bits(27, 24) == 0x8) ||
> - (instr->Bits(27, 24) == 0x9) ||
> - (instr->Bits(27, 24) == 0xC) ||
> - (instr->Bits(27, 24) == 0xD) );
> - // TODO(all): rearrange the tree to integrate this branch.
> - if ((instr->Bit(28) == 0) && (instr->Bit(29) == 0) && (instr->Bit(26) ==
> 1)) {
> - DecodeNEONLoadStore(instr);
> - return;
> - }
> -
> - if (instr->Bit(24) == 0) {
> - if (instr->Bit(28) == 0) {
> - if (instr->Bit(29) == 0) {
> - if (instr->Bit(26) == 0) {
> - VisitLoadStoreExclusive(instr);
> - } else {
> - VIXL_UNREACHABLE();
> - }
> - } else {
> - if ((instr->Bits(31, 30) == 0x3) ||
> - (instr->Mask(0xC4400000) == 0x40000000)) {
> - VisitUnallocated(instr);
> - } else {
> - if (instr->Bit(23) == 0) {
> - if (instr->Mask(0xC4400000) == 0xC0400000) {
> - VisitUnallocated(instr);
> - } else {
> - VisitLoadStorePairNonTemporal(instr);
> - }
> - } else {
> - VisitLoadStorePairPostIndex(instr);
> - }
> - }
> - }
> - } else {
> - if (instr->Bit(29) == 0) {
> - if (instr->Mask(0xC4000000) == 0xC4000000) {
> - VisitUnallocated(instr);
> - } else {
> - VisitLoadLiteral(instr);
> - }
> - } else {
> - if ((instr->Mask(0x84C00000) == 0x80C00000) ||
> - (instr->Mask(0x44800000) == 0x44800000) ||
> - (instr->Mask(0x84800000) == 0x84800000)) {
> - VisitUnallocated(instr);
> - } else {
> - if (instr->Bit(21) == 0) {
> - switch (instr->Bits(11, 10)) {
> - case 0: {
> - VisitLoadStoreUnscaledOffset(instr);
> - break;
> - }
> - case 1: {
> - if (instr->Mask(0xC4C00000) == 0xC0800000) {
> - VisitUnallocated(instr);
> - } else {
> - VisitLoadStorePostIndex(instr);
> - }
> - break;
> - }
> - case 2: {
> - // TODO: VisitLoadStoreRegisterOffsetUnpriv.
> - VisitUnimplemented(instr);
> - break;
> - }
> - case 3: {
> - if (instr->Mask(0xC4C00000) == 0xC0800000) {
> - VisitUnallocated(instr);
> - } else {
> - VisitLoadStorePreIndex(instr);
> - }
> - break;
> - }
> - }
> - } else {
> - if (instr->Bits(11, 10) == 0x2) {
> - if (instr->Bit(14) == 0) {
> - VisitUnallocated(instr);
> - } else {
> - VisitLoadStoreRegisterOffset(instr);
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - }
> - }
> - }
> - } else {
> - if (instr->Bit(28) == 0) {
> - if (instr->Bit(29) == 0) {
> - VisitUnallocated(instr);
> - } else {
> - if ((instr->Bits(31, 30) == 0x3) ||
> - (instr->Mask(0xC4400000) == 0x40000000)) {
> - VisitUnallocated(instr);
> - } else {
> - if (instr->Bit(23) == 0) {
> - VisitLoadStorePairOffset(instr);
> - } else {
> - VisitLoadStorePairPreIndex(instr);
> - }
> - }
> - }
> - } else {
> - if (instr->Bit(29) == 0) {
> - VisitUnallocated(instr);
> - } else {
> - if ((instr->Mask(0x84C00000) == 0x80C00000) ||
> - (instr->Mask(0x44800000) == 0x44800000) ||
> - (instr->Mask(0x84800000) == 0x84800000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitLoadStoreUnsignedOffset(instr);
> - }
> - }
> - }
> - }
> -}
> -
> -
> -void Decoder::DecodeLogical(const Instruction* instr) {
> - VIXL_ASSERT(instr->Bits(27, 24) == 0x2);
> -
> - if (instr->Mask(0x80400000) == 0x00400000) {
> - VisitUnallocated(instr);
> - } else {
> - if (instr->Bit(23) == 0) {
> - VisitLogicalImmediate(instr);
> - } else {
> - if (instr->Bits(30, 29) == 0x1) {
> - VisitUnallocated(instr);
> - } else {
> - VisitMoveWideImmediate(instr);
> - }
> - }
> - }
> -}
> -
> -
> -void Decoder::DecodeBitfieldExtract(const Instruction* instr) {
> - VIXL_ASSERT(instr->Bits(27, 24) == 0x3);
> -
> - if ((instr->Mask(0x80400000) == 0x80000000) ||
> - (instr->Mask(0x80400000) == 0x00400000) ||
> - (instr->Mask(0x80008000) == 0x00008000)) {
> - VisitUnallocated(instr);
> - } else if (instr->Bit(23) == 0) {
> - if ((instr->Mask(0x80200000) == 0x00200000) ||
> - (instr->Mask(0x60000000) == 0x60000000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitBitfield(instr);
> - }
> - } else {
> - if ((instr->Mask(0x60200000) == 0x00200000) ||
> - (instr->Mask(0x60000000) != 0x00000000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitExtract(instr);
> - }
> - }
> -}
> -
> -
> -void Decoder::DecodeAddSubImmediate(const Instruction* instr) {
> - VIXL_ASSERT(instr->Bits(27, 24) == 0x1);
> - if (instr->Bit(23) == 1) {
> - VisitUnallocated(instr);
> - } else {
> - VisitAddSubImmediate(instr);
> - }
> -}
> -
> -
> -void Decoder::DecodeDataProcessing(const Instruction* instr) {
> - VIXL_ASSERT((instr->Bits(27, 24) == 0xA) ||
> - (instr->Bits(27, 24) == 0xB));
> -
> - if (instr->Bit(24) == 0) {
> - if (instr->Bit(28) == 0) {
> - if (instr->Mask(0x80008000) == 0x00008000) {
> - VisitUnallocated(instr);
> - } else {
> - VisitLogicalShifted(instr);
> - }
> - } else {
> - switch (instr->Bits(23, 21)) {
> - case 0: {
> - if (instr->Mask(0x0000FC00) != 0) {
> - VisitUnallocated(instr);
> - } else {
> - VisitAddSubWithCarry(instr);
> - }
> - break;
> - }
> - case 2: {
> - if ((instr->Bit(29) == 0) ||
> - (instr->Mask(0x00000410) != 0)) {
> - VisitUnallocated(instr);
> - } else {
> - if (instr->Bit(11) == 0) {
> - VisitConditionalCompareRegister(instr);
> - } else {
> - VisitConditionalCompareImmediate(instr);
> - }
> - }
> - break;
> - }
> - case 4: {
> - if (instr->Mask(0x20000800) != 0x00000000) {
> - VisitUnallocated(instr);
> - } else {
> - VisitConditionalSelect(instr);
> - }
> - break;
> - }
> - case 6: {
> - if (instr->Bit(29) == 0x1) {
> - VisitUnallocated(instr);
> - VIXL_FALLTHROUGH();
> - } else {
> - if (instr->Bit(30) == 0) {
> - if ((instr->Bit(15) == 0x1) ||
> - (instr->Bits(15, 11) == 0) ||
> - (instr->Bits(15, 12) == 0x1) ||
> - (instr->Bits(15, 12) == 0x3) ||
> - (instr->Bits(15, 13) == 0x3) ||
> - (instr->Mask(0x8000EC00) == 0x00004C00) ||
> - (instr->Mask(0x8000E800) == 0x80004000) ||
> - (instr->Mask(0x8000E400) == 0x80004000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitDataProcessing2Source(instr);
> - }
> - } else {
> - if ((instr->Bit(13) == 1) ||
> - (instr->Bits(20, 16) != 0) ||
> - (instr->Bits(15, 14) != 0) ||
> - (instr->Mask(0xA01FFC00) == 0x00000C00) ||
> - (instr->Mask(0x201FF800) == 0x00001800)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitDataProcessing1Source(instr);
> - }
> - }
> - break;
> - }
> - }
> - case 1:
> - case 3:
> - case 5:
> - case 7: VisitUnallocated(instr); break;
> - }
> - }
> - } else {
> - if (instr->Bit(28) == 0) {
> - if (instr->Bit(21) == 0) {
> - if ((instr->Bits(23, 22) == 0x3) ||
> - (instr->Mask(0x80008000) == 0x00008000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitAddSubShifted(instr);
> - }
> - } else {
> - if ((instr->Mask(0x00C00000) != 0x00000000) ||
> - (instr->Mask(0x00001400) == 0x00001400) ||
> - (instr->Mask(0x00001800) == 0x00001800)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitAddSubExtended(instr);
> - }
> - }
> - } else {
> - if ((instr->Bit(30) == 0x1) ||
> - (instr->Bits(30, 29) == 0x1) ||
> - (instr->Mask(0xE0600000) == 0x00200000) ||
> - (instr->Mask(0xE0608000) == 0x00400000) ||
> - (instr->Mask(0x60608000) == 0x00408000) ||
> - (instr->Mask(0x60E00000) == 0x00E00000) ||
> - (instr->Mask(0x60E00000) == 0x00800000) ||
> - (instr->Mask(0x60E00000) == 0x00600000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitDataProcessing3Source(instr);
> - }
> - }
> - }
> -}
> -
> -
> -void Decoder::DecodeFP(const Instruction* instr) {
> - VIXL_ASSERT((instr->Bits(27, 24) == 0xE) ||
> - (instr->Bits(27, 24) == 0xF));
> - if (instr->Bit(28) == 0) {
> - DecodeNEONVectorDataProcessing(instr);
> - } else {
> - if (instr->Bits(31, 30) == 0x3) {
> - VisitUnallocated(instr);
> - } else if (instr->Bits(31, 30) == 0x1) {
> - DecodeNEONScalarDataProcessing(instr);
> - } else {
> - if (instr->Bit(29) == 0) {
> - if (instr->Bit(24) == 0) {
> - if (instr->Bit(21) == 0) {
> - if ((instr->Bit(23) == 1) ||
> - (instr->Bit(18) == 1) ||
> - (instr->Mask(0x80008000) == 0x00000000) ||
> - (instr->Mask(0x000E0000) == 0x00000000) ||
> - (instr->Mask(0x000E0000) == 0x000A0000) ||
> - (instr->Mask(0x00160000) == 0x00000000) ||
> - (instr->Mask(0x00160000) == 0x00120000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitFPFixedPointConvert(instr);
> - }
> - } else {
> - if (instr->Bits(15, 10) == 32) {
> - VisitUnallocated(instr);
> - } else if (instr->Bits(15, 10) == 0) {
> - if ((instr->Bits(23, 22) == 0x3) ||
> - (instr->Mask(0x000E0000) == 0x000A0000) ||
> - (instr->Mask(0x000E0000) == 0x000C0000) ||
> - (instr->Mask(0x00160000) == 0x00120000) ||
> - (instr->Mask(0x00160000) == 0x00140000) ||
> - (instr->Mask(0x20C40000) == 0x00800000) ||
> - (instr->Mask(0x20C60000) == 0x00840000) ||
> - (instr->Mask(0xA0C60000) == 0x80060000) ||
> - (instr->Mask(0xA0C60000) == 0x00860000) ||
> - (instr->Mask(0xA0C60000) == 0x00460000) ||
> - (instr->Mask(0xA0CE0000) == 0x80860000) ||
> - (instr->Mask(0xA0CE0000) == 0x804E0000) ||
> - (instr->Mask(0xA0CE0000) == 0x000E0000) ||
> - (instr->Mask(0xA0D60000) == 0x00160000) ||
> - (instr->Mask(0xA0D60000) == 0x80560000) ||
> - (instr->Mask(0xA0D60000) == 0x80960000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitFPIntegerConvert(instr);
> - }
> - } else if (instr->Bits(14, 10) == 16) {
> - const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000);
> - if ((instr->Mask(0x80180000) != 0) ||
> - (masked_A0DF8000 == 0x00020000) ||
> - (masked_A0DF8000 == 0x00030000) ||
> - (masked_A0DF8000 == 0x00068000) ||
> - (masked_A0DF8000 == 0x00428000) ||
> - (masked_A0DF8000 == 0x00430000) ||
> - (masked_A0DF8000 == 0x00468000) ||
> - (instr->Mask(0xA0D80000) == 0x00800000) ||
> - (instr->Mask(0xA0DE0000) == 0x00C00000) ||
> - (instr->Mask(0xA0DF0000) == 0x00C30000) ||
> - (instr->Mask(0xA0DC0000) == 0x00C40000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitFPDataProcessing1Source(instr);
> - }
> - } else if (instr->Bits(13, 10) == 8) {
> - if ((instr->Bits(15, 14) != 0) ||
> - (instr->Bits(2, 0) != 0) ||
> - (instr->Mask(0x80800000) != 0x00000000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitFPCompare(instr);
> - }
> - } else if (instr->Bits(12, 10) == 4) {
> - if ((instr->Bits(9, 5) != 0) ||
> - (instr->Mask(0x80800000) != 0x00000000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitFPImmediate(instr);
> - }
> - } else {
> - if (instr->Mask(0x80800000) != 0x00000000) {
> - VisitUnallocated(instr);
> - } else {
> - switch (instr->Bits(11, 10)) {
> - case 1: {
> - VisitFPConditionalCompare(instr);
> - break;
> - }
> - case 2: {
> - if ((instr->Bits(15, 14) == 0x3) ||
> - (instr->Mask(0x00009000) == 0x00009000) ||
> - (instr->Mask(0x0000A000) == 0x0000A000)) {
> - VisitUnallocated(instr);
> - } else {
> - VisitFPDataProcessing2Source(instr);
> - }
> - break;
> - }
> - case 3: {
> - VisitFPConditionalSelect(instr);
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - }
> - }
> - }
> - } else {
> - // Bit 30 == 1 has been handled earlier.
> - VIXL_ASSERT(instr->Bit(30) == 0);
> - if (instr->Mask(0xA0800000) != 0) {
> - VisitUnallocated(instr);
> - } else {
> - VisitFPDataProcessing3Source(instr);
> - }
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - }
> -}
> -
> -
> -void Decoder::DecodeNEONLoadStore(const Instruction* instr) {
> - VIXL_ASSERT(instr->Bits(29, 25) == 0x6);
> - if (instr->Bit(31) == 0) {
> - if ((instr->Bit(24) == 0) && (instr->Bit(21) == 1)) {
> - VisitUnallocated(instr);
> - return;
> - }
> -
> - if (instr->Bit(23) == 0) {
> - if (instr->Bits(20, 16) == 0) {
> - if (instr->Bit(24) == 0) {
> - VisitNEONLoadStoreMultiStruct(instr);
> - } else {
> - VisitNEONLoadStoreSingleStruct(instr);
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - } else {
> - if (instr->Bit(24) == 0) {
> - VisitNEONLoadStoreMultiStructPostIndex(instr);
> - } else {
> - VisitNEONLoadStoreSingleStructPostIndex(instr);
> - }
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> -}
> -
> -
> -void Decoder::DecodeNEONVectorDataProcessing(const Instruction* instr) {
> - VIXL_ASSERT(instr->Bits(28, 25) == 0x7);
> - if (instr->Bit(31) == 0) {
> - if (instr->Bit(24) == 0) {
> - if (instr->Bit(21) == 0) {
> - if (instr->Bit(15) == 0) {
> - if (instr->Bit(10) == 0) {
> - if (instr->Bit(29) == 0) {
> - if (instr->Bit(11) == 0) {
> - VisitNEONTable(instr);
> - } else {
> - VisitNEONPerm(instr);
> - }
> - } else {
> - VisitNEONExtract(instr);
> - }
> - } else {
> - if (instr->Bits(23, 22) == 0) {
> - VisitNEONCopy(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - } else {
> - if (instr->Bit(10) == 0) {
> - if (instr->Bit(11) == 0) {
> - VisitNEON3Different(instr);
> - } else {
> - if (instr->Bits(18, 17) == 0) {
> - if (instr->Bit(20) == 0) {
> - if (instr->Bit(19) == 0) {
> - VisitNEON2RegMisc(instr);
> - } else {
> - if (instr->Bits(30, 29) == 0x2) {
> - VisitCryptoAES(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - if (instr->Bit(19) == 0) {
> - VisitNEONAcrossLanes(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - VisitNEON3Same(instr);
> - }
> - }
> - } else {
> - if (instr->Bit(10) == 0) {
> - VisitNEONByIndexedElement(instr);
> - } else {
> - if (instr->Bit(23) == 0) {
> - if (instr->Bits(22, 19) == 0) {
> - VisitNEONModifiedImmediate(instr);
> - } else {
> - VisitNEONShiftImmediate(instr);
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> -}
> -
> -
> -void Decoder::DecodeNEONScalarDataProcessing(const Instruction* instr) {
> - VIXL_ASSERT(instr->Bits(28, 25) == 0xF);
> - if (instr->Bit(24) == 0) {
> - if (instr->Bit(21) == 0) {
> - if (instr->Bit(15) == 0) {
> - if (instr->Bit(10) == 0) {
> - if (instr->Bit(29) == 0) {
> - if (instr->Bit(11) == 0) {
> - VisitCrypto3RegSHA(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - } else {
> - if (instr->Bits(23, 22) == 0) {
> - VisitNEONScalarCopy(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - } else {
> - if (instr->Bit(10) == 0) {
> - if (instr->Bit(11) == 0) {
> - VisitNEONScalar3Diff(instr);
> - } else {
> - if (instr->Bits(18, 17) == 0) {
> - if (instr->Bit(20) == 0) {
> - if (instr->Bit(19) == 0) {
> - VisitNEONScalar2RegMisc(instr);
> - } else {
> - if (instr->Bit(29) == 0) {
> - VisitCrypto2RegSHA(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - if (instr->Bit(19) == 0) {
> - VisitNEONScalarPairwise(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - } else {
> - VisitNEONScalar3Same(instr);
> - }
> - }
> - } else {
> - if (instr->Bit(10) == 0) {
> - VisitNEONScalarByIndexedElement(instr);
> - } else {
> - if (instr->Bit(23) == 0) {
> - VisitNEONScalarShiftImmediate(instr);
> - } else {
> - VisitUnallocated(instr);
> - }
> - }
> - }
> -}
> -
> -
> -#define DEFINE_VISITOR_CALLERS(A)
> \
> - void Decoder::Visit##A(const Instruction *instr) {
> \
> - VIXL_ASSERT(instr->Mask(A##FMask) == A##Fixed);
> \
> - std::list<DecoderVisitor*>::iterator it;
> \
> - for (it = visitors_.begin(); it != visitors_.end(); it++) {
> \
> - (*it)->Visit##A(instr);
> \
> - }
> \
> - }
> -VISITOR_LIST(DEFINE_VISITOR_CALLERS)
> -#undef DEFINE_VISITOR_CALLERS
> -} // namespace vixl
> diff --git a/disas/libvixl/vixl/a64/disasm-a64.cc
> b/disas/libvixl/vixl/a64/disasm-a64.cc
> deleted file mode 100644
> index f34d1d68da..0000000000
> --- a/disas/libvixl/vixl/a64/disasm-a64.cc
> +++ /dev/null
> @@ -1,3495 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#include <cstdlib>
> -#include "vixl/a64/disasm-a64.h"
> -
> -namespace vixl {
> -
> -Disassembler::Disassembler() {
> - buffer_size_ = 256;
> - buffer_ = reinterpret_cast<char*>(malloc(buffer_size_));
> - buffer_pos_ = 0;
> - own_buffer_ = true;
> - code_address_offset_ = 0;
> -}
> -
> -
> -Disassembler::Disassembler(char* text_buffer, int buffer_size) {
> - buffer_size_ = buffer_size;
> - buffer_ = text_buffer;
> - buffer_pos_ = 0;
> - own_buffer_ = false;
> - code_address_offset_ = 0;
> -}
> -
> -
> -Disassembler::~Disassembler() {
> - if (own_buffer_) {
> - free(buffer_);
> - }
> -}
> -
> -
> -char* Disassembler::GetOutput() {
> - return buffer_;
> -}
> -
> -
> -void Disassembler::VisitAddSubImmediate(const Instruction* instr) {
> - bool rd_is_zr = RdIsZROrSP(instr);
> - bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
> - (instr->ImmAddSub() == 0) ? true : false;
> - const char *mnemonic = "";
> - const char *form = "'Rds, 'Rns, 'IAddSub";
> - const char *form_cmp = "'Rns, 'IAddSub";
> - const char *form_mov = "'Rds, 'Rns";
> -
> - switch (instr->Mask(AddSubImmediateMask)) {
> - case ADD_w_imm:
> - case ADD_x_imm: {
> - mnemonic = "add";
> - if (stack_op) {
> - mnemonic = "mov";
> - form = form_mov;
> - }
> - break;
> - }
> - case ADDS_w_imm:
> - case ADDS_x_imm: {
> - mnemonic = "adds";
> - if (rd_is_zr) {
> - mnemonic = "cmn";
> - form = form_cmp;
> - }
> - break;
> - }
> - case SUB_w_imm:
> - case SUB_x_imm: mnemonic = "sub"; break;
> - case SUBS_w_imm:
> - case SUBS_x_imm: {
> - mnemonic = "subs";
> - if (rd_is_zr) {
> - mnemonic = "cmp";
> - form = form_cmp;
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitAddSubShifted(const Instruction* instr) {
> - bool rd_is_zr = RdIsZROrSP(instr);
> - bool rn_is_zr = RnIsZROrSP(instr);
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'Rn, 'Rm'NDP";
> - const char *form_cmp = "'Rn, 'Rm'NDP";
> - const char *form_neg = "'Rd, 'Rm'NDP";
> -
> - switch (instr->Mask(AddSubShiftedMask)) {
> - case ADD_w_shift:
> - case ADD_x_shift: mnemonic = "add"; break;
> - case ADDS_w_shift:
> - case ADDS_x_shift: {
> - mnemonic = "adds";
> - if (rd_is_zr) {
> - mnemonic = "cmn";
> - form = form_cmp;
> - }
> - break;
> - }
> - case SUB_w_shift:
> - case SUB_x_shift: {
> - mnemonic = "sub";
> - if (rn_is_zr) {
> - mnemonic = "neg";
> - form = form_neg;
> - }
> - break;
> - }
> - case SUBS_w_shift:
> - case SUBS_x_shift: {
> - mnemonic = "subs";
> - if (rd_is_zr) {
> - mnemonic = "cmp";
> - form = form_cmp;
> - } else if (rn_is_zr) {
> - mnemonic = "negs";
> - form = form_neg;
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitAddSubExtended(const Instruction* instr) {
> - bool rd_is_zr = RdIsZROrSP(instr);
> - const char *mnemonic = "";
> - Extend mode = static_cast<Extend>(instr->ExtendMode());
> - const char *form = ((mode == UXTX) || (mode == SXTX)) ?
> - "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext";
> - const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ?
> - "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext";
> -
> - switch (instr->Mask(AddSubExtendedMask)) {
> - case ADD_w_ext:
> - case ADD_x_ext: mnemonic = "add"; break;
> - case ADDS_w_ext:
> - case ADDS_x_ext: {
> - mnemonic = "adds";
> - if (rd_is_zr) {
> - mnemonic = "cmn";
> - form = form_cmp;
> - }
> - break;
> - }
> - case SUB_w_ext:
> - case SUB_x_ext: mnemonic = "sub"; break;
> - case SUBS_w_ext:
> - case SUBS_x_ext: {
> - mnemonic = "subs";
> - if (rd_is_zr) {
> - mnemonic = "cmp";
> - form = form_cmp;
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitAddSubWithCarry(const Instruction* instr) {
> - bool rn_is_zr = RnIsZROrSP(instr);
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'Rn, 'Rm";
> - const char *form_neg = "'Rd, 'Rm";
> -
> - switch (instr->Mask(AddSubWithCarryMask)) {
> - case ADC_w:
> - case ADC_x: mnemonic = "adc"; break;
> - case ADCS_w:
> - case ADCS_x: mnemonic = "adcs"; break;
> - case SBC_w:
> - case SBC_x: {
> - mnemonic = "sbc";
> - if (rn_is_zr) {
> - mnemonic = "ngc";
> - form = form_neg;
> - }
> - break;
> - }
> - case SBCS_w:
> - case SBCS_x: {
> - mnemonic = "sbcs";
> - if (rn_is_zr) {
> - mnemonic = "ngcs";
> - form = form_neg;
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLogicalImmediate(const Instruction* instr) {
> - bool rd_is_zr = RdIsZROrSP(instr);
> - bool rn_is_zr = RnIsZROrSP(instr);
> - const char *mnemonic = "";
> - const char *form = "'Rds, 'Rn, 'ITri";
> -
> - if (instr->ImmLogical() == 0) {
> - // The immediate encoded in the instruction is not in the expected
> format.
> - Format(instr, "unallocated", "(LogicalImmediate)");
> - return;
> - }
> -
> - switch (instr->Mask(LogicalImmediateMask)) {
> - case AND_w_imm:
> - case AND_x_imm: mnemonic = "and"; break;
> - case ORR_w_imm:
> - case ORR_x_imm: {
> - mnemonic = "orr";
> - unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
> - : kWRegSize;
> - if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) {
> - mnemonic = "mov";
> - form = "'Rds, 'ITri";
> - }
> - break;
> - }
> - case EOR_w_imm:
> - case EOR_x_imm: mnemonic = "eor"; break;
> - case ANDS_w_imm:
> - case ANDS_x_imm: {
> - mnemonic = "ands";
> - if (rd_is_zr) {
> - mnemonic = "tst";
> - form = "'Rn, 'ITri";
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
> - VIXL_ASSERT((reg_size == kXRegSize) ||
> - ((reg_size == kWRegSize) && (value <= 0xffffffff)));
> -
> - // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
> - if (((value & UINT64_C(0xffffffffffff0000)) == 0) ||
> - ((value & UINT64_C(0xffffffff0000ffff)) == 0) ||
> - ((value & UINT64_C(0xffff0000ffffffff)) == 0) ||
> - ((value & UINT64_C(0x0000ffffffffffff)) == 0)) {
> - return true;
> - }
> -
> - // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
> - if ((reg_size == kXRegSize) &&
> - (((~value & UINT64_C(0xffffffffffff0000)) == 0) ||
> - ((~value & UINT64_C(0xffffffff0000ffff)) == 0) ||
> - ((~value & UINT64_C(0xffff0000ffffffff)) == 0) ||
> - ((~value & UINT64_C(0x0000ffffffffffff)) == 0))) {
> - return true;
> - }
> - if ((reg_size == kWRegSize) &&
> - (((value & 0xffff0000) == 0xffff0000) ||
> - ((value & 0x0000ffff) == 0x0000ffff))) {
> - return true;
> - }
> - return false;
> -}
> -
> -
> -void Disassembler::VisitLogicalShifted(const Instruction* instr) {
> - bool rd_is_zr = RdIsZROrSP(instr);
> - bool rn_is_zr = RnIsZROrSP(instr);
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'Rn, 'Rm'NLo";
> -
> - switch (instr->Mask(LogicalShiftedMask)) {
> - case AND_w:
> - case AND_x: mnemonic = "and"; break;
> - case BIC_w:
> - case BIC_x: mnemonic = "bic"; break;
> - case EOR_w:
> - case EOR_x: mnemonic = "eor"; break;
> - case EON_w:
> - case EON_x: mnemonic = "eon"; break;
> - case BICS_w:
> - case BICS_x: mnemonic = "bics"; break;
> - case ANDS_w:
> - case ANDS_x: {
> - mnemonic = "ands";
> - if (rd_is_zr) {
> - mnemonic = "tst";
> - form = "'Rn, 'Rm'NLo";
> - }
> - break;
> - }
> - case ORR_w:
> - case ORR_x: {
> - mnemonic = "orr";
> - if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() ==
> LSL)) {
> - mnemonic = "mov";
> - form = "'Rd, 'Rm";
> - }
> - break;
> - }
> - case ORN_w:
> - case ORN_x: {
> - mnemonic = "orn";
> - if (rn_is_zr) {
> - mnemonic = "mvn";
> - form = "'Rd, 'Rm'NLo";
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> -
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitConditionalCompareRegister(const Instruction* instr)
> {
> - const char *mnemonic = "";
> - const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
> -
> - switch (instr->Mask(ConditionalCompareRegisterMask)) {
> - case CCMN_w:
> - case CCMN_x: mnemonic = "ccmn"; break;
> - case CCMP_w:
> - case CCMP_x: mnemonic = "ccmp"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitConditionalCompareImmediate(const Instruction*
> instr) {
> - const char *mnemonic = "";
> - const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
> -
> - switch (instr->Mask(ConditionalCompareImmediateMask)) {
> - case CCMN_w_imm:
> - case CCMN_x_imm: mnemonic = "ccmn"; break;
> - case CCMP_w_imm:
> - case CCMP_x_imm: mnemonic = "ccmp"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitConditionalSelect(const Instruction* instr) {
> - bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
> - bool rn_is_rm = (instr->Rn() == instr->Rm());
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'Rn, 'Rm, 'Cond";
> - const char *form_test = "'Rd, 'CInv";
> - const char *form_update = "'Rd, 'Rn, 'CInv";
> -
> - Condition cond = static_cast<Condition>(instr->Condition());
> - bool invertible_cond = (cond != al) && (cond != nv);
> -
> - switch (instr->Mask(ConditionalSelectMask)) {
> - case CSEL_w:
> - case CSEL_x: mnemonic = "csel"; break;
> - case CSINC_w:
> - case CSINC_x: {
> - mnemonic = "csinc";
> - if (rnm_is_zr && invertible_cond) {
> - mnemonic = "cset";
> - form = form_test;
> - } else if (rn_is_rm && invertible_cond) {
> - mnemonic = "cinc";
> - form = form_update;
> - }
> - break;
> - }
> - case CSINV_w:
> - case CSINV_x: {
> - mnemonic = "csinv";
> - if (rnm_is_zr && invertible_cond) {
> - mnemonic = "csetm";
> - form = form_test;
> - } else if (rn_is_rm && invertible_cond) {
> - mnemonic = "cinv";
> - form = form_update;
> - }
> - break;
> - }
> - case CSNEG_w:
> - case CSNEG_x: {
> - mnemonic = "csneg";
> - if (rn_is_rm && invertible_cond) {
> - mnemonic = "cneg";
> - form = form_update;
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitBitfield(const Instruction* instr) {
> - unsigned s = instr->ImmS();
> - unsigned r = instr->ImmR();
> - unsigned rd_size_minus_1 =
> - ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1;
> - const char *mnemonic = "";
> - const char *form = "";
> - const char *form_shift_right = "'Rd, 'Rn, 'IBr";
> - const char *form_extend = "'Rd, 'Wn";
> - const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1";
> - const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1";
> - const char *form_lsl = "'Rd, 'Rn, 'IBZ-r";
> -
> - switch (instr->Mask(BitfieldMask)) {
> - case SBFM_w:
> - case SBFM_x: {
> - mnemonic = "sbfx";
> - form = form_bfx;
> - if (r == 0) {
> - form = form_extend;
> - if (s == 7) {
> - mnemonic = "sxtb";
> - } else if (s == 15) {
> - mnemonic = "sxth";
> - } else if ((s == 31) && (instr->SixtyFourBits() == 1)) {
> - mnemonic = "sxtw";
> - } else {
> - form = form_bfx;
> - }
> - } else if (s == rd_size_minus_1) {
> - mnemonic = "asr";
> - form = form_shift_right;
> - } else if (s < r) {
> - mnemonic = "sbfiz";
> - form = form_bfiz;
> - }
> - break;
> - }
> - case UBFM_w:
> - case UBFM_x: {
> - mnemonic = "ubfx";
> - form = form_bfx;
> - if (r == 0) {
> - form = form_extend;
> - if (s == 7) {
> - mnemonic = "uxtb";
> - } else if (s == 15) {
> - mnemonic = "uxth";
> - } else {
> - form = form_bfx;
> - }
> - }
> - if (s == rd_size_minus_1) {
> - mnemonic = "lsr";
> - form = form_shift_right;
> - } else if (r == s + 1) {
> - mnemonic = "lsl";
> - form = form_lsl;
> - } else if (s < r) {
> - mnemonic = "ubfiz";
> - form = form_bfiz;
> - }
> - break;
> - }
> - case BFM_w:
> - case BFM_x: {
> - mnemonic = "bfxil";
> - form = form_bfx;
> - if (s < r) {
> - mnemonic = "bfi";
> - form = form_bfiz;
> - }
> - }
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitExtract(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
> -
> - switch (instr->Mask(ExtractMask)) {
> - case EXTR_w:
> - case EXTR_x: {
> - if (instr->Rn() == instr->Rm()) {
> - mnemonic = "ror";
> - form = "'Rd, 'Rn, 'IExtract";
> - } else {
> - mnemonic = "extr";
> - }
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitPCRelAddressing(const Instruction* instr) {
> - switch (instr->Mask(PCRelAddressingMask)) {
> - case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
> - case ADRP: Format(instr, "adrp", "'Xd, 'AddrPCRelPage"); break;
> - default: Format(instr, "unimplemented", "(PCRelAddressing)");
> - }
> -}
> -
> -
> -void Disassembler::VisitConditionalBranch(const Instruction* instr) {
> - switch (instr->Mask(ConditionalBranchMask)) {
> - case B_cond: Format(instr, "b.'CBrn", "'TImmCond"); break;
> - default: VIXL_UNREACHABLE();
> - }
> -}
> -
> -
> -void Disassembler::VisitUnconditionalBranchToRegister(
> - const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Xn";
> -
> - switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
> - case BR: mnemonic = "br"; break;
> - case BLR: mnemonic = "blr"; break;
> - case RET: {
> - mnemonic = "ret";
> - if (instr->Rn() == kLinkRegCode) {
> - form = NULL;
> - }
> - break;
> - }
> - default: form = "(UnconditionalBranchToRegister)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitUnconditionalBranch(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'TImmUncn";
> -
> - switch (instr->Mask(UnconditionalBranchMask)) {
> - case B: mnemonic = "b"; break;
> - case BL: mnemonic = "bl"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitDataProcessing1Source(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'Rn";
> -
> - switch (instr->Mask(DataProcessing1SourceMask)) {
> - #define FORMAT(A, B) \
> - case A##_w: \
> - case A##_x: mnemonic = B; break;
> - FORMAT(RBIT, "rbit");
> - FORMAT(REV16, "rev16");
> - FORMAT(REV, "rev");
> - FORMAT(CLZ, "clz");
> - FORMAT(CLS, "cls");
> - #undef FORMAT
> - case REV32_x: mnemonic = "rev32"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitDataProcessing2Source(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Rd, 'Rn, 'Rm";
> - const char *form_wwx = "'Wd, 'Wn, 'Xm";
> -
> - switch (instr->Mask(DataProcessing2SourceMask)) {
> - #define FORMAT(A, B) \
> - case A##_w: \
> - case A##_x: mnemonic = B; break;
> - FORMAT(UDIV, "udiv");
> - FORMAT(SDIV, "sdiv");
> - FORMAT(LSLV, "lsl");
> - FORMAT(LSRV, "lsr");
> - FORMAT(ASRV, "asr");
> - FORMAT(RORV, "ror");
> - #undef FORMAT
> - case CRC32B: mnemonic = "crc32b"; break;
> - case CRC32H: mnemonic = "crc32h"; break;
> - case CRC32W: mnemonic = "crc32w"; break;
> - case CRC32X: mnemonic = "crc32x"; form = form_wwx; break;
> - case CRC32CB: mnemonic = "crc32cb"; break;
> - case CRC32CH: mnemonic = "crc32ch"; break;
> - case CRC32CW: mnemonic = "crc32cw"; break;
> - case CRC32CX: mnemonic = "crc32cx"; form = form_wwx; break;
> - default: form = "(DataProcessing2Source)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitDataProcessing3Source(const Instruction* instr) {
> - bool ra_is_zr = RaIsZROrSP(instr);
> - const char *mnemonic = "";
> - const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
> - const char *form_rrr = "'Rd, 'Rn, 'Rm";
> - const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra";
> - const char *form_xww = "'Xd, 'Wn, 'Wm";
> - const char *form_xxx = "'Xd, 'Xn, 'Xm";
> -
> - switch (instr->Mask(DataProcessing3SourceMask)) {
> - case MADD_w:
> - case MADD_x: {
> - mnemonic = "madd";
> - form = form_rrrr;
> - if (ra_is_zr) {
> - mnemonic = "mul";
> - form = form_rrr;
> - }
> - break;
> - }
> - case MSUB_w:
> - case MSUB_x: {
> - mnemonic = "msub";
> - form = form_rrrr;
> - if (ra_is_zr) {
> - mnemonic = "mneg";
> - form = form_rrr;
> - }
> - break;
> - }
> - case SMADDL_x: {
> - mnemonic = "smaddl";
> - if (ra_is_zr) {
> - mnemonic = "smull";
> - form = form_xww;
> - }
> - break;
> - }
> - case SMSUBL_x: {
> - mnemonic = "smsubl";
> - if (ra_is_zr) {
> - mnemonic = "smnegl";
> - form = form_xww;
> - }
> - break;
> - }
> - case UMADDL_x: {
> - mnemonic = "umaddl";
> - if (ra_is_zr) {
> - mnemonic = "umull";
> - form = form_xww;
> - }
> - break;
> - }
> - case UMSUBL_x: {
> - mnemonic = "umsubl";
> - if (ra_is_zr) {
> - mnemonic = "umnegl";
> - form = form_xww;
> - }
> - break;
> - }
> - case SMULH_x: {
> - mnemonic = "smulh";
> - form = form_xxx;
> - break;
> - }
> - case UMULH_x: {
> - mnemonic = "umulh";
> - form = form_xxx;
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitCompareBranch(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Rt, 'TImmCmpa";
> -
> - switch (instr->Mask(CompareBranchMask)) {
> - case CBZ_w:
> - case CBZ_x: mnemonic = "cbz"; break;
> - case CBNZ_w:
> - case CBNZ_x: mnemonic = "cbnz"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitTestBranch(const Instruction* instr) {
> - const char *mnemonic = "";
> - // If the top bit of the immediate is clear, the tested register is
> - // disassembled as Wt, otherwise Xt. As the top bit of the immediate is
> - // encoded in bit 31 of the instruction, we can reuse the Rt form, which
> - // uses bit 31 (normally "sf") to choose the register size.
> - const char *form = "'Rt, 'IS, 'TImmTest";
> -
> - switch (instr->Mask(TestBranchMask)) {
> - case TBZ: mnemonic = "tbz"; break;
> - case TBNZ: mnemonic = "tbnz"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitMoveWideImmediate(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'IMoveImm";
> -
> - // Print the shift separately for movk, to make it clear which half word
> will
> - // be overwritten. Movn and movz print the computed immediate, which
> includes
> - // shift calculation.
> - switch (instr->Mask(MoveWideImmediateMask)) {
> - case MOVN_w:
> - case MOVN_x:
> - if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0)) {
> - if ((instr->SixtyFourBits() == 0) && (instr->ImmMoveWide() ==
> 0xffff)) {
> - mnemonic = "movn";
> - } else {
> - mnemonic = "mov";
> - form = "'Rd, 'IMoveNeg";
> - }
> - } else {
> - mnemonic = "movn";
> - }
> - break;
> - case MOVZ_w:
> - case MOVZ_x:
> - if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0))
> - mnemonic = "mov";
> - else
> - mnemonic = "movz";
> - break;
> - case MOVK_w:
> - case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -#define LOAD_STORE_LIST(V) \
> - V(STRB_w, "strb", "'Wt") \
> - V(STRH_w, "strh", "'Wt") \
> - V(STR_w, "str", "'Wt") \
> - V(STR_x, "str", "'Xt") \
> - V(LDRB_w, "ldrb", "'Wt") \
> - V(LDRH_w, "ldrh", "'Wt") \
> - V(LDR_w, "ldr", "'Wt") \
> - V(LDR_x, "ldr", "'Xt") \
> - V(LDRSB_x, "ldrsb", "'Xt") \
> - V(LDRSH_x, "ldrsh", "'Xt") \
> - V(LDRSW_x, "ldrsw", "'Xt") \
> - V(LDRSB_w, "ldrsb", "'Wt") \
> - V(LDRSH_w, "ldrsh", "'Wt") \
> - V(STR_b, "str", "'Bt") \
> - V(STR_h, "str", "'Ht") \
> - V(STR_s, "str", "'St") \
> - V(STR_d, "str", "'Dt") \
> - V(LDR_b, "ldr", "'Bt") \
> - V(LDR_h, "ldr", "'Ht") \
> - V(LDR_s, "ldr", "'St") \
> - V(LDR_d, "ldr", "'Dt") \
> - V(STR_q, "str", "'Qt") \
> - V(LDR_q, "ldr", "'Qt")
> -
> -void Disassembler::VisitLoadStorePreIndex(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(LoadStorePreIndex)";
> -
> - switch (instr->Mask(LoadStorePreIndexMask)) {
> - #define LS_PREINDEX(A, B, C) \
> - case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break;
> - LOAD_STORE_LIST(LS_PREINDEX)
> - #undef LS_PREINDEX
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStorePostIndex(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(LoadStorePostIndex)";
> -
> - switch (instr->Mask(LoadStorePostIndexMask)) {
> - #define LS_POSTINDEX(A, B, C) \
> - case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break;
> - LOAD_STORE_LIST(LS_POSTINDEX)
> - #undef LS_POSTINDEX
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStoreUnsignedOffset(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(LoadStoreUnsignedOffset)";
> -
> - switch (instr->Mask(LoadStoreUnsignedOffsetMask)) {
> - #define LS_UNSIGNEDOFFSET(A, B, C) \
> - case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break;
> - LOAD_STORE_LIST(LS_UNSIGNEDOFFSET)
> - #undef LS_UNSIGNEDOFFSET
> - case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xns'ILU]";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStoreRegisterOffset(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(LoadStoreRegisterOffset)";
> -
> - switch (instr->Mask(LoadStoreRegisterOffsetMask)) {
> - #define LS_REGISTEROFFSET(A, B, C) \
> - case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break;
> - LOAD_STORE_LIST(LS_REGISTEROFFSET)
> - #undef LS_REGISTEROFFSET
> - case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStoreUnscaledOffset(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Wt, ['Xns'ILS]";
> - const char *form_x = "'Xt, ['Xns'ILS]";
> - const char *form_b = "'Bt, ['Xns'ILS]";
> - const char *form_h = "'Ht, ['Xns'ILS]";
> - const char *form_s = "'St, ['Xns'ILS]";
> - const char *form_d = "'Dt, ['Xns'ILS]";
> - const char *form_q = "'Qt, ['Xns'ILS]";
> - const char *form_prefetch = "'PrefOp, ['Xns'ILS]";
> -
> - switch (instr->Mask(LoadStoreUnscaledOffsetMask)) {
> - case STURB_w: mnemonic = "sturb"; break;
> - case STURH_w: mnemonic = "sturh"; break;
> - case STUR_w: mnemonic = "stur"; break;
> - case STUR_x: mnemonic = "stur"; form = form_x; break;
> - case STUR_b: mnemonic = "stur"; form = form_b; break;
> - case STUR_h: mnemonic = "stur"; form = form_h; break;
> - case STUR_s: mnemonic = "stur"; form = form_s; break;
> - case STUR_d: mnemonic = "stur"; form = form_d; break;
> - case STUR_q: mnemonic = "stur"; form = form_q; break;
> - case LDURB_w: mnemonic = "ldurb"; break;
> - case LDURH_w: mnemonic = "ldurh"; break;
> - case LDUR_w: mnemonic = "ldur"; break;
> - case LDUR_x: mnemonic = "ldur"; form = form_x; break;
> - case LDUR_b: mnemonic = "ldur"; form = form_b; break;
> - case LDUR_h: mnemonic = "ldur"; form = form_h; break;
> - case LDUR_s: mnemonic = "ldur"; form = form_s; break;
> - case LDUR_d: mnemonic = "ldur"; form = form_d; break;
> - case LDUR_q: mnemonic = "ldur"; form = form_q; break;
> - case LDURSB_x: form = form_x; VIXL_FALLTHROUGH();
> - case LDURSB_w: mnemonic = "ldursb"; break;
> - case LDURSH_x: form = form_x; VIXL_FALLTHROUGH();
> - case LDURSH_w: mnemonic = "ldursh"; break;
> - case LDURSW_x: mnemonic = "ldursw"; form = form_x; break;
> - case PRFUM: mnemonic = "prfum"; form = form_prefetch; break;
> - default: form = "(LoadStoreUnscaledOffset)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadLiteral(const Instruction* instr) {
> - const char *mnemonic = "ldr";
> - const char *form = "(LoadLiteral)";
> -
> - switch (instr->Mask(LoadLiteralMask)) {
> - case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break;
> - case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
> - case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
> - case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
> - case LDR_q_lit: form = "'Qt, 'ILLiteral 'LValue"; break;
> - case LDRSW_x_lit: {
> - mnemonic = "ldrsw";
> - form = "'Xt, 'ILLiteral 'LValue";
> - break;
> - }
> - case PRFM_lit: {
> - mnemonic = "prfm";
> - form = "'PrefOp, 'ILLiteral 'LValue";
> - break;
> - }
> - default: mnemonic = "unimplemented";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -#define LOAD_STORE_PAIR_LIST(V) \
> - V(STP_w, "stp", "'Wt, 'Wt2", "2") \
> - V(LDP_w, "ldp", "'Wt, 'Wt2", "2") \
> - V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "2") \
> - V(STP_x, "stp", "'Xt, 'Xt2", "3") \
> - V(LDP_x, "ldp", "'Xt, 'Xt2", "3") \
> - V(STP_s, "stp", "'St, 'St2", "2") \
> - V(LDP_s, "ldp", "'St, 'St2", "2") \
> - V(STP_d, "stp", "'Dt, 'Dt2", "3") \
> - V(LDP_d, "ldp", "'Dt, 'Dt2", "3") \
> - V(LDP_q, "ldp", "'Qt, 'Qt2", "4") \
> - V(STP_q, "stp", "'Qt, 'Qt2", "4")
> -
> -void Disassembler::VisitLoadStorePairPostIndex(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(LoadStorePairPostIndex)";
> -
> - switch (instr->Mask(LoadStorePairPostIndexMask)) {
> - #define LSP_POSTINDEX(A, B, C, D) \
> - case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break;
> - LOAD_STORE_PAIR_LIST(LSP_POSTINDEX)
> - #undef LSP_POSTINDEX
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStorePairPreIndex(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(LoadStorePairPreIndex)";
> -
> - switch (instr->Mask(LoadStorePairPreIndexMask)) {
> - #define LSP_PREINDEX(A, B, C, D) \
> - case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break;
> - LOAD_STORE_PAIR_LIST(LSP_PREINDEX)
> - #undef LSP_PREINDEX
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStorePairOffset(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(LoadStorePairOffset)";
> -
> - switch (instr->Mask(LoadStorePairOffsetMask)) {
> - #define LSP_OFFSET(A, B, C, D) \
> - case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break;
> - LOAD_STORE_PAIR_LIST(LSP_OFFSET)
> - #undef LSP_OFFSET
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStorePairNonTemporal(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form;
> -
> - switch (instr->Mask(LoadStorePairNonTemporalMask)) {
> - case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP2]"; break;
> - case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP2]"; break;
> - case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP3]"; break;
> - case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP3]"; break;
> - case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP2]"; break;
> - case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP2]"; break;
> - case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP3]"; break;
> - case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP3]"; break;
> - case STNP_q: mnemonic = "stnp"; form = "'Qt, 'Qt2, ['Xns'ILP4]"; break;
> - case LDNP_q: mnemonic = "ldnp"; form = "'Qt, 'Qt2, ['Xns'ILP4]"; break;
> - default: form = "(LoadStorePairNonTemporal)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitLoadStoreExclusive(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form;
> -
> - switch (instr->Mask(LoadStoreExclusiveMask)) {
> - case STXRB_w: mnemonic = "stxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
> - case STXRH_w: mnemonic = "stxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
> - case STXR_w: mnemonic = "stxr"; form = "'Ws, 'Wt, ['Xns]"; break;
> - case STXR_x: mnemonic = "stxr"; form = "'Ws, 'Xt, ['Xns]"; break;
> - case LDXRB_w: mnemonic = "ldxrb"; form = "'Wt, ['Xns]"; break;
> - case LDXRH_w: mnemonic = "ldxrh"; form = "'Wt, ['Xns]"; break;
> - case LDXR_w: mnemonic = "ldxr"; form = "'Wt, ['Xns]"; break;
> - case LDXR_x: mnemonic = "ldxr"; form = "'Xt, ['Xns]"; break;
> - case STXP_w: mnemonic = "stxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
> - case STXP_x: mnemonic = "stxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
> - case LDXP_w: mnemonic = "ldxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
> - case LDXP_x: mnemonic = "ldxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
> - case STLXRB_w: mnemonic = "stlxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
> - case STLXRH_w: mnemonic = "stlxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
> - case STLXR_w: mnemonic = "stlxr"; form = "'Ws, 'Wt, ['Xns]"; break;
> - case STLXR_x: mnemonic = "stlxr"; form = "'Ws, 'Xt, ['Xns]"; break;
> - case LDAXRB_w: mnemonic = "ldaxrb"; form = "'Wt, ['Xns]"; break;
> - case LDAXRH_w: mnemonic = "ldaxrh"; form = "'Wt, ['Xns]"; break;
> - case LDAXR_w: mnemonic = "ldaxr"; form = "'Wt, ['Xns]"; break;
> - case LDAXR_x: mnemonic = "ldaxr"; form = "'Xt, ['Xns]"; break;
> - case STLXP_w: mnemonic = "stlxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
> - case STLXP_x: mnemonic = "stlxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
> - case LDAXP_w: mnemonic = "ldaxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
> - case LDAXP_x: mnemonic = "ldaxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
> - case STLRB_w: mnemonic = "stlrb"; form = "'Wt, ['Xns]"; break;
> - case STLRH_w: mnemonic = "stlrh"; form = "'Wt, ['Xns]"; break;
> - case STLR_w: mnemonic = "stlr"; form = "'Wt, ['Xns]"; break;
> - case STLR_x: mnemonic = "stlr"; form = "'Xt, ['Xns]"; break;
> - case LDARB_w: mnemonic = "ldarb"; form = "'Wt, ['Xns]"; break;
> - case LDARH_w: mnemonic = "ldarh"; form = "'Wt, ['Xns]"; break;
> - case LDAR_w: mnemonic = "ldar"; form = "'Wt, ['Xns]"; break;
> - case LDAR_x: mnemonic = "ldar"; form = "'Xt, ['Xns]"; break;
> - default: form = "(LoadStoreExclusive)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPCompare(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Fn, 'Fm";
> - const char *form_zero = "'Fn, #0.0";
> -
> - switch (instr->Mask(FPCompareMask)) {
> - case FCMP_s_zero:
> - case FCMP_d_zero: form = form_zero; VIXL_FALLTHROUGH();
> - case FCMP_s:
> - case FCMP_d: mnemonic = "fcmp"; break;
> - case FCMPE_s_zero:
> - case FCMPE_d_zero: form = form_zero; VIXL_FALLTHROUGH();
> - case FCMPE_s:
> - case FCMPE_d: mnemonic = "fcmpe"; break;
> - default: form = "(FPCompare)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPConditionalCompare(const Instruction* instr) {
> - const char *mnemonic = "unmplemented";
> - const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
> -
> - switch (instr->Mask(FPConditionalCompareMask)) {
> - case FCCMP_s:
> - case FCCMP_d: mnemonic = "fccmp"; break;
> - case FCCMPE_s:
> - case FCCMPE_d: mnemonic = "fccmpe"; break;
> - default: form = "(FPConditionalCompare)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPConditionalSelect(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
> -
> - switch (instr->Mask(FPConditionalSelectMask)) {
> - case FCSEL_s:
> - case FCSEL_d: mnemonic = "fcsel"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPDataProcessing1Source(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Fd, 'Fn";
> -
> - switch (instr->Mask(FPDataProcessing1SourceMask)) {
> - #define FORMAT(A, B) \
> - case A##_s: \
> - case A##_d: mnemonic = B; break;
> - FORMAT(FMOV, "fmov");
> - FORMAT(FABS, "fabs");
> - FORMAT(FNEG, "fneg");
> - FORMAT(FSQRT, "fsqrt");
> - FORMAT(FRINTN, "frintn");
> - FORMAT(FRINTP, "frintp");
> - FORMAT(FRINTM, "frintm");
> - FORMAT(FRINTZ, "frintz");
> - FORMAT(FRINTA, "frinta");
> - FORMAT(FRINTX, "frintx");
> - FORMAT(FRINTI, "frinti");
> - #undef FORMAT
> - case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break;
> - case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break;
> - case FCVT_hs: mnemonic = "fcvt"; form = "'Hd, 'Sn"; break;
> - case FCVT_sh: mnemonic = "fcvt"; form = "'Sd, 'Hn"; break;
> - case FCVT_dh: mnemonic = "fcvt"; form = "'Dd, 'Hn"; break;
> - case FCVT_hd: mnemonic = "fcvt"; form = "'Hd, 'Dn"; break;
> - default: form = "(FPDataProcessing1Source)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPDataProcessing2Source(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Fd, 'Fn, 'Fm";
> -
> - switch (instr->Mask(FPDataProcessing2SourceMask)) {
> - #define FORMAT(A, B) \
> - case A##_s: \
> - case A##_d: mnemonic = B; break;
> - FORMAT(FMUL, "fmul");
> - FORMAT(FDIV, "fdiv");
> - FORMAT(FADD, "fadd");
> - FORMAT(FSUB, "fsub");
> - FORMAT(FMAX, "fmax");
> - FORMAT(FMIN, "fmin");
> - FORMAT(FMAXNM, "fmaxnm");
> - FORMAT(FMINNM, "fminnm");
> - FORMAT(FNMUL, "fnmul");
> - #undef FORMAT
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPDataProcessing3Source(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
> -
> - switch (instr->Mask(FPDataProcessing3SourceMask)) {
> - #define FORMAT(A, B) \
> - case A##_s: \
> - case A##_d: mnemonic = B; break;
> - FORMAT(FMADD, "fmadd");
> - FORMAT(FMSUB, "fmsub");
> - FORMAT(FNMADD, "fnmadd");
> - FORMAT(FNMSUB, "fnmsub");
> - #undef FORMAT
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPImmediate(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "(FPImmediate)";
> -
> - switch (instr->Mask(FPImmediateMask)) {
> - case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
> - case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPIntegerConvert(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(FPIntegerConvert)";
> - const char *form_rf = "'Rd, 'Fn";
> - const char *form_fr = "'Fd, 'Rn";
> -
> - switch (instr->Mask(FPIntegerConvertMask)) {
> - case FMOV_ws:
> - case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
> - case FMOV_sw:
> - case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
> - case FMOV_d1_x: mnemonic = "fmov"; form = "'Vd.D[1], 'Rn"; break;
> - case FMOV_x_d1: mnemonic = "fmov"; form = "'Rd, 'Vn.D[1]"; break;
> - case FCVTAS_ws:
> - case FCVTAS_xs:
> - case FCVTAS_wd:
> - case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break;
> - case FCVTAU_ws:
> - case FCVTAU_xs:
> - case FCVTAU_wd:
> - case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break;
> - case FCVTMS_ws:
> - case FCVTMS_xs:
> - case FCVTMS_wd:
> - case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break;
> - case FCVTMU_ws:
> - case FCVTMU_xs:
> - case FCVTMU_wd:
> - case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break;
> - case FCVTNS_ws:
> - case FCVTNS_xs:
> - case FCVTNS_wd:
> - case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break;
> - case FCVTNU_ws:
> - case FCVTNU_xs:
> - case FCVTNU_wd:
> - case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break;
> - case FCVTZU_xd:
> - case FCVTZU_ws:
> - case FCVTZU_wd:
> - case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break;
> - case FCVTZS_xd:
> - case FCVTZS_wd:
> - case FCVTZS_xs:
> - case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break;
> - case FCVTPU_xd:
> - case FCVTPU_ws:
> - case FCVTPU_wd:
> - case FCVTPU_xs: mnemonic = "fcvtpu"; form = form_rf; break;
> - case FCVTPS_xd:
> - case FCVTPS_wd:
> - case FCVTPS_xs:
> - case FCVTPS_ws: mnemonic = "fcvtps"; form = form_rf; break;
> - case SCVTF_sw:
> - case SCVTF_sx:
> - case SCVTF_dw:
> - case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break;
> - case UCVTF_sw:
> - case UCVTF_sx:
> - case UCVTF_dw:
> - case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break;
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitFPFixedPointConvert(const Instruction* instr) {
> - const char *mnemonic = "";
> - const char *form = "'Rd, 'Fn, 'IFPFBits";
> - const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
> -
> - switch (instr->Mask(FPFixedPointConvertMask)) {
> - case FCVTZS_ws_fixed:
> - case FCVTZS_xs_fixed:
> - case FCVTZS_wd_fixed:
> - case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break;
> - case FCVTZU_ws_fixed:
> - case FCVTZU_xs_fixed:
> - case FCVTZU_wd_fixed:
> - case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break;
> - case SCVTF_sw_fixed:
> - case SCVTF_sx_fixed:
> - case SCVTF_dw_fixed:
> - case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break;
> - case UCVTF_sw_fixed:
> - case UCVTF_sx_fixed:
> - case UCVTF_dw_fixed:
> - case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
> - default: VIXL_UNREACHABLE();
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitSystem(const Instruction* instr) {
> - // Some system instructions hijack their Op and Cp fields to represent a
> - // range of immediates instead of indicating a different instruction. This
> - // makes the decoding tricky.
> - const char *mnemonic = "unimplemented";
> - const char *form = "(System)";
> -
> - if (instr->Mask(SystemExclusiveMonitorFMask) ==
> SystemExclusiveMonitorFixed) {
> - switch (instr->Mask(SystemExclusiveMonitorMask)) {
> - case CLREX: {
> - mnemonic = "clrex";
> - form = (instr->CRm() == 0xf) ? NULL : "'IX";
> - break;
> - }
> - }
> - } else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
> - switch (instr->Mask(SystemSysRegMask)) {
> - case MRS: {
> - mnemonic = "mrs";
> - switch (instr->ImmSystemRegister()) {
> - case NZCV: form = "'Xt, nzcv"; break;
> - case FPCR: form = "'Xt, fpcr"; break;
> - default: form = "'Xt, (unknown)"; break;
> - }
> - break;
> - }
> - case MSR: {
> - mnemonic = "msr";
> - switch (instr->ImmSystemRegister()) {
> - case NZCV: form = "nzcv, 'Xt"; break;
> - case FPCR: form = "fpcr, 'Xt"; break;
> - default: form = "(unknown), 'Xt"; break;
> - }
> - break;
> - }
> - }
> - } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
> - switch (instr->ImmHint()) {
> - case NOP: {
> - mnemonic = "nop";
> - form = NULL;
> - break;
> - }
> - }
> - } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
> - switch (instr->Mask(MemBarrierMask)) {
> - case DMB: {
> - mnemonic = "dmb";
> - form = "'M";
> - break;
> - }
> - case DSB: {
> - mnemonic = "dsb";
> - form = "'M";
> - break;
> - }
> - case ISB: {
> - mnemonic = "isb";
> - form = NULL;
> - break;
> - }
> - }
> - } else if (instr->Mask(SystemSysFMask) == SystemSysFixed) {
> - switch (instr->SysOp()) {
> - case IVAU:
> - mnemonic = "ic";
> - form = "ivau, 'Xt";
> - break;
> - case CVAC:
> - mnemonic = "dc";
> - form = "cvac, 'Xt";
> - break;
> - case CVAU:
> - mnemonic = "dc";
> - form = "cvau, 'Xt";
> - break;
> - case CIVAC:
> - mnemonic = "dc";
> - form = "civac, 'Xt";
> - break;
> - case ZVA:
> - mnemonic = "dc";
> - form = "zva, 'Xt";
> - break;
> - default:
> - mnemonic = "sys";
> - if (instr->Rt() == 31) {
> - form = "'G1, 'Kn, 'Km, 'G2";
> - } else {
> - form = "'G1, 'Kn, 'Km, 'G2, 'Xt";
> - }
> - break;
> - }
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitException(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'IDebug";
> -
> - switch (instr->Mask(ExceptionMask)) {
> - case HLT: mnemonic = "hlt"; break;
> - case BRK: mnemonic = "brk"; break;
> - case SVC: mnemonic = "svc"; break;
> - case HVC: mnemonic = "hvc"; break;
> - case SMC: mnemonic = "smc"; break;
> - case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break;
> - case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break;
> - case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break;
> - default: form = "(Exception)";
> - }
> - Format(instr, mnemonic, form);
> -}
> -
> -
> -void Disassembler::VisitCrypto2RegSHA(const Instruction* instr) {
> - VisitUnimplemented(instr);
> -}
> -
> -
> -void Disassembler::VisitCrypto3RegSHA(const Instruction* instr) {
> - VisitUnimplemented(instr);
> -}
> -
> -
> -void Disassembler::VisitCryptoAES(const Instruction* instr) {
> - VisitUnimplemented(instr);
> -}
> -
> -
> -void Disassembler::VisitNEON2RegMisc(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Vd.%s, 'Vn.%s";
> - const char *form_cmp_zero = "'Vd.%s, 'Vn.%s, #0";
> - const char *form_fcmp_zero = "'Vd.%s, 'Vn.%s, #0.0";
> - NEONFormatDecoder nfd(instr);
> -
> - static const NEONFormatMap map_lp_ta = {
> - {23, 22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
> - };
> -
> - static const NEONFormatMap map_cvt_ta = {
> - {22}, {NF_4S, NF_2D}
> - };
> -
> - static const NEONFormatMap map_cvt_tb = {
> - {22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S}
> - };
> -
> - if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_opcode) {
> - // These instructions all use a two bit size field, except NOT and RBIT,
> - // which use the field to encode the operation.
> - switch (instr->Mask(NEON2RegMiscMask)) {
> - case NEON_REV64: mnemonic = "rev64"; break;
> - case NEON_REV32: mnemonic = "rev32"; break;
> - case NEON_REV16: mnemonic = "rev16"; break;
> - case NEON_SADDLP:
> - mnemonic = "saddlp";
> - nfd.SetFormatMap(0, &map_lp_ta);
> - break;
> - case NEON_UADDLP:
> - mnemonic = "uaddlp";
> - nfd.SetFormatMap(0, &map_lp_ta);
> - break;
> - case NEON_SUQADD: mnemonic = "suqadd"; break;
> - case NEON_USQADD: mnemonic = "usqadd"; break;
> - case NEON_CLS: mnemonic = "cls"; break;
> - case NEON_CLZ: mnemonic = "clz"; break;
> - case NEON_CNT: mnemonic = "cnt"; break;
> - case NEON_SADALP:
> - mnemonic = "sadalp";
> - nfd.SetFormatMap(0, &map_lp_ta);
> - break;
> - case NEON_UADALP:
> - mnemonic = "uadalp";
> - nfd.SetFormatMap(0, &map_lp_ta);
> - break;
> - case NEON_SQABS: mnemonic = "sqabs"; break;
> - case NEON_SQNEG: mnemonic = "sqneg"; break;
> - case NEON_CMGT_zero: mnemonic = "cmgt"; form = form_cmp_zero; break;
> - case NEON_CMGE_zero: mnemonic = "cmge"; form = form_cmp_zero; break;
> - case NEON_CMEQ_zero: mnemonic = "cmeq"; form = form_cmp_zero; break;
> - case NEON_CMLE_zero: mnemonic = "cmle"; form = form_cmp_zero; break;
> - case NEON_CMLT_zero: mnemonic = "cmlt"; form = form_cmp_zero; break;
> - case NEON_ABS: mnemonic = "abs"; break;
> - case NEON_NEG: mnemonic = "neg"; break;
> - case NEON_RBIT_NOT:
> - switch (instr->FPType()) {
> - case 0: mnemonic = "mvn"; break;
> - case 1: mnemonic = "rbit"; break;
> - default: form = "(NEON2RegMisc)";
> - }
> - nfd.SetFormatMaps(nfd.LogicalFormatMap());
> - break;
> - }
> - } else {
> - // These instructions all use a one bit size field, except XTN, SQXTUN,
> - // SHLL, SQXTN and UQXTN, which use a two bit size field.
> - nfd.SetFormatMaps(nfd.FPFormatMap());
> - switch (instr->Mask(NEON2RegMiscFPMask)) {
> - case NEON_FABS: mnemonic = "fabs"; break;
> - case NEON_FNEG: mnemonic = "fneg"; break;
> - case NEON_FCVTN:
> - mnemonic = instr->Mask(NEON_Q) ? "fcvtn2" : "fcvtn";
> - nfd.SetFormatMap(0, &map_cvt_tb);
> - nfd.SetFormatMap(1, &map_cvt_ta);
> - break;
> - case NEON_FCVTXN:
> - mnemonic = instr->Mask(NEON_Q) ? "fcvtxn2" : "fcvtxn";
> - nfd.SetFormatMap(0, &map_cvt_tb);
> - nfd.SetFormatMap(1, &map_cvt_ta);
> - break;
> - case NEON_FCVTL:
> - mnemonic = instr->Mask(NEON_Q) ? "fcvtl2" : "fcvtl";
> - nfd.SetFormatMap(0, &map_cvt_ta);
> - nfd.SetFormatMap(1, &map_cvt_tb);
> - break;
> - case NEON_FRINTN: mnemonic = "frintn"; break;
> - case NEON_FRINTA: mnemonic = "frinta"; break;
> - case NEON_FRINTP: mnemonic = "frintp"; break;
> - case NEON_FRINTM: mnemonic = "frintm"; break;
> - case NEON_FRINTX: mnemonic = "frintx"; break;
> - case NEON_FRINTZ: mnemonic = "frintz"; break;
> - case NEON_FRINTI: mnemonic = "frinti"; break;
> - case NEON_FCVTNS: mnemonic = "fcvtns"; break;
> - case NEON_FCVTNU: mnemonic = "fcvtnu"; break;
> - case NEON_FCVTPS: mnemonic = "fcvtps"; break;
> - case NEON_FCVTPU: mnemonic = "fcvtpu"; break;
> - case NEON_FCVTMS: mnemonic = "fcvtms"; break;
> - case NEON_FCVTMU: mnemonic = "fcvtmu"; break;
> - case NEON_FCVTZS: mnemonic = "fcvtzs"; break;
> - case NEON_FCVTZU: mnemonic = "fcvtzu"; break;
> - case NEON_FCVTAS: mnemonic = "fcvtas"; break;
> - case NEON_FCVTAU: mnemonic = "fcvtau"; break;
> - case NEON_FSQRT: mnemonic = "fsqrt"; break;
> - case NEON_SCVTF: mnemonic = "scvtf"; break;
> - case NEON_UCVTF: mnemonic = "ucvtf"; break;
> - case NEON_URSQRTE: mnemonic = "ursqrte"; break;
> - case NEON_URECPE: mnemonic = "urecpe"; break;
> - case NEON_FRSQRTE: mnemonic = "frsqrte"; break;
> - case NEON_FRECPE: mnemonic = "frecpe"; break;
> - case NEON_FCMGT_zero: mnemonic = "fcmgt"; form = form_fcmp_zero; break;
> - case NEON_FCMGE_zero: mnemonic = "fcmge"; form = form_fcmp_zero; break;
> - case NEON_FCMEQ_zero: mnemonic = "fcmeq"; form = form_fcmp_zero; break;
> - case NEON_FCMLE_zero: mnemonic = "fcmle"; form = form_fcmp_zero; break;
> - case NEON_FCMLT_zero: mnemonic = "fcmlt"; form = form_fcmp_zero; break;
> - default:
> - if ((NEON_XTN_opcode <= instr->Mask(NEON2RegMiscOpcode)) &&
> - (instr->Mask(NEON2RegMiscOpcode) <= NEON_UQXTN_opcode)) {
> - nfd.SetFormatMap(0, nfd.IntegerFormatMap());
> - nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
> -
> - switch (instr->Mask(NEON2RegMiscMask)) {
> - case NEON_XTN: mnemonic = "xtn"; break;
> - case NEON_SQXTN: mnemonic = "sqxtn"; break;
> - case NEON_UQXTN: mnemonic = "uqxtn"; break;
> - case NEON_SQXTUN: mnemonic = "sqxtun"; break;
> - case NEON_SHLL:
> - mnemonic = "shll";
> - nfd.SetFormatMap(0, nfd.LongIntegerFormatMap());
> - nfd.SetFormatMap(1, nfd.IntegerFormatMap());
> - switch (instr->NEONSize()) {
> - case 0: form = "'Vd.%s, 'Vn.%s, #8"; break;
> - case 1: form = "'Vd.%s, 'Vn.%s, #16"; break;
> - case 2: form = "'Vd.%s, 'Vn.%s, #32"; break;
> - default: form = "(NEON2RegMisc)";
> - }
> - }
> - Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
> - return;
> - } else {
> - form = "(NEON2RegMisc)";
> - }
> - }
> - }
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEON3Same(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
> - NEONFormatDecoder nfd(instr);
> -
> - if (instr->Mask(NEON3SameLogicalFMask) == NEON3SameLogicalFixed) {
> - switch (instr->Mask(NEON3SameLogicalMask)) {
> - case NEON_AND: mnemonic = "and"; break;
> - case NEON_ORR:
> - mnemonic = "orr";
> - if (instr->Rm() == instr->Rn()) {
> - mnemonic = "mov";
> - form = "'Vd.%s, 'Vn.%s";
> - }
> - break;
> - case NEON_ORN: mnemonic = "orn"; break;
> - case NEON_EOR: mnemonic = "eor"; break;
> - case NEON_BIC: mnemonic = "bic"; break;
> - case NEON_BIF: mnemonic = "bif"; break;
> - case NEON_BIT: mnemonic = "bit"; break;
> - case NEON_BSL: mnemonic = "bsl"; break;
> - default: form = "(NEON3Same)";
> - }
> - nfd.SetFormatMaps(nfd.LogicalFormatMap());
> - } else {
> - static const char *mnemonics[] = {
> - "shadd", "uhadd", "shadd", "uhadd",
> - "sqadd", "uqadd", "sqadd", "uqadd",
> - "srhadd", "urhadd", "srhadd", "urhadd",
> - NULL, NULL, NULL, NULL, // Handled by logical cases above.
> - "shsub", "uhsub", "shsub", "uhsub",
> - "sqsub", "uqsub", "sqsub", "uqsub",
> - "cmgt", "cmhi", "cmgt", "cmhi",
> - "cmge", "cmhs", "cmge", "cmhs",
> - "sshl", "ushl", "sshl", "ushl",
> - "sqshl", "uqshl", "sqshl", "uqshl",
> - "srshl", "urshl", "srshl", "urshl",
> - "sqrshl", "uqrshl", "sqrshl", "uqrshl",
> - "smax", "umax", "smax", "umax",
> - "smin", "umin", "smin", "umin",
> - "sabd", "uabd", "sabd", "uabd",
> - "saba", "uaba", "saba", "uaba",
> - "add", "sub", "add", "sub",
> - "cmtst", "cmeq", "cmtst", "cmeq",
> - "mla", "mls", "mla", "mls",
> - "mul", "pmul", "mul", "pmul",
> - "smaxp", "umaxp", "smaxp", "umaxp",
> - "sminp", "uminp", "sminp", "uminp",
> - "sqdmulh", "sqrdmulh", "sqdmulh", "sqrdmulh",
> - "addp", "unallocated", "addp", "unallocated",
> - "fmaxnm", "fmaxnmp", "fminnm", "fminnmp",
> - "fmla", "unallocated", "fmls", "unallocated",
> - "fadd", "faddp", "fsub", "fabd",
> - "fmulx", "fmul", "unallocated", "unallocated",
> - "fcmeq", "fcmge", "unallocated", "fcmgt",
> - "unallocated", "facge", "unallocated", "facgt",
> - "fmax", "fmaxp", "fmin", "fminp",
> - "frecps", "fdiv", "frsqrts", "unallocated"};
> -
> - // Operation is determined by the opcode bits (15-11), the top bit of
> - // size (23) and the U bit (29).
> - unsigned index = (instr->Bits(15, 11) << 2) | (instr->Bit(23) << 1) |
> - instr->Bit(29);
> - VIXL_ASSERT(index < (sizeof(mnemonics) / sizeof(mnemonics[0])));
> - mnemonic = mnemonics[index];
> - // Assert that index is not one of the previously handled logical
> - // instructions.
> - VIXL_ASSERT(mnemonic != NULL);
> -
> - if (instr->Mask(NEON3SameFPFMask) == NEON3SameFPFixed) {
> - nfd.SetFormatMaps(nfd.FPFormatMap());
> - }
> - }
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEON3Different(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
> -
> - NEONFormatDecoder nfd(instr);
> - nfd.SetFormatMap(0, nfd.LongIntegerFormatMap());
> -
> - // Ignore the Q bit. Appending a "2" suffix is handled later.
> - switch (instr->Mask(NEON3DifferentMask) & ~NEON_Q) {
> - case NEON_PMULL: mnemonic = "pmull"; break;
> - case NEON_SABAL: mnemonic = "sabal"; break;
> - case NEON_SABDL: mnemonic = "sabdl"; break;
> - case NEON_SADDL: mnemonic = "saddl"; break;
> - case NEON_SMLAL: mnemonic = "smlal"; break;
> - case NEON_SMLSL: mnemonic = "smlsl"; break;
> - case NEON_SMULL: mnemonic = "smull"; break;
> - case NEON_SSUBL: mnemonic = "ssubl"; break;
> - case NEON_SQDMLAL: mnemonic = "sqdmlal"; break;
> - case NEON_SQDMLSL: mnemonic = "sqdmlsl"; break;
> - case NEON_SQDMULL: mnemonic = "sqdmull"; break;
> - case NEON_UABAL: mnemonic = "uabal"; break;
> - case NEON_UABDL: mnemonic = "uabdl"; break;
> - case NEON_UADDL: mnemonic = "uaddl"; break;
> - case NEON_UMLAL: mnemonic = "umlal"; break;
> - case NEON_UMLSL: mnemonic = "umlsl"; break;
> - case NEON_UMULL: mnemonic = "umull"; break;
> - case NEON_USUBL: mnemonic = "usubl"; break;
> - case NEON_SADDW:
> - mnemonic = "saddw";
> - nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
> - break;
> - case NEON_SSUBW:
> - mnemonic = "ssubw";
> - nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
> - break;
> - case NEON_UADDW:
> - mnemonic = "uaddw";
> - nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
> - break;
> - case NEON_USUBW:
> - mnemonic = "usubw";
> - nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
> - break;
> - case NEON_ADDHN:
> - mnemonic = "addhn";
> - nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
> - nfd.SetFormatMap(0, nfd.IntegerFormatMap());
> - break;
> - case NEON_RADDHN:
> - mnemonic = "raddhn";
> - nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
> - nfd.SetFormatMap(0, nfd.IntegerFormatMap());
> - break;
> - case NEON_RSUBHN:
> - mnemonic = "rsubhn";
> - nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
> - nfd.SetFormatMap(0, nfd.IntegerFormatMap());
> - break;
> - case NEON_SUBHN:
> - mnemonic = "subhn";
> - nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
> - nfd.SetFormatMap(0, nfd.IntegerFormatMap());
> - break;
> - default: form = "(NEON3Different)";
> - }
> - Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONAcrossLanes(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "%sd, 'Vn.%s";
> -
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap(),
> - NEONFormatDecoder::IntegerFormatMap());
> -
> - if (instr->Mask(NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
> - nfd.SetFormatMap(0, nfd.FPScalarFormatMap());
> - nfd.SetFormatMap(1, nfd.FPFormatMap());
> - switch (instr->Mask(NEONAcrossLanesFPMask)) {
> - case NEON_FMAXV: mnemonic = "fmaxv"; break;
> - case NEON_FMINV: mnemonic = "fminv"; break;
> - case NEON_FMAXNMV: mnemonic = "fmaxnmv"; break;
> - case NEON_FMINNMV: mnemonic = "fminnmv"; break;
> - default: form = "(NEONAcrossLanes)"; break;
> - }
> - } else if (instr->Mask(NEONAcrossLanesFMask) == NEONAcrossLanesFixed) {
> - switch (instr->Mask(NEONAcrossLanesMask)) {
> - case NEON_ADDV: mnemonic = "addv"; break;
> - case NEON_SMAXV: mnemonic = "smaxv"; break;
> - case NEON_SMINV: mnemonic = "sminv"; break;
> - case NEON_UMAXV: mnemonic = "umaxv"; break;
> - case NEON_UMINV: mnemonic = "uminv"; break;
> - case NEON_SADDLV:
> - mnemonic = "saddlv";
> - nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
> - break;
> - case NEON_UADDLV:
> - mnemonic = "uaddlv";
> - nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
> - break;
> - default: form = "(NEONAcrossLanes)"; break;
> - }
> - }
> - Format(instr, mnemonic, nfd.Substitute(form,
> - NEONFormatDecoder::kPlaceholder, NEONFormatDecoder::kFormat));
> -}
> -
> -
> -void Disassembler::VisitNEONByIndexedElement(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - bool l_instr = false;
> - bool fp_instr = false;
> -
> - const char *form = "'Vd.%s, 'Vn.%s, 'Ve.%s['IVByElemIndex]";
> -
> - static const NEONFormatMap map_ta = {
> - {23, 22}, {NF_UNDEF, NF_4S, NF_2D}
> - };
> - NEONFormatDecoder nfd(instr, &map_ta,
> - NEONFormatDecoder::IntegerFormatMap(),
> - NEONFormatDecoder::ScalarFormatMap());
> -
> - switch (instr->Mask(NEONByIndexedElementMask)) {
> - case NEON_SMULL_byelement: mnemonic = "smull"; l_instr = true; break;
> - case NEON_UMULL_byelement: mnemonic = "umull"; l_instr = true; break;
> - case NEON_SMLAL_byelement: mnemonic = "smlal"; l_instr = true; break;
> - case NEON_UMLAL_byelement: mnemonic = "umlal"; l_instr = true; break;
> - case NEON_SMLSL_byelement: mnemonic = "smlsl"; l_instr = true; break;
> - case NEON_UMLSL_byelement: mnemonic = "umlsl"; l_instr = true; break;
> - case NEON_SQDMULL_byelement: mnemonic = "sqdmull"; l_instr = true;
> break;
> - case NEON_SQDMLAL_byelement: mnemonic = "sqdmlal"; l_instr = true;
> break;
> - case NEON_SQDMLSL_byelement: mnemonic = "sqdmlsl"; l_instr = true;
> break;
> - case NEON_MUL_byelement: mnemonic = "mul"; break;
> - case NEON_MLA_byelement: mnemonic = "mla"; break;
> - case NEON_MLS_byelement: mnemonic = "mls"; break;
> - case NEON_SQDMULH_byelement: mnemonic = "sqdmulh"; break;
> - case NEON_SQRDMULH_byelement: mnemonic = "sqrdmulh"; break;
> - default:
> - switch (instr->Mask(NEONByIndexedElementFPMask)) {
> - case NEON_FMUL_byelement: mnemonic = "fmul"; fp_instr = true;
> break;
> - case NEON_FMLA_byelement: mnemonic = "fmla"; fp_instr = true;
> break;
> - case NEON_FMLS_byelement: mnemonic = "fmls"; fp_instr = true;
> break;
> - case NEON_FMULX_byelement: mnemonic = "fmulx"; fp_instr = true;
> break;
> - }
> - }
> -
> - if (l_instr) {
> - Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
> - } else if (fp_instr) {
> - nfd.SetFormatMap(0, nfd.FPFormatMap());
> - Format(instr, mnemonic, nfd.Substitute(form));
> - } else {
> - nfd.SetFormatMap(0, nfd.IntegerFormatMap());
> - Format(instr, mnemonic, nfd.Substitute(form));
> - }
> -}
> -
> -
> -void Disassembler::VisitNEONCopy(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONCopy)";
> -
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularFormatMap(),
> -
> NEONFormatDecoder::TriangularScalarFormatMap());
> -
> - if (instr->Mask(NEONCopyInsElementMask) == NEON_INS_ELEMENT) {
> - mnemonic = "mov";
> - nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
> - form = "'Vd.%s['IVInsIndex1], 'Vn.%s['IVInsIndex2]";
> - } else if (instr->Mask(NEONCopyInsGeneralMask) == NEON_INS_GENERAL) {
> - mnemonic = "mov";
> - nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
> - if (nfd.GetVectorFormat() == kFormatD) {
> - form = "'Vd.%s['IVInsIndex1], 'Xn";
> - } else {
> - form = "'Vd.%s['IVInsIndex1], 'Wn";
> - }
> - } else if (instr->Mask(NEONCopyUmovMask) == NEON_UMOV) {
> - if (instr->Mask(NEON_Q) || ((instr->ImmNEON5() & 7) == 4)) {
> - mnemonic = "mov";
> - } else {
> - mnemonic = "umov";
> - }
> - nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
> - if (nfd.GetVectorFormat() == kFormatD) {
> - form = "'Xd, 'Vn.%s['IVInsIndex1]";
> - } else {
> - form = "'Wd, 'Vn.%s['IVInsIndex1]";
> - }
> - } else if (instr->Mask(NEONCopySmovMask) == NEON_SMOV) {
> - mnemonic = "smov";
> - nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
> - form = "'Rdq, 'Vn.%s['IVInsIndex1]";
> - } else if (instr->Mask(NEONCopyDupElementMask) == NEON_DUP_ELEMENT) {
> - mnemonic = "dup";
> - form = "'Vd.%s, 'Vn.%s['IVInsIndex1]";
> - } else if (instr->Mask(NEONCopyDupGeneralMask) == NEON_DUP_GENERAL) {
> - mnemonic = "dup";
> - if (nfd.GetVectorFormat() == kFormat2D) {
> - form = "'Vd.%s, 'Xn";
> - } else {
> - form = "'Vd.%s, 'Wn";
> - }
> - }
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONExtract(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONExtract)";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap());
> - if (instr->Mask(NEONExtractMask) == NEON_EXT) {
> - mnemonic = "ext";
> - form = "'Vd.%s, 'Vn.%s, 'Vm.%s, 'IVExtract";
> - }
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONLoadStoreMultiStruct(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONLoadStoreMultiStruct)";
> - const char *form_1v = "{'Vt.%1$s}, ['Xns]";
> - const char *form_2v = "{'Vt.%1$s, 'Vt2.%1$s}, ['Xns]";
> - const char *form_3v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s}, ['Xns]";
> - const char *form_4v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s},
> ['Xns]";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
> -
> - switch (instr->Mask(NEONLoadStoreMultiStructMask)) {
> - case NEON_LD1_1v: mnemonic = "ld1"; form = form_1v; break;
> - case NEON_LD1_2v: mnemonic = "ld1"; form = form_2v; break;
> - case NEON_LD1_3v: mnemonic = "ld1"; form = form_3v; break;
> - case NEON_LD1_4v: mnemonic = "ld1"; form = form_4v; break;
> - case NEON_LD2: mnemonic = "ld2"; form = form_2v; break;
> - case NEON_LD3: mnemonic = "ld3"; form = form_3v; break;
> - case NEON_LD4: mnemonic = "ld4"; form = form_4v; break;
> - case NEON_ST1_1v: mnemonic = "st1"; form = form_1v; break;
> - case NEON_ST1_2v: mnemonic = "st1"; form = form_2v; break;
> - case NEON_ST1_3v: mnemonic = "st1"; form = form_3v; break;
> - case NEON_ST1_4v: mnemonic = "st1"; form = form_4v; break;
> - case NEON_ST2: mnemonic = "st2"; form = form_2v; break;
> - case NEON_ST3: mnemonic = "st3"; form = form_3v; break;
> - case NEON_ST4: mnemonic = "st4"; form = form_4v; break;
> - default: break;
> - }
> -
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONLoadStoreMultiStructPostIndex(
> - const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONLoadStoreMultiStructPostIndex)";
> - const char *form_1v = "{'Vt.%1$s}, ['Xns], 'Xmr1";
> - const char *form_2v = "{'Vt.%1$s, 'Vt2.%1$s}, ['Xns], 'Xmr2";
> - const char *form_3v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s}, ['Xns], 'Xmr3";
> - const char *form_4v =
> - "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns], 'Xmr4";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
> -
> - switch (instr->Mask(NEONLoadStoreMultiStructPostIndexMask)) {
> - case NEON_LD1_1v_post: mnemonic = "ld1"; form = form_1v; break;
> - case NEON_LD1_2v_post: mnemonic = "ld1"; form = form_2v; break;
> - case NEON_LD1_3v_post: mnemonic = "ld1"; form = form_3v; break;
> - case NEON_LD1_4v_post: mnemonic = "ld1"; form = form_4v; break;
> - case NEON_LD2_post: mnemonic = "ld2"; form = form_2v; break;
> - case NEON_LD3_post: mnemonic = "ld3"; form = form_3v; break;
> - case NEON_LD4_post: mnemonic = "ld4"; form = form_4v; break;
> - case NEON_ST1_1v_post: mnemonic = "st1"; form = form_1v; break;
> - case NEON_ST1_2v_post: mnemonic = "st1"; form = form_2v; break;
> - case NEON_ST1_3v_post: mnemonic = "st1"; form = form_3v; break;
> - case NEON_ST1_4v_post: mnemonic = "st1"; form = form_4v; break;
> - case NEON_ST2_post: mnemonic = "st2"; form = form_2v; break;
> - case NEON_ST3_post: mnemonic = "st3"; form = form_3v; break;
> - case NEON_ST4_post: mnemonic = "st4"; form = form_4v; break;
> - default: break;
> - }
> -
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONLoadStoreSingleStruct(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONLoadStoreSingleStruct)";
> -
> - const char *form_1b = "{'Vt.b}['IVLSLane0], ['Xns]";
> - const char *form_1h = "{'Vt.h}['IVLSLane1], ['Xns]";
> - const char *form_1s = "{'Vt.s}['IVLSLane2], ['Xns]";
> - const char *form_1d = "{'Vt.d}['IVLSLane3], ['Xns]";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
> -
> - switch (instr->Mask(NEONLoadStoreSingleStructMask)) {
> - case NEON_LD1_b: mnemonic = "ld1"; form = form_1b; break;
> - case NEON_LD1_h: mnemonic = "ld1"; form = form_1h; break;
> - case NEON_LD1_s:
> - mnemonic = "ld1";
> - VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) ==
> NEON_LD1_d);
> - form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
> - break;
> - case NEON_ST1_b: mnemonic = "st1"; form = form_1b; break;
> - case NEON_ST1_h: mnemonic = "st1"; form = form_1h; break;
> - case NEON_ST1_s:
> - mnemonic = "st1";
> - VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) ==
> NEON_ST1_d);
> - form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
> - break;
> - case NEON_LD1R:
> - mnemonic = "ld1r";
> - form = "{'Vt.%s}, ['Xns]";
> - break;
> - case NEON_LD2_b:
> - case NEON_ST2_b:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
> - form = "{'Vt.b, 'Vt2.b}['IVLSLane0], ['Xns]";
> - break;
> - case NEON_LD2_h:
> - case NEON_ST2_h:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
> - form = "{'Vt.h, 'Vt2.h}['IVLSLane1], ['Xns]";
> - break;
> - case NEON_LD2_s:
> - case NEON_ST2_s:
> - VIXL_STATIC_ASSERT((NEON_ST2_s | (1 << NEONLSSize_offset)) ==
> NEON_ST2_d);
> - VIXL_STATIC_ASSERT((NEON_LD2_s | (1 << NEONLSSize_offset)) ==
> NEON_LD2_d);
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
> - if ((instr->NEONLSSize() & 1) == 0)
> - form = "{'Vt.s, 'Vt2.s}['IVLSLane2], ['Xns]";
> - else
> - form = "{'Vt.d, 'Vt2.d}['IVLSLane3], ['Xns]";
> - break;
> - case NEON_LD2R:
> - mnemonic = "ld2r";
> - form = "{'Vt.%s, 'Vt2.%s}, ['Xns]";
> - break;
> - case NEON_LD3_b:
> - case NEON_ST3_b:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
> - form = "{'Vt.b, 'Vt2.b, 'Vt3.b}['IVLSLane0], ['Xns]";
> - break;
> - case NEON_LD3_h:
> - case NEON_ST3_h:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
> - form = "{'Vt.h, 'Vt2.h, 'Vt3.h}['IVLSLane1], ['Xns]";
> - break;
> - case NEON_LD3_s:
> - case NEON_ST3_s:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
> - if ((instr->NEONLSSize() & 1) == 0)
> - form = "{'Vt.s, 'Vt2.s, 'Vt3.s}['IVLSLane2], ['Xns]";
> - else
> - form = "{'Vt.d, 'Vt2.d, 'Vt3.d}['IVLSLane3], ['Xns]";
> - break;
> - case NEON_LD3R:
> - mnemonic = "ld3r";
> - form = "{'Vt.%s, 'Vt2.%s, 'Vt3.%s}, ['Xns]";
> - break;
> - case NEON_LD4_b:
> - case NEON_ST4_b:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
> - form = "{'Vt.b, 'Vt2.b, 'Vt3.b, 'Vt4.b}['IVLSLane0], ['Xns]";
> - break;
> - case NEON_LD4_h:
> - case NEON_ST4_h:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
> - form = "{'Vt.h, 'Vt2.h, 'Vt3.h, 'Vt4.h}['IVLSLane1], ['Xns]";
> - break;
> - case NEON_LD4_s:
> - case NEON_ST4_s:
> - VIXL_STATIC_ASSERT((NEON_LD4_s | (1 << NEONLSSize_offset)) ==
> NEON_LD4_d);
> - VIXL_STATIC_ASSERT((NEON_ST4_s | (1 << NEONLSSize_offset)) ==
> NEON_ST4_d);
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
> - if ((instr->NEONLSSize() & 1) == 0)
> - form = "{'Vt.s, 'Vt2.s, 'Vt3.s, 'Vt4.s}['IVLSLane2], ['Xns]";
> - else
> - form = "{'Vt.d, 'Vt2.d, 'Vt3.d, 'Vt4.d}['IVLSLane3], ['Xns]";
> - break;
> - case NEON_LD4R:
> - mnemonic = "ld4r";
> - form = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns]";
> - break;
> - default: break;
> - }
> -
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONLoadStoreSingleStructPostIndex(
> - const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONLoadStoreSingleStructPostIndex)";
> -
> - const char *form_1b = "{'Vt.b}['IVLSLane0], ['Xns], 'Xmb1";
> - const char *form_1h = "{'Vt.h}['IVLSLane1], ['Xns], 'Xmb2";
> - const char *form_1s = "{'Vt.s}['IVLSLane2], ['Xns], 'Xmb4";
> - const char *form_1d = "{'Vt.d}['IVLSLane3], ['Xns], 'Xmb8";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
> -
> - switch (instr->Mask(NEONLoadStoreSingleStructPostIndexMask)) {
> - case NEON_LD1_b_post: mnemonic = "ld1"; form = form_1b; break;
> - case NEON_LD1_h_post: mnemonic = "ld1"; form = form_1h; break;
> - case NEON_LD1_s_post:
> - mnemonic = "ld1";
> - VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) ==
> NEON_LD1_d);
> - form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
> - break;
> - case NEON_ST1_b_post: mnemonic = "st1"; form = form_1b; break;
> - case NEON_ST1_h_post: mnemonic = "st1"; form = form_1h; break;
> - case NEON_ST1_s_post:
> - mnemonic = "st1";
> - VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) ==
> NEON_ST1_d);
> - form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
> - break;
> - case NEON_LD1R_post:
> - mnemonic = "ld1r";
> - form = "{'Vt.%s}, ['Xns], 'Xmz1";
> - break;
> - case NEON_LD2_b_post:
> - case NEON_ST2_b_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
> - form = "{'Vt.b, 'Vt2.b}['IVLSLane0], ['Xns], 'Xmb2";
> - break;
> - case NEON_ST2_h_post:
> - case NEON_LD2_h_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
> - form = "{'Vt.h, 'Vt2.h}['IVLSLane1], ['Xns], 'Xmb4";
> - break;
> - case NEON_LD2_s_post:
> - case NEON_ST2_s_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
> - if ((instr->NEONLSSize() & 1) == 0)
> - form = "{'Vt.s, 'Vt2.s}['IVLSLane2], ['Xns], 'Xmb8";
> - else
> - form = "{'Vt.d, 'Vt2.d}['IVLSLane3], ['Xns], 'Xmb16";
> - break;
> - case NEON_LD2R_post:
> - mnemonic = "ld2r";
> - form = "{'Vt.%s, 'Vt2.%s}, ['Xns], 'Xmz2";
> - break;
> - case NEON_LD3_b_post:
> - case NEON_ST3_b_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
> - form = "{'Vt.b, 'Vt2.b, 'Vt3.b}['IVLSLane0], ['Xns], 'Xmb3";
> - break;
> - case NEON_LD3_h_post:
> - case NEON_ST3_h_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
> - form = "{'Vt.h, 'Vt2.h, 'Vt3.h}['IVLSLane1], ['Xns], 'Xmb6";
> - break;
> - case NEON_LD3_s_post:
> - case NEON_ST3_s_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
> - if ((instr->NEONLSSize() & 1) == 0)
> - form = "{'Vt.s, 'Vt2.s, 'Vt3.s}['IVLSLane2], ['Xns], 'Xmb12";
> - else
> - form = "{'Vt.d, 'Vt2.d, 'Vt3.d}['IVLSLane3], ['Xns], 'Xmr3";
> - break;
> - case NEON_LD3R_post:
> - mnemonic = "ld3r";
> - form = "{'Vt.%s, 'Vt2.%s, 'Vt3.%s}, ['Xns], 'Xmz3";
> - break;
> - case NEON_LD4_b_post:
> - case NEON_ST4_b_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
> - form = "{'Vt.b, 'Vt2.b, 'Vt3.b, 'Vt4.b}['IVLSLane0], ['Xns], 'Xmb4";
> - break;
> - case NEON_LD4_h_post:
> - case NEON_ST4_h_post:
> - mnemonic = (instr->LdStXLoad()) == 1 ? "ld4" : "st4";
> - form = "{'Vt.h, 'Vt2.h, 'Vt3.h, 'Vt4.h}['IVLSLane1], ['Xns], 'Xmb8";
> - break;
> - case NEON_LD4_s_post:
> - case NEON_ST4_s_post:
> - mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
> - if ((instr->NEONLSSize() & 1) == 0)
> - form = "{'Vt.s, 'Vt2.s, 'Vt3.s, 'Vt4.s}['IVLSLane2], ['Xns], 'Xmb16";
> - else
> - form = "{'Vt.d, 'Vt2.d, 'Vt3.d, 'Vt4.d}['IVLSLane3], ['Xns], 'Xmb32";
> - break;
> - case NEON_LD4R_post:
> - mnemonic = "ld4r";
> - form = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns], 'Xmz4";
> - break;
> - default: break;
> - }
> -
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONModifiedImmediate(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Vt.%s, 'IVMIImm8, lsl 'IVMIShiftAmt1";
> -
> - int cmode = instr->NEONCmode();
> - int cmode_3 = (cmode >> 3) & 1;
> - int cmode_2 = (cmode >> 2) & 1;
> - int cmode_1 = (cmode >> 1) & 1;
> - int cmode_0 = cmode & 1;
> - int q = instr->NEONQ();
> - int op = instr->NEONModImmOp();
> -
> - static const NEONFormatMap map_b = { {30}, {NF_8B, NF_16B} };
> - static const NEONFormatMap map_h = { {30}, {NF_4H, NF_8H} };
> - static const NEONFormatMap map_s = { {30}, {NF_2S, NF_4S} };
> - NEONFormatDecoder nfd(instr, &map_b);
> -
> - if (cmode_3 == 0) {
> - if (cmode_0 == 0) {
> - mnemonic = (op == 1) ? "mvni" : "movi";
> - } else { // cmode<0> == '1'.
> - mnemonic = (op == 1) ? "bic" : "orr";
> - }
> - nfd.SetFormatMap(0, &map_s);
> - } else { // cmode<3> == '1'.
> - if (cmode_2 == 0) {
> - if (cmode_0 == 0) {
> - mnemonic = (op == 1) ? "mvni" : "movi";
> - } else { // cmode<0> == '1'.
> - mnemonic = (op == 1) ? "bic" : "orr";
> - }
> - nfd.SetFormatMap(0, &map_h);
> - } else { // cmode<2> == '1'.
> - if (cmode_1 == 0) {
> - mnemonic = (op == 1) ? "mvni" : "movi";
> - form = "'Vt.%s, 'IVMIImm8, msl 'IVMIShiftAmt2";
> - nfd.SetFormatMap(0, &map_s);
> - } else { // cmode<1> == '1'.
> - if (cmode_0 == 0) {
> - mnemonic = "movi";
> - if (op == 0) {
> - form = "'Vt.%s, 'IVMIImm8";
> - } else {
> - form = (q == 0) ? "'Dd, 'IVMIImm" : "'Vt.2d, 'IVMIImm";
> - }
> - } else { // cmode<0> == '1'
> - mnemonic = "fmov";
> - if (op == 0) {
> - form = "'Vt.%s, 'IVMIImmFPSingle";
> - nfd.SetFormatMap(0, &map_s);
> - } else {
> - if (q == 1) {
> - form = "'Vt.2d, 'IVMIImmFPDouble";
> - }
> - }
> - }
> - }
> - }
> - }
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONScalar2RegMisc(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "%sd, %sn";
> - const char *form_0 = "%sd, %sn, #0";
> - const char *form_fp0 = "%sd, %sn, #0.0";
> -
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
> -
> - if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_scalar_opcode) {
> - // These instructions all use a two bit size field, except NOT and RBIT,
> - // which use the field to encode the operation.
> - switch (instr->Mask(NEONScalar2RegMiscMask)) {
> - case NEON_CMGT_zero_scalar: mnemonic = "cmgt"; form = form_0; break;
> - case NEON_CMGE_zero_scalar: mnemonic = "cmge"; form = form_0; break;
> - case NEON_CMLE_zero_scalar: mnemonic = "cmle"; form = form_0; break;
> - case NEON_CMLT_zero_scalar: mnemonic = "cmlt"; form = form_0; break;
> - case NEON_CMEQ_zero_scalar: mnemonic = "cmeq"; form = form_0; break;
> - case NEON_NEG_scalar: mnemonic = "neg"; break;
> - case NEON_SQNEG_scalar: mnemonic = "sqneg"; break;
> - case NEON_ABS_scalar: mnemonic = "abs"; break;
> - case NEON_SQABS_scalar: mnemonic = "sqabs"; break;
> - case NEON_SUQADD_scalar: mnemonic = "suqadd"; break;
> - case NEON_USQADD_scalar: mnemonic = "usqadd"; break;
> - default: form = "(NEONScalar2RegMisc)";
> - }
> - } else {
> - // These instructions all use a one bit size field, except SQXTUN, SQXTN
> - // and UQXTN, which use a two bit size field.
> - nfd.SetFormatMaps(nfd.FPScalarFormatMap());
> - switch (instr->Mask(NEONScalar2RegMiscFPMask)) {
> - case NEON_FRSQRTE_scalar: mnemonic = "frsqrte"; break;
> - case NEON_FRECPE_scalar: mnemonic = "frecpe"; break;
> - case NEON_SCVTF_scalar: mnemonic = "scvtf"; break;
> - case NEON_UCVTF_scalar: mnemonic = "ucvtf"; break;
> - case NEON_FCMGT_zero_scalar: mnemonic = "fcmgt"; form = form_fp0;
> break;
> - case NEON_FCMGE_zero_scalar: mnemonic = "fcmge"; form = form_fp0;
> break;
> - case NEON_FCMLE_zero_scalar: mnemonic = "fcmle"; form = form_fp0;
> break;
> - case NEON_FCMLT_zero_scalar: mnemonic = "fcmlt"; form = form_fp0;
> break;
> - case NEON_FCMEQ_zero_scalar: mnemonic = "fcmeq"; form = form_fp0;
> break;
> - case NEON_FRECPX_scalar: mnemonic = "frecpx"; break;
> - case NEON_FCVTNS_scalar: mnemonic = "fcvtns"; break;
> - case NEON_FCVTNU_scalar: mnemonic = "fcvtnu"; break;
> - case NEON_FCVTPS_scalar: mnemonic = "fcvtps"; break;
> - case NEON_FCVTPU_scalar: mnemonic = "fcvtpu"; break;
> - case NEON_FCVTMS_scalar: mnemonic = "fcvtms"; break;
> - case NEON_FCVTMU_scalar: mnemonic = "fcvtmu"; break;
> - case NEON_FCVTZS_scalar: mnemonic = "fcvtzs"; break;
> - case NEON_FCVTZU_scalar: mnemonic = "fcvtzu"; break;
> - case NEON_FCVTAS_scalar: mnemonic = "fcvtas"; break;
> - case NEON_FCVTAU_scalar: mnemonic = "fcvtau"; break;
> - case NEON_FCVTXN_scalar:
> - nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
> - mnemonic = "fcvtxn";
> - break;
> - default:
> - nfd.SetFormatMap(0, nfd.ScalarFormatMap());
> - nfd.SetFormatMap(1, nfd.LongScalarFormatMap());
> - switch (instr->Mask(NEONScalar2RegMiscMask)) {
> - case NEON_SQXTN_scalar: mnemonic = "sqxtn"; break;
> - case NEON_UQXTN_scalar: mnemonic = "uqxtn"; break;
> - case NEON_SQXTUN_scalar: mnemonic = "sqxtun"; break;
> - default: form = "(NEONScalar2RegMisc)";
> - }
> - }
> - }
> - Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
> -}
> -
> -
> -void Disassembler::VisitNEONScalar3Diff(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "%sd, %sn, %sm";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap(),
> - NEONFormatDecoder::ScalarFormatMap());
> -
> - switch (instr->Mask(NEONScalar3DiffMask)) {
> - case NEON_SQDMLAL_scalar : mnemonic = "sqdmlal"; break;
> - case NEON_SQDMLSL_scalar : mnemonic = "sqdmlsl"; break;
> - case NEON_SQDMULL_scalar : mnemonic = "sqdmull"; break;
> - default: form = "(NEONScalar3Diff)";
> - }
> - Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
> -}
> -
> -
> -void Disassembler::VisitNEONScalar3Same(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "%sd, %sn, %sm";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
> -
> - if (instr->Mask(NEONScalar3SameFPFMask) == NEONScalar3SameFPFixed) {
> - nfd.SetFormatMaps(nfd.FPScalarFormatMap());
> - switch (instr->Mask(NEONScalar3SameFPMask)) {
> - case NEON_FACGE_scalar: mnemonic = "facge"; break;
> - case NEON_FACGT_scalar: mnemonic = "facgt"; break;
> - case NEON_FCMEQ_scalar: mnemonic = "fcmeq"; break;
> - case NEON_FCMGE_scalar: mnemonic = "fcmge"; break;
> - case NEON_FCMGT_scalar: mnemonic = "fcmgt"; break;
> - case NEON_FMULX_scalar: mnemonic = "fmulx"; break;
> - case NEON_FRECPS_scalar: mnemonic = "frecps"; break;
> - case NEON_FRSQRTS_scalar: mnemonic = "frsqrts"; break;
> - case NEON_FABD_scalar: mnemonic = "fabd"; break;
> - default: form = "(NEONScalar3Same)";
> - }
> - } else {
> - switch (instr->Mask(NEONScalar3SameMask)) {
> - case NEON_ADD_scalar: mnemonic = "add"; break;
> - case NEON_SUB_scalar: mnemonic = "sub"; break;
> - case NEON_CMEQ_scalar: mnemonic = "cmeq"; break;
> - case NEON_CMGE_scalar: mnemonic = "cmge"; break;
> - case NEON_CMGT_scalar: mnemonic = "cmgt"; break;
> - case NEON_CMHI_scalar: mnemonic = "cmhi"; break;
> - case NEON_CMHS_scalar: mnemonic = "cmhs"; break;
> - case NEON_CMTST_scalar: mnemonic = "cmtst"; break;
> - case NEON_UQADD_scalar: mnemonic = "uqadd"; break;
> - case NEON_SQADD_scalar: mnemonic = "sqadd"; break;
> - case NEON_UQSUB_scalar: mnemonic = "uqsub"; break;
> - case NEON_SQSUB_scalar: mnemonic = "sqsub"; break;
> - case NEON_USHL_scalar: mnemonic = "ushl"; break;
> - case NEON_SSHL_scalar: mnemonic = "sshl"; break;
> - case NEON_UQSHL_scalar: mnemonic = "uqshl"; break;
> - case NEON_SQSHL_scalar: mnemonic = "sqshl"; break;
> - case NEON_URSHL_scalar: mnemonic = "urshl"; break;
> - case NEON_SRSHL_scalar: mnemonic = "srshl"; break;
> - case NEON_UQRSHL_scalar: mnemonic = "uqrshl"; break;
> - case NEON_SQRSHL_scalar: mnemonic = "sqrshl"; break;
> - case NEON_SQDMULH_scalar: mnemonic = "sqdmulh"; break;
> - case NEON_SQRDMULH_scalar: mnemonic = "sqrdmulh"; break;
> - default: form = "(NEONScalar3Same)";
> - }
> - }
> - Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
> -}
> -
> -
> -void Disassembler::VisitNEONScalarByIndexedElement(const Instruction* instr)
> {
> - const char *mnemonic = "unimplemented";
> - const char *form = "%sd, %sn, 'Ve.%s['IVByElemIndex]";
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
> - bool long_instr = false;
> -
> - switch (instr->Mask(NEONScalarByIndexedElementMask)) {
> - case NEON_SQDMULL_byelement_scalar:
> - mnemonic = "sqdmull";
> - long_instr = true;
> - break;
> - case NEON_SQDMLAL_byelement_scalar:
> - mnemonic = "sqdmlal";
> - long_instr = true;
> - break;
> - case NEON_SQDMLSL_byelement_scalar:
> - mnemonic = "sqdmlsl";
> - long_instr = true;
> - break;
> - case NEON_SQDMULH_byelement_scalar:
> - mnemonic = "sqdmulh";
> - break;
> - case NEON_SQRDMULH_byelement_scalar:
> - mnemonic = "sqrdmulh";
> - break;
> - default:
> - nfd.SetFormatMap(0, nfd.FPScalarFormatMap());
> - switch (instr->Mask(NEONScalarByIndexedElementFPMask)) {
> - case NEON_FMUL_byelement_scalar: mnemonic = "fmul"; break;
> - case NEON_FMLA_byelement_scalar: mnemonic = "fmla"; break;
> - case NEON_FMLS_byelement_scalar: mnemonic = "fmls"; break;
> - case NEON_FMULX_byelement_scalar: mnemonic = "fmulx"; break;
> - default: form = "(NEONScalarByIndexedElement)";
> - }
> - }
> -
> - if (long_instr) {
> - nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
> - }
> -
> - Format(instr, mnemonic, nfd.Substitute(
> - form, nfd.kPlaceholder, nfd.kPlaceholder, nfd.kFormat));
> -}
> -
> -
> -void Disassembler::VisitNEONScalarCopy(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONScalarCopy)";
> -
> - NEONFormatDecoder nfd(instr,
> NEONFormatDecoder::TriangularScalarFormatMap());
> -
> - if (instr->Mask(NEONScalarCopyMask) == NEON_DUP_ELEMENT_scalar) {
> - mnemonic = "mov";
> - form = "%sd, 'Vn.%s['IVInsIndex1]";
> - }
> -
> - Format(instr, mnemonic, nfd.Substitute(form, nfd.kPlaceholder,
> nfd.kFormat));
> -}
> -
> -
> -void Disassembler::VisitNEONScalarPairwise(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "%sd, 'Vn.%s";
> - NEONFormatMap map = { {22}, {NF_2S, NF_2D} };
> - NEONFormatDecoder nfd(instr, NEONFormatDecoder::FPScalarFormatMap(), &map);
> -
> - switch (instr->Mask(NEONScalarPairwiseMask)) {
> - case NEON_ADDP_scalar: mnemonic = "addp"; break;
> - case NEON_FADDP_scalar: mnemonic = "faddp"; break;
> - case NEON_FMAXP_scalar: mnemonic = "fmaxp"; break;
> - case NEON_FMAXNMP_scalar: mnemonic = "fmaxnmp"; break;
> - case NEON_FMINP_scalar: mnemonic = "fminp"; break;
> - case NEON_FMINNMP_scalar: mnemonic = "fminnmp"; break;
> - default: form = "(NEONScalarPairwise)";
> - }
> - Format(instr, mnemonic, nfd.Substitute(form,
> - NEONFormatDecoder::kPlaceholder, NEONFormatDecoder::kFormat));
> -}
> -
> -
> -void Disassembler::VisitNEONScalarShiftImmediate(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "%sd, %sn, 'Is1";
> - const char *form_2 = "%sd, %sn, 'Is2";
> -
> - static const NEONFormatMap map_shift = {
> - {22, 21, 20, 19},
> - {NF_UNDEF, NF_B, NF_H, NF_H, NF_S, NF_S, NF_S, NF_S,
> - NF_D, NF_D, NF_D, NF_D, NF_D, NF_D, NF_D, NF_D}
> - };
> - static const NEONFormatMap map_shift_narrow = {
> - {21, 20, 19},
> - {NF_UNDEF, NF_H, NF_S, NF_S, NF_D, NF_D, NF_D, NF_D}
> - };
> - NEONFormatDecoder nfd(instr, &map_shift);
> -
> - if (instr->ImmNEONImmh()) { // immh has to be non-zero.
> - switch (instr->Mask(NEONScalarShiftImmediateMask)) {
> - case NEON_FCVTZU_imm_scalar: mnemonic = "fcvtzu"; break;
> - case NEON_FCVTZS_imm_scalar: mnemonic = "fcvtzs"; break;
> - case NEON_SCVTF_imm_scalar: mnemonic = "scvtf"; break;
> - case NEON_UCVTF_imm_scalar: mnemonic = "ucvtf"; break;
> - case NEON_SRI_scalar: mnemonic = "sri"; break;
> - case NEON_SSHR_scalar: mnemonic = "sshr"; break;
> - case NEON_USHR_scalar: mnemonic = "ushr"; break;
> - case NEON_SRSHR_scalar: mnemonic = "srshr"; break;
> - case NEON_URSHR_scalar: mnemonic = "urshr"; break;
> - case NEON_SSRA_scalar: mnemonic = "ssra"; break;
> - case NEON_USRA_scalar: mnemonic = "usra"; break;
> - case NEON_SRSRA_scalar: mnemonic = "srsra"; break;
> - case NEON_URSRA_scalar: mnemonic = "ursra"; break;
> - case NEON_SHL_scalar: mnemonic = "shl"; form = form_2; break;
> - case NEON_SLI_scalar: mnemonic = "sli"; form = form_2; break;
> - case NEON_SQSHLU_scalar: mnemonic = "sqshlu"; form = form_2; break;
> - case NEON_SQSHL_imm_scalar: mnemonic = "sqshl"; form = form_2; break;
> - case NEON_UQSHL_imm_scalar: mnemonic = "uqshl"; form = form_2; break;
> - case NEON_UQSHRN_scalar:
> - mnemonic = "uqshrn";
> - nfd.SetFormatMap(1, &map_shift_narrow);
> - break;
> - case NEON_UQRSHRN_scalar:
> - mnemonic = "uqrshrn";
> - nfd.SetFormatMap(1, &map_shift_narrow);
> - break;
> - case NEON_SQSHRN_scalar:
> - mnemonic = "sqshrn";
> - nfd.SetFormatMap(1, &map_shift_narrow);
> - break;
> - case NEON_SQRSHRN_scalar:
> - mnemonic = "sqrshrn";
> - nfd.SetFormatMap(1, &map_shift_narrow);
> - break;
> - case NEON_SQSHRUN_scalar:
> - mnemonic = "sqshrun";
> - nfd.SetFormatMap(1, &map_shift_narrow);
> - break;
> - case NEON_SQRSHRUN_scalar:
> - mnemonic = "sqrshrun";
> - nfd.SetFormatMap(1, &map_shift_narrow);
> - break;
> - default:
> - form = "(NEONScalarShiftImmediate)";
> - }
> - } else {
> - form = "(NEONScalarShiftImmediate)";
> - }
> - Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
> -}
> -
> -
> -void Disassembler::VisitNEONShiftImmediate(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Vd.%s, 'Vn.%s, 'Is1";
> - const char *form_shift_2 = "'Vd.%s, 'Vn.%s, 'Is2";
> - const char *form_xtl = "'Vd.%s, 'Vn.%s";
> -
> - // 0001->8H, 001x->4S, 01xx->2D, all others undefined.
> - static const NEONFormatMap map_shift_ta = {
> - {22, 21, 20, 19},
> - {NF_UNDEF, NF_8H, NF_4S, NF_4S, NF_2D, NF_2D, NF_2D, NF_2D}
> - };
> -
> - // 00010->8B, 00011->16B, 001x0->4H, 001x1->8H,
> - // 01xx0->2S, 01xx1->4S, 1xxx1->2D, all others undefined.
> - static const NEONFormatMap map_shift_tb = {
> - {22, 21, 20, 19, 30},
> - {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_4H, NF_8H,
> - NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S,
> - NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D,
> - NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D}
> - };
> -
> - NEONFormatDecoder nfd(instr, &map_shift_tb);
> -
> - if (instr->ImmNEONImmh()) { // immh has to be non-zero.
> - switch (instr->Mask(NEONShiftImmediateMask)) {
> - case NEON_SQSHLU: mnemonic = "sqshlu"; form = form_shift_2; break;
> - case NEON_SQSHL_imm: mnemonic = "sqshl"; form = form_shift_2; break;
> - case NEON_UQSHL_imm: mnemonic = "uqshl"; form = form_shift_2; break;
> - case NEON_SHL: mnemonic = "shl"; form = form_shift_2; break;
> - case NEON_SLI: mnemonic = "sli"; form = form_shift_2; break;
> - case NEON_SCVTF_imm: mnemonic = "scvtf"; break;
> - case NEON_UCVTF_imm: mnemonic = "ucvtf"; break;
> - case NEON_FCVTZU_imm: mnemonic = "fcvtzu"; break;
> - case NEON_FCVTZS_imm: mnemonic = "fcvtzs"; break;
> - case NEON_SRI: mnemonic = "sri"; break;
> - case NEON_SSHR: mnemonic = "sshr"; break;
> - case NEON_USHR: mnemonic = "ushr"; break;
> - case NEON_SRSHR: mnemonic = "srshr"; break;
> - case NEON_URSHR: mnemonic = "urshr"; break;
> - case NEON_SSRA: mnemonic = "ssra"; break;
> - case NEON_USRA: mnemonic = "usra"; break;
> - case NEON_SRSRA: mnemonic = "srsra"; break;
> - case NEON_URSRA: mnemonic = "ursra"; break;
> - case NEON_SHRN:
> - mnemonic = instr->Mask(NEON_Q) ? "shrn2" : "shrn";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_RSHRN:
> - mnemonic = instr->Mask(NEON_Q) ? "rshrn2" : "rshrn";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_UQSHRN:
> - mnemonic = instr->Mask(NEON_Q) ? "uqshrn2" : "uqshrn";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_UQRSHRN:
> - mnemonic = instr->Mask(NEON_Q) ? "uqrshrn2" : "uqrshrn";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_SQSHRN:
> - mnemonic = instr->Mask(NEON_Q) ? "sqshrn2" : "sqshrn";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_SQRSHRN:
> - mnemonic = instr->Mask(NEON_Q) ? "sqrshrn2" : "sqrshrn";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_SQSHRUN:
> - mnemonic = instr->Mask(NEON_Q) ? "sqshrun2" : "sqshrun";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_SQRSHRUN:
> - mnemonic = instr->Mask(NEON_Q) ? "sqrshrun2" : "sqrshrun";
> - nfd.SetFormatMap(1, &map_shift_ta);
> - break;
> - case NEON_SSHLL:
> - nfd.SetFormatMap(0, &map_shift_ta);
> - if (instr->ImmNEONImmb() == 0 &&
> - CountSetBits(instr->ImmNEONImmh(), 32) == 1) { // sxtl variant.
> - form = form_xtl;
> - mnemonic = instr->Mask(NEON_Q) ? "sxtl2" : "sxtl";
> - } else { // sshll variant.
> - form = form_shift_2;
> - mnemonic = instr->Mask(NEON_Q) ? "sshll2" : "sshll";
> - }
> - break;
> - case NEON_USHLL:
> - nfd.SetFormatMap(0, &map_shift_ta);
> - if (instr->ImmNEONImmb() == 0 &&
> - CountSetBits(instr->ImmNEONImmh(), 32) == 1) { // uxtl variant.
> - form = form_xtl;
> - mnemonic = instr->Mask(NEON_Q) ? "uxtl2" : "uxtl";
> - } else { // ushll variant.
> - form = form_shift_2;
> - mnemonic = instr->Mask(NEON_Q) ? "ushll2" : "ushll";
> - }
> - break;
> - default: form = "(NEONShiftImmediate)";
> - }
> - } else {
> - form = "(NEONShiftImmediate)";
> - }
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitNEONTable(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "(NEONTable)";
> - const char form_1v[] = "'Vd.%%s, {'Vn.16b}, 'Vm.%%s";
> - const char form_2v[] = "'Vd.%%s, {'Vn.16b, v%d.16b}, 'Vm.%%s";
> - const char form_3v[] = "'Vd.%%s, {'Vn.16b, v%d.16b, v%d.16b}, 'Vm.%%s";
> - const char form_4v[] =
> - "'Vd.%%s, {'Vn.16b, v%d.16b, v%d.16b, v%d.16b}, 'Vm.%%s";
> - static const NEONFormatMap map_b = { {30}, {NF_8B, NF_16B} };
> - NEONFormatDecoder nfd(instr, &map_b);
> -
> - switch (instr->Mask(NEONTableMask)) {
> - case NEON_TBL_1v: mnemonic = "tbl"; form = form_1v; break;
> - case NEON_TBL_2v: mnemonic = "tbl"; form = form_2v; break;
> - case NEON_TBL_3v: mnemonic = "tbl"; form = form_3v; break;
> - case NEON_TBL_4v: mnemonic = "tbl"; form = form_4v; break;
> - case NEON_TBX_1v: mnemonic = "tbx"; form = form_1v; break;
> - case NEON_TBX_2v: mnemonic = "tbx"; form = form_2v; break;
> - case NEON_TBX_3v: mnemonic = "tbx"; form = form_3v; break;
> - case NEON_TBX_4v: mnemonic = "tbx"; form = form_4v; break;
> - default: break;
> - }
> -
> - char re_form[sizeof(form_4v) + 6];
> - int reg_num = instr->Rn();
> - snprintf(re_form, sizeof(re_form), form,
> - (reg_num + 1) % kNumberOfVRegisters,
> - (reg_num + 2) % kNumberOfVRegisters,
> - (reg_num + 3) % kNumberOfVRegisters);
> -
> - Format(instr, mnemonic, nfd.Substitute(re_form));
> -}
> -
> -
> -void Disassembler::VisitNEONPerm(const Instruction* instr) {
> - const char *mnemonic = "unimplemented";
> - const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
> - NEONFormatDecoder nfd(instr);
> -
> - switch (instr->Mask(NEONPermMask)) {
> - case NEON_TRN1: mnemonic = "trn1"; break;
> - case NEON_TRN2: mnemonic = "trn2"; break;
> - case NEON_UZP1: mnemonic = "uzp1"; break;
> - case NEON_UZP2: mnemonic = "uzp2"; break;
> - case NEON_ZIP1: mnemonic = "zip1"; break;
> - case NEON_ZIP2: mnemonic = "zip2"; break;
> - default: form = "(NEONPerm)";
> - }
> - Format(instr, mnemonic, nfd.Substitute(form));
> -}
> -
> -
> -void Disassembler::VisitUnimplemented(const Instruction* instr) {
> - Format(instr, "unimplemented", "(Unimplemented)");
> -}
> -
> -
> -void Disassembler::VisitUnallocated(const Instruction* instr) {
> - Format(instr, "unallocated", "(Unallocated)");
> -}
> -
> -
> -void Disassembler::ProcessOutput(const Instruction* /*instr*/) {
> - // The base disasm does nothing more than disassembling into a buffer.
> -}
> -
> -
> -void Disassembler::AppendRegisterNameToOutput(const Instruction* instr,
> - const CPURegister& reg) {
> - USE(instr);
> - VIXL_ASSERT(reg.IsValid());
> - char reg_char;
> -
> - if (reg.IsRegister()) {
> - reg_char = reg.Is64Bits() ? 'x' : 'w';
> - } else {
> - VIXL_ASSERT(reg.IsVRegister());
> - switch (reg.SizeInBits()) {
> - case kBRegSize: reg_char = 'b'; break;
> - case kHRegSize: reg_char = 'h'; break;
> - case kSRegSize: reg_char = 's'; break;
> - case kDRegSize: reg_char = 'd'; break;
> - default:
> - VIXL_ASSERT(reg.Is128Bits());
> - reg_char = 'q';
> - }
> - }
> -
> - if (reg.IsVRegister() || !(reg.Aliases(sp) || reg.Aliases(xzr))) {
> - // A core or scalar/vector register: [wx]0 - 30, [bhsdq]0 - 31.
> - AppendToOutput("%c%d", reg_char, reg.code());
> - } else if (reg.Aliases(sp)) {
> - // Disassemble w31/x31 as stack pointer wsp/sp.
> - AppendToOutput("%s", reg.Is64Bits() ? "sp" : "wsp");
> - } else {
> - // Disassemble w31/x31 as zero register wzr/xzr.
> - AppendToOutput("%czr", reg_char);
> - }
> -}
> -
> -
> -void Disassembler::AppendPCRelativeOffsetToOutput(const Instruction* instr,
> - int64_t offset) {
> - USE(instr);
> - uint64_t abs_offset = offset;
> - char sign = (offset < 0) ? '-' : '+';
> - if (offset < 0) {
> - abs_offset = -abs_offset;
> - }
> - AppendToOutput("#%c0x%" PRIx64, sign, abs_offset);
> -}
> -
> -
> -void Disassembler::AppendAddressToOutput(const Instruction* instr,
> - const void* addr) {
> - USE(instr);
> - AppendToOutput("(addr 0x%" PRIxPTR ")", reinterpret_cast<uintptr_t>(addr));
> -}
> -
> -
> -void Disassembler::AppendCodeAddressToOutput(const Instruction* instr,
> - const void* addr) {
> - AppendAddressToOutput(instr, addr);
> -}
> -
> -
> -void Disassembler::AppendDataAddressToOutput(const Instruction* instr,
> - const void* addr) {
> - AppendAddressToOutput(instr, addr);
> -}
> -
> -
> -void Disassembler::AppendCodeRelativeAddressToOutput(const Instruction*
> instr,
> - const void* addr) {
> - USE(instr);
> - int64_t rel_addr = CodeRelativeAddress(addr);
> - if (rel_addr >= 0) {
> - AppendToOutput("(addr 0x%" PRIx64 ")", rel_addr);
> - } else {
> - AppendToOutput("(addr -0x%" PRIx64 ")", -rel_addr);
> - }
> -}
> -
> -
> -void Disassembler::AppendCodeRelativeCodeAddressToOutput(
> - const Instruction* instr, const void* addr) {
> - AppendCodeRelativeAddressToOutput(instr, addr);
> -}
> -
> -
> -void Disassembler::AppendCodeRelativeDataAddressToOutput(
> - const Instruction* instr, const void* addr) {
> - AppendCodeRelativeAddressToOutput(instr, addr);
> -}
> -
> -
> -void Disassembler::MapCodeAddress(int64_t base_address,
> - const Instruction* instr_address) {
> - set_code_address_offset(
> - base_address - reinterpret_cast<intptr_t>(instr_address));
> -}
> -int64_t Disassembler::CodeRelativeAddress(const void* addr) {
> - return reinterpret_cast<intptr_t>(addr) + code_address_offset();
> -}
> -
> -
> -void Disassembler::Format(const Instruction* instr, const char* mnemonic,
> - const char* format) {
> - VIXL_ASSERT(mnemonic != NULL);
> - ResetOutput();
> - Substitute(instr, mnemonic);
> - if (format != NULL) {
> - VIXL_ASSERT(buffer_pos_ < buffer_size_);
> - buffer_[buffer_pos_++] = ' ';
> - Substitute(instr, format);
> - }
> - VIXL_ASSERT(buffer_pos_ < buffer_size_);
> - buffer_[buffer_pos_] = 0;
> - ProcessOutput(instr);
> -}
> -
> -
> -void Disassembler::Substitute(const Instruction* instr, const char* string) {
> - char chr = *string++;
> - while (chr != '\0') {
> - if (chr == '\'') {
> - string += SubstituteField(instr, string);
> - } else {
> - VIXL_ASSERT(buffer_pos_ < buffer_size_);
> - buffer_[buffer_pos_++] = chr;
> - }
> - chr = *string++;
> - }
> -}
> -
> -
> -int Disassembler::SubstituteField(const Instruction* instr,
> - const char* format) {
> - switch (format[0]) {
> - // NB. The remaining substitution prefix characters are: GJKUZ.
> - case 'R': // Register. X or W, selected by sf bit.
> - case 'F': // FP register. S or D, selected by type field.
> - case 'V': // Vector register, V, vector format.
> - case 'W':
> - case 'X':
> - case 'B':
> - case 'H':
> - case 'S':
> - case 'D':
> - case 'Q': return SubstituteRegisterField(instr, format);
> - case 'I': return SubstituteImmediateField(instr, format);
> - case 'L': return SubstituteLiteralField(instr, format);
> - case 'N': return SubstituteShiftField(instr, format);
> - case 'P': return SubstitutePrefetchField(instr, format);
> - case 'C': return SubstituteConditionField(instr, format);
> - case 'E': return SubstituteExtendField(instr, format);
> - case 'A': return SubstitutePCRelAddressField(instr, format);
> - case 'T': return SubstituteBranchTargetField(instr, format);
> - case 'O': return SubstituteLSRegOffsetField(instr, format);
> - case 'M': return SubstituteBarrierField(instr, format);
> - case 'K': return SubstituteCrField(instr, format);
> - case 'G': return SubstituteSysOpField(instr, format);
> - default: {
> - VIXL_UNREACHABLE();
> - return 1;
> - }
> - }
> -}
> -
> -
> -int Disassembler::SubstituteRegisterField(const Instruction* instr,
> - const char* format) {
> - char reg_prefix = format[0];
> - unsigned reg_num = 0;
> - unsigned field_len = 2;
> -
> - switch (format[1]) {
> - case 'd':
> - reg_num = instr->Rd();
> - if (format[2] == 'q') {
> - reg_prefix = instr->NEONQ() ? 'X' : 'W';
> - field_len = 3;
> - }
> - break;
> - case 'n': reg_num = instr->Rn(); break;
> - case 'm':
> - reg_num = instr->Rm();
> - switch (format[2]) {
> - // Handle registers tagged with b (bytes), z (instruction), or
> - // r (registers), used for address updates in
> - // NEON load/store instructions.
> - case 'r':
> - case 'b':
> - case 'z': {
> - field_len = 3;
> - char* eimm;
> - int imm = static_cast<int>(strtol(&format[3], &eimm, 10));
> - field_len += eimm - &format[3];
> - if (reg_num == 31) {
> - switch (format[2]) {
> - case 'z':
> - imm *= (1 << instr->NEONLSSize());
> - break;
> - case 'r':
> - imm *= (instr->NEONQ() == 0) ? kDRegSizeInBytes
> - : kQRegSizeInBytes;
> - break;
> - case 'b':
> - break;
> - }
> - AppendToOutput("#%d", imm);
> - return field_len;
> - }
> - break;
> - }
> - }
> - break;
> - case 'e':
> - // This is register Rm, but using a 4-bit specifier. Used in NEON
> - // by-element instructions.
> - reg_num = (instr->Rm() & 0xf);
> - break;
> - case 'a': reg_num = instr->Ra(); break;
> - case 's': reg_num = instr->Rs(); break;
> - case 't':
> - reg_num = instr->Rt();
> - if (format[0] == 'V') {
> - if ((format[2] >= '2') && (format[2] <= '4')) {
> - // Handle consecutive vector register specifiers Vt2, Vt3 and Vt4.
> - reg_num = (reg_num + format[2] - '1') % 32;
> - field_len = 3;
> - }
> - } else {
> - if (format[2] == '2') {
> - // Handle register specifier Rt2.
> - reg_num = instr->Rt2();
> - field_len = 3;
> - }
> - }
> - break;
> - default: VIXL_UNREACHABLE();
> - }
> -
> - // Increase field length for registers tagged as stack.
> - if (format[2] == 's') {
> - field_len = 3;
> - }
> -
> - CPURegister::RegisterType reg_type = CPURegister::kRegister;
> - unsigned reg_size = kXRegSize;
> -
> - if (reg_prefix == 'R') {
> - reg_prefix = instr->SixtyFourBits() ? 'X' : 'W';
> - } else if (reg_prefix == 'F') {
> - reg_prefix = ((instr->FPType() & 1) == 0) ? 'S' : 'D';
> - }
> -
> - switch (reg_prefix) {
> - case 'W':
> - reg_type = CPURegister::kRegister; reg_size = kWRegSize; break;
> - case 'X':
> - reg_type = CPURegister::kRegister; reg_size = kXRegSize; break;
> - case 'B':
> - reg_type = CPURegister::kVRegister; reg_size = kBRegSize; break;
> - case 'H':
> - reg_type = CPURegister::kVRegister; reg_size = kHRegSize; break;
> - case 'S':
> - reg_type = CPURegister::kVRegister; reg_size = kSRegSize; break;
> - case 'D':
> - reg_type = CPURegister::kVRegister; reg_size = kDRegSize; break;
> - case 'Q':
> - reg_type = CPURegister::kVRegister; reg_size = kQRegSize; break;
> - case 'V':
> - AppendToOutput("v%d", reg_num);
> - return field_len;
> - default:
> - VIXL_UNREACHABLE();
> - }
> -
> - if ((reg_type == CPURegister::kRegister) &&
> - (reg_num == kZeroRegCode) && (format[2] == 's')) {
> - reg_num = kSPRegInternalCode;
> - }
> -
> - AppendRegisterNameToOutput(instr, CPURegister(reg_num, reg_size,
> reg_type));
> -
> - return field_len;
> -}
> -
> -
> -int Disassembler::SubstituteImmediateField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(format[0] == 'I');
> -
> - switch (format[1]) {
> - case 'M': { // IMoveImm, IMoveNeg or IMoveLSL.
> - if (format[5] == 'L') {
> - AppendToOutput("#0x%" PRIx32, instr->ImmMoveWide());
> - if (instr->ShiftMoveWide() > 0) {
> - AppendToOutput(", lsl #%" PRId32, 16 * instr->ShiftMoveWide());
> - }
> - } else {
> - VIXL_ASSERT((format[5] == 'I') || (format[5] == 'N'));
> - uint64_t imm = static_cast<uint64_t>(instr->ImmMoveWide()) <<
> - (16 * instr->ShiftMoveWide());
> - if (format[5] == 'N')
> - imm = ~imm;
> - if (!instr->SixtyFourBits())
> - imm &= UINT64_C(0xffffffff);
> - AppendToOutput("#0x%" PRIx64, imm);
> - }
> - return 8;
> - }
> - case 'L': {
> - switch (format[2]) {
> - case 'L': { // ILLiteral - Immediate Load Literal.
> - AppendToOutput("pc%+" PRId32,
> - instr->ImmLLiteral() << kLiteralEntrySizeLog2);
> - return 9;
> - }
> - case 'S': { // ILS - Immediate Load/Store.
> - if (instr->ImmLS() != 0) {
> - AppendToOutput(", #%" PRId32, instr->ImmLS());
> - }
> - return 3;
> - }
> - case 'P': { // ILPx - Immediate Load/Store Pair, x = access size.
> - if (instr->ImmLSPair() != 0) {
> - // format[3] is the scale value. Convert to a number.
> - int scale = 1 << (format[3] - '0');
> - AppendToOutput(", #%" PRId32, instr->ImmLSPair() * scale);
> - }
> - return 4;
> - }
> - case 'U': { // ILU - Immediate Load/Store Unsigned.
> - if (instr->ImmLSUnsigned() != 0) {
> - int shift = instr->SizeLS();
> - AppendToOutput(", #%" PRId32, instr->ImmLSUnsigned() << shift);
> - }
> - return 3;
> - }
> - default: {
> - VIXL_UNIMPLEMENTED();
> - return 0;
> - }
> - }
> - }
> - case 'C': { // ICondB - Immediate Conditional Branch.
> - int64_t offset = instr->ImmCondBranch() << 2;
> - AppendPCRelativeOffsetToOutput(instr, offset);
> - return 6;
> - }
> - case 'A': { // IAddSub.
> - VIXL_ASSERT(instr->ShiftAddSub() <= 1);
> - int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
> - AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
> - return 7;
> - }
> - case 'F': { // IFPSingle, IFPDouble or IFPFBits.
> - if (format[3] == 'F') { // IFPFbits.
> - AppendToOutput("#%" PRId32, 64 - instr->FPScale());
> - return 8;
> - } else {
> - AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmFP(),
> - format[3] == 'S' ? instr->ImmFP32() :
> instr->ImmFP64());
> - return 9;
> - }
> - }
> - case 'T': { // ITri - Immediate Triangular Encoded.
> - AppendToOutput("#0x%" PRIx64, instr->ImmLogical());
> - return 4;
> - }
> - case 'N': { // INzcv.
> - int nzcv = (instr->Nzcv() << Flags_offset);
> - AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N',
> - ((nzcv & ZFlag) == 0) ? 'z' : 'Z',
> - ((nzcv & CFlag) == 0) ? 'c' : 'C',
> - ((nzcv & VFlag) == 0) ? 'v' : 'V');
> - return 5;
> - }
> - case 'P': { // IP - Conditional compare.
> - AppendToOutput("#%" PRId32, instr->ImmCondCmp());
> - return 2;
> - }
> - case 'B': { // Bitfields.
> - return SubstituteBitfieldImmediateField(instr, format);
> - }
> - case 'E': { // IExtract.
> - AppendToOutput("#%" PRId32, instr->ImmS());
> - return 8;
> - }
> - case 'S': { // IS - Test and branch bit.
> - AppendToOutput("#%" PRId32, (instr->ImmTestBranchBit5() << 5) |
> - instr->ImmTestBranchBit40());
> - return 2;
> - }
> - case 's': { // Is - Shift (immediate).
> - switch (format[2]) {
> - case '1': { // Is1 - SSHR.
> - int shift = 16 << HighestSetBitPosition(instr->ImmNEONImmh());
> - shift -= instr->ImmNEONImmhImmb();
> - AppendToOutput("#%d", shift);
> - return 3;
> - }
> - case '2': { // Is2 - SLI.
> - int shift = instr->ImmNEONImmhImmb();
> - shift -= 8 << HighestSetBitPosition(instr->ImmNEONImmh());
> - AppendToOutput("#%d", shift);
> - return 3;
> - }
> - default: {
> - VIXL_UNIMPLEMENTED();
> - return 0;
> - }
> - }
> - }
> - case 'D': { // IDebug - HLT and BRK instructions.
> - AppendToOutput("#0x%" PRIx32, instr->ImmException());
> - return 6;
> - }
> - case 'V': { // Immediate Vector.
> - switch (format[2]) {
> - case 'E': { // IVExtract.
> - AppendToOutput("#%" PRId32, instr->ImmNEONExt());
> - return 9;
> - }
> - case 'B': { // IVByElemIndex.
> - int vm_index = (instr->NEONH() << 1) | instr->NEONL();
> - if (instr->NEONSize() == 1) {
> - vm_index = (vm_index << 1) | instr->NEONM();
> - }
> - AppendToOutput("%d", vm_index);
> - return strlen("IVByElemIndex");
> - }
> - case 'I': { // INS element.
> - if (strncmp(format, "IVInsIndex", strlen("IVInsIndex")) == 0) {
> - int rd_index, rn_index;
> - int imm5 = instr->ImmNEON5();
> - int imm4 = instr->ImmNEON4();
> - int tz = CountTrailingZeros(imm5, 32);
> - rd_index = imm5 >> (tz + 1);
> - rn_index = imm4 >> tz;
> - if (strncmp(format, "IVInsIndex1", strlen("IVInsIndex1")) == 0) {
> - AppendToOutput("%d", rd_index);
> - return strlen("IVInsIndex1");
> - } else if (strncmp(format, "IVInsIndex2",
> - strlen("IVInsIndex2")) == 0) {
> - AppendToOutput("%d", rn_index);
> - return strlen("IVInsIndex2");
> - } else {
> - VIXL_UNIMPLEMENTED();
> - return 0;
> - }
> - }
> - VIXL_FALLTHROUGH();
> - }
> - case 'L': { // IVLSLane[0123] - suffix indicates access size shift.
> - AppendToOutput("%d", instr->NEONLSIndex(format[8] - '0'));
> - return 9;
> - }
> - case 'M': { // Modified Immediate cases.
> - if (strncmp(format,
> - "IVMIImmFPSingle",
> - strlen("IVMIImmFPSingle")) == 0) {
> - AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmNEONabcdefgh(),
> - instr->ImmNEONFP32());
> - return strlen("IVMIImmFPSingle");
> - } else if (strncmp(format,
> - "IVMIImmFPDouble",
> - strlen("IVMIImmFPDouble")) == 0) {
> - AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmNEONabcdefgh(),
> - instr->ImmNEONFP64());
> - return strlen("IVMIImmFPDouble");
> - } else if (strncmp(format, "IVMIImm8", strlen("IVMIImm8")) == 0) {
> - uint64_t imm8 = instr->ImmNEONabcdefgh();
> - AppendToOutput("#0x%" PRIx64, imm8);
> - return strlen("IVMIImm8");
> - } else if (strncmp(format, "IVMIImm", strlen("IVMIImm")) == 0) {
> - uint64_t imm8 = instr->ImmNEONabcdefgh();
> - uint64_t imm = 0;
> - for (int i = 0; i < 8; ++i) {
> - if (imm8 & (1 << i)) {
> - imm |= (UINT64_C(0xff) << (8 * i));
> - }
> - }
> - AppendToOutput("#0x%" PRIx64, imm);
> - return strlen("IVMIImm");
> - } else if (strncmp(format, "IVMIShiftAmt1",
> - strlen("IVMIShiftAmt1")) == 0) {
> - int cmode = instr->NEONCmode();
> - int shift_amount = 8 * ((cmode >> 1) & 3);
> - AppendToOutput("#%d", shift_amount);
> - return strlen("IVMIShiftAmt1");
> - } else if (strncmp(format, "IVMIShiftAmt2",
> - strlen("IVMIShiftAmt2")) == 0) {
> - int cmode = instr->NEONCmode();
> - int shift_amount = 8 << (cmode & 1);
> - AppendToOutput("#%d", shift_amount);
> - return strlen("IVMIShiftAmt2");
> - } else {
> - VIXL_UNIMPLEMENTED();
> - return 0;
> - }
> - }
> - default: {
> - VIXL_UNIMPLEMENTED();
> - return 0;
> - }
> - }
> - }
> - case 'X': { // IX - CLREX instruction.
> - AppendToOutput("#0x%" PRIx32, instr->CRm());
> - return 2;
> - }
> - default: {
> - VIXL_UNIMPLEMENTED();
> - return 0;
> - }
> - }
> -}
> -
> -
> -int Disassembler::SubstituteBitfieldImmediateField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
> - unsigned r = instr->ImmR();
> - unsigned s = instr->ImmS();
> -
> - switch (format[2]) {
> - case 'r': { // IBr.
> - AppendToOutput("#%d", r);
> - return 3;
> - }
> - case 's': { // IBs+1 or IBs-r+1.
> - if (format[3] == '+') {
> - AppendToOutput("#%d", s + 1);
> - return 5;
> - } else {
> - VIXL_ASSERT(format[3] == '-');
> - AppendToOutput("#%d", s - r + 1);
> - return 7;
> - }
> - }
> - case 'Z': { // IBZ-r.
> - VIXL_ASSERT((format[3] == '-') && (format[4] == 'r'));
> - unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize :
> kWRegSize;
> - AppendToOutput("#%d", reg_size - r);
> - return 5;
> - }
> - default: {
> - VIXL_UNREACHABLE();
> - return 0;
> - }
> - }
> -}
> -
> -
> -int Disassembler::SubstituteLiteralField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
> - USE(format);
> -
> - const void * address = instr->LiteralAddress<const void *>();
> - switch (instr->Mask(LoadLiteralMask)) {
> - case LDR_w_lit:
> - case LDR_x_lit:
> - case LDRSW_x_lit:
> - case LDR_s_lit:
> - case LDR_d_lit:
> - case LDR_q_lit:
> - AppendCodeRelativeDataAddressToOutput(instr, address);
> - break;
> - case PRFM_lit: {
> - // Use the prefetch hint to decide how to print the address.
> - switch (instr->PrefetchHint()) {
> - case 0x0: // PLD: prefetch for load.
> - case 0x2: // PST: prepare for store.
> - AppendCodeRelativeDataAddressToOutput(instr, address);
> - break;
> - case 0x1: // PLI: preload instructions.
> - AppendCodeRelativeCodeAddressToOutput(instr, address);
> - break;
> - case 0x3: // Unallocated hint.
> - AppendCodeRelativeAddressToOutput(instr, address);
> - break;
> - }
> - break;
> - }
> - default:
> - VIXL_UNREACHABLE();
> - }
> -
> - return 6;
> -}
> -
> -
> -int Disassembler::SubstituteShiftField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(format[0] == 'N');
> - VIXL_ASSERT(instr->ShiftDP() <= 0x3);
> -
> - switch (format[1]) {
> - case 'D': { // HDP.
> - VIXL_ASSERT(instr->ShiftDP() != ROR);
> - VIXL_FALLTHROUGH();
> - }
> - case 'L': { // HLo.
> - if (instr->ImmDPShift() != 0) {
> - const char* shift_type[] = {"lsl", "lsr", "asr", "ror"};
> - AppendToOutput(", %s #%" PRId32, shift_type[instr->ShiftDP()],
> - instr->ImmDPShift());
> - }
> - return 3;
> - }
> - default:
> - VIXL_UNIMPLEMENTED();
> - return 0;
> - }
> -}
> -
> -
> -int Disassembler::SubstituteConditionField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(format[0] == 'C');
> - const char* condition_code[] = { "eq", "ne", "hs", "lo",
> - "mi", "pl", "vs", "vc",
> - "hi", "ls", "ge", "lt",
> - "gt", "le", "al", "nv" };
> - int cond;
> - switch (format[1]) {
> - case 'B': cond = instr->ConditionBranch(); break;
> - case 'I': {
> - cond = InvertCondition(static_cast<Condition>(instr->Condition()));
> - break;
> - }
> - default: cond = instr->Condition();
> - }
> - AppendToOutput("%s", condition_code[cond]);
> - return 4;
> -}
> -
> -
> -int Disassembler::SubstitutePCRelAddressField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT((strcmp(format, "AddrPCRelByte") == 0) || // Used by `adr`.
> - (strcmp(format, "AddrPCRelPage") == 0)); // Used by `adrp`.
> -
> - int64_t offset = instr->ImmPCRel();
> -
> - // Compute the target address based on the effective address (after
> applying
> - // code_address_offset). This is required for correct behaviour of adrp.
> - const Instruction* base = instr + code_address_offset();
> - if (format[9] == 'P') {
> - offset *= kPageSize;
> - base = AlignDown(base, kPageSize);
> - }
> - // Strip code_address_offset before printing, so we can use the
> - // semantically-correct AppendCodeRelativeAddressToOutput.
> - const void* target =
> - reinterpret_cast<const void*>(base + offset - code_address_offset());
> -
> - AppendPCRelativeOffsetToOutput(instr, offset);
> - AppendToOutput(" ");
> - AppendCodeRelativeAddressToOutput(instr, target);
> - return 13;
> -}
> -
> -
> -int Disassembler::SubstituteBranchTargetField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(strncmp(format, "TImm", 4) == 0);
> -
> - int64_t offset = 0;
> - switch (format[5]) {
> - // BImmUncn - unconditional branch immediate.
> - case 'n': offset = instr->ImmUncondBranch(); break;
> - // BImmCond - conditional branch immediate.
> - case 'o': offset = instr->ImmCondBranch(); break;
> - // BImmCmpa - compare and branch immediate.
> - case 'm': offset = instr->ImmCmpBranch(); break;
> - // BImmTest - test and branch immediate.
> - case 'e': offset = instr->ImmTestBranch(); break;
> - default: VIXL_UNIMPLEMENTED();
> - }
> - offset <<= kInstructionSizeLog2;
> - const void* target_address = reinterpret_cast<const void*>(instr + offset);
> - VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
> -
> - AppendPCRelativeOffsetToOutput(instr, offset);
> - AppendToOutput(" ");
> - AppendCodeRelativeCodeAddressToOutput(instr, target_address);
> -
> - return 8;
> -}
> -
> -
> -int Disassembler::SubstituteExtendField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
> - VIXL_ASSERT(instr->ExtendMode() <= 7);
> - USE(format);
> -
> - const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
> - "sxtb", "sxth", "sxtw", "sxtx" };
> -
> - // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit
> - // registers becomes lsl.
> - if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) &&
> - (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
> - (instr->ExtendMode() == UXTX))) {
> - if (instr->ImmExtendShift() > 0) {
> - AppendToOutput(", lsl #%" PRId32, instr->ImmExtendShift());
> - }
> - } else {
> - AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
> - if (instr->ImmExtendShift() > 0) {
> - AppendToOutput(" #%" PRId32, instr->ImmExtendShift());
> - }
> - }
> - return 3;
> -}
> -
> -
> -int Disassembler::SubstituteLSRegOffsetField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
> - const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
> - "undefined", "undefined", "sxtw", "sxtx" };
> - USE(format);
> -
> - unsigned shift = instr->ImmShiftLS();
> - Extend ext = static_cast<Extend>(instr->ExtendMode());
> - char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x';
> -
> - unsigned rm = instr->Rm();
> - if (rm == kZeroRegCode) {
> - AppendToOutput("%czr", reg_type);
> - } else {
> - AppendToOutput("%c%d", reg_type, rm);
> - }
> -
> - // Extend mode UXTX is an alias for shift mode LSL here.
> - if (!((ext == UXTX) && (shift == 0))) {
> - AppendToOutput(", %s", extend_mode[ext]);
> - if (shift != 0) {
> - AppendToOutput(" #%d", instr->SizeLS());
> - }
> - }
> - return 9;
> -}
> -
> -
> -int Disassembler::SubstitutePrefetchField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(format[0] == 'P');
> - USE(format);
> -
> - static const char* hints[] = {"ld", "li", "st"};
> - static const char* stream_options[] = {"keep", "strm"};
> -
> - unsigned hint = instr->PrefetchHint();
> - unsigned target = instr->PrefetchTarget() + 1;
> - unsigned stream = instr->PrefetchStream();
> -
> - if ((hint >= (sizeof(hints) / sizeof(hints[0]))) || (target > 3)) {
> - // Unallocated prefetch operations.
> - int prefetch_mode = instr->ImmPrefetchOperation();
> - AppendToOutput("#0b%c%c%c%c%c",
> - (prefetch_mode & (1 << 4)) ? '1' : '0',
> - (prefetch_mode & (1 << 3)) ? '1' : '0',
> - (prefetch_mode & (1 << 2)) ? '1' : '0',
> - (prefetch_mode & (1 << 1)) ? '1' : '0',
> - (prefetch_mode & (1 << 0)) ? '1' : '0');
> - } else {
> - VIXL_ASSERT(stream < (sizeof(stream_options) /
> sizeof(stream_options[0])));
> - AppendToOutput("p%sl%d%s", hints[hint], target, stream_options[stream]);
> - }
> - return 6;
> -}
> -
> -int Disassembler::SubstituteBarrierField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(format[0] == 'M');
> - USE(format);
> -
> - static const char* options[4][4] = {
> - { "sy (0b0000)", "oshld", "oshst", "osh" },
> - { "sy (0b0100)", "nshld", "nshst", "nsh" },
> - { "sy (0b1000)", "ishld", "ishst", "ish" },
> - { "sy (0b1100)", "ld", "st", "sy" }
> - };
> - int domain = instr->ImmBarrierDomain();
> - int type = instr->ImmBarrierType();
> -
> - AppendToOutput("%s", options[domain][type]);
> - return 1;
> -}
> -
> -int Disassembler::SubstituteSysOpField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(format[0] == 'G');
> - int op = -1;
> - switch (format[1]) {
> - case '1': op = instr->SysOp1(); break;
> - case '2': op = instr->SysOp2(); break;
> - default:
> - VIXL_UNREACHABLE();
> - }
> - AppendToOutput("#%d", op);
> - return 2;
> -}
> -
> -int Disassembler::SubstituteCrField(const Instruction* instr,
> - const char* format) {
> - VIXL_ASSERT(format[0] == 'K');
> - int cr = -1;
> - switch (format[1]) {
> - case 'n': cr = instr->CRn(); break;
> - case 'm': cr = instr->CRm(); break;
> - default:
> - VIXL_UNREACHABLE();
> - }
> - AppendToOutput("C%d", cr);
> - return 2;
> -}
> -
> -void Disassembler::ResetOutput() {
> - buffer_pos_ = 0;
> - buffer_[buffer_pos_] = 0;
> -}
> -
> -
> -void Disassembler::AppendToOutput(const char* format, ...) {
> - va_list args;
> - va_start(args, format);
> - buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_ - buffer_pos_,
> - format, args);
> - va_end(args);
> -}
> -
> -
> -void PrintDisassembler::ProcessOutput(const Instruction* instr) {
> - fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
> - reinterpret_cast<uint64_t>(instr),
> - instr->InstructionBits(),
> - GetOutput());
> -}
> -
> -} // namespace vixl
> diff --git a/disas/libvixl/vixl/a64/instructions-a64.cc
> b/disas/libvixl/vixl/a64/instructions-a64.cc
> deleted file mode 100644
> index 33992f88a4..0000000000
> --- a/disas/libvixl/vixl/a64/instructions-a64.cc
> +++ /dev/null
> @@ -1,622 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#include "vixl/a64/instructions-a64.h"
> -#include "vixl/a64/assembler-a64.h"
> -
> -namespace vixl {
> -
> -
> -// Floating-point infinity values.
> -const float16 kFP16PositiveInfinity = 0x7c00;
> -const float16 kFP16NegativeInfinity = 0xfc00;
> -const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
> -const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
> -const double kFP64PositiveInfinity =
> - rawbits_to_double(UINT64_C(0x7ff0000000000000));
> -const double kFP64NegativeInfinity =
> - rawbits_to_double(UINT64_C(0xfff0000000000000));
> -
> -
> -// The default NaN values (for FPCR.DN=1).
> -const double kFP64DefaultNaN =
> rawbits_to_double(UINT64_C(0x7ff8000000000000));
> -const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
> -const float16 kFP16DefaultNaN = 0x7e00;
> -
> -
> -static uint64_t RotateRight(uint64_t value,
> - unsigned int rotate,
> - unsigned int width) {
> - VIXL_ASSERT(width <= 64);
> - rotate &= 63;
> - return ((value & ((UINT64_C(1) << rotate) - 1)) <<
> - (width - rotate)) | (value >> rotate);
> -}
> -
> -
> -static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
> - uint64_t value,
> - unsigned width) {
> - VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16)
> ||
> - (width == 32));
> - VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
> - uint64_t result = value & ((UINT64_C(1) << width) - 1);
> - for (unsigned i = width; i < reg_size; i *= 2) {
> - result |= (result << i);
> - }
> - return result;
> -}
> -
> -
> -bool Instruction::IsLoad() const {
> - if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
> - return false;
> - }
> -
> - if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
> - return Mask(LoadStorePairLBit) != 0;
> - } else {
> - LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
> - switch (op) {
> - case LDRB_w:
> - case LDRH_w:
> - case LDR_w:
> - case LDR_x:
> - case LDRSB_w:
> - case LDRSB_x:
> - case LDRSH_w:
> - case LDRSH_x:
> - case LDRSW_x:
> - case LDR_b:
> - case LDR_h:
> - case LDR_s:
> - case LDR_d:
> - case LDR_q: return true;
> - default: return false;
> - }
> - }
> -}
> -
> -
> -bool Instruction::IsStore() const {
> - if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
> - return false;
> - }
> -
> - if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
> - return Mask(LoadStorePairLBit) == 0;
> - } else {
> - LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
> - switch (op) {
> - case STRB_w:
> - case STRH_w:
> - case STR_w:
> - case STR_x:
> - case STR_b:
> - case STR_h:
> - case STR_s:
> - case STR_d:
> - case STR_q: return true;
> - default: return false;
> - }
> - }
> -}
> -
> -
> -// Logical immediates can't encode zero, so a return value of zero is used to
> -// indicate a failure case. Specifically, where the constraints on imm_s are
> -// not met.
> -uint64_t Instruction::ImmLogical() const {
> - unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
> - int32_t n = BitN();
> - int32_t imm_s = ImmSetBits();
> - int32_t imm_r = ImmRotate();
> -
> - // An integer is constructed from the n, imm_s and imm_r bits according to
> - // the following table:
> - //
> - // N imms immr size S R
> - // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
> - // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
> - // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
> - // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
> - // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
> - // 0 11110s xxxxxr 2 UInt(s) UInt(r)
> - // (s bits must not be all set)
> - //
> - // A pattern is constructed of size bits, where the least significant S+1
> - // bits are set. The pattern is rotated right by R, and repeated across a
> - // 32 or 64-bit value, depending on destination register width.
> - //
> -
> - if (n == 1) {
> - if (imm_s == 0x3f) {
> - return 0;
> - }
> - uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
> - return RotateRight(bits, imm_r, 64);
> - } else {
> - if ((imm_s >> 1) == 0x1f) {
> - return 0;
> - }
> - for (int width = 0x20; width >= 0x2; width >>= 1) {
> - if ((imm_s & width) == 0) {
> - int mask = width - 1;
> - if ((imm_s & mask) == mask) {
> - return 0;
> - }
> - uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
> - return RepeatBitsAcrossReg(reg_size,
> - RotateRight(bits, imm_r & mask, width),
> - width);
> - }
> - }
> - }
> - VIXL_UNREACHABLE();
> - return 0;
> -}
> -
> -
> -uint32_t Instruction::ImmNEONabcdefgh() const {
> - return ImmNEONabc() << 5 | ImmNEONdefgh();
> -}
> -
> -
> -float Instruction::Imm8ToFP32(uint32_t imm8) {
> - // Imm8: abcdefgh (8 bits)
> - // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
> - // where B is b ^ 1
> - uint32_t bits = imm8;
> - uint32_t bit7 = (bits >> 7) & 0x1;
> - uint32_t bit6 = (bits >> 6) & 0x1;
> - uint32_t bit5_to_0 = bits & 0x3f;
> - uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
> -
> - return rawbits_to_float(result);
> -}
> -
> -
> -float Instruction::ImmFP32() const {
> - return Imm8ToFP32(ImmFP());
> -}
> -
> -
> -double Instruction::Imm8ToFP64(uint32_t imm8) {
> - // Imm8: abcdefgh (8 bits)
> - // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
> - // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
> - // where B is b ^ 1
> - uint32_t bits = imm8;
> - uint64_t bit7 = (bits >> 7) & 0x1;
> - uint64_t bit6 = (bits >> 6) & 0x1;
> - uint64_t bit5_to_0 = bits & 0x3f;
> - uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
> -
> - return rawbits_to_double(result);
> -}
> -
> -
> -double Instruction::ImmFP64() const {
> - return Imm8ToFP64(ImmFP());
> -}
> -
> -
> -float Instruction::ImmNEONFP32() const {
> - return Imm8ToFP32(ImmNEONabcdefgh());
> -}
> -
> -
> -double Instruction::ImmNEONFP64() const {
> - return Imm8ToFP64(ImmNEONabcdefgh());
> -}
> -
> -
> -unsigned CalcLSDataSize(LoadStoreOp op) {
> - VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
> - unsigned size = static_cast<Instr>(op) >> LSSize_offset;
> - if ((op & LSVector_mask) != 0) {
> - // Vector register memory operations encode the access size in the "size"
> - // and "opc" fields.
> - if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
> - size = kQRegSizeInBytesLog2;
> - }
> - }
> - return size;
> -}
> -
> -
> -unsigned CalcLSPairDataSize(LoadStorePairOp op) {
> - VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
> - VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
> - switch (op) {
> - case STP_q:
> - case LDP_q: return kQRegSizeInBytesLog2;
> - case STP_x:
> - case LDP_x:
> - case STP_d:
> - case LDP_d: return kXRegSizeInBytesLog2;
> - default: return kWRegSizeInBytesLog2;
> - }
> -}
> -
> -
> -int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
> - switch (branch_type) {
> - case UncondBranchType:
> - return ImmUncondBranch_width;
> - case CondBranchType:
> - return ImmCondBranch_width;
> - case CompareBranchType:
> - return ImmCmpBranch_width;
> - case TestBranchType:
> - return ImmTestBranch_width;
> - default:
> - VIXL_UNREACHABLE();
> - return 0;
> - }
> -}
> -
> -
> -int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
> - int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
> - return encoded_max * kInstructionSize;
> -}
> -
> -
> -bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
> - int64_t offset) {
> - return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
> -}
> -
> -
> -const Instruction* Instruction::ImmPCOffsetTarget() const {
> - const Instruction * base = this;
> - ptrdiff_t offset;
> - if (IsPCRelAddressing()) {
> - // ADR and ADRP.
> - offset = ImmPCRel();
> - if (Mask(PCRelAddressingMask) == ADRP) {
> - base = AlignDown(base, kPageSize);
> - offset *= kPageSize;
> - } else {
> - VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
> - }
> - } else {
> - // All PC-relative branches.
> - VIXL_ASSERT(BranchType() != UnknownBranchType);
> - // Relative branch offsets are instruction-size-aligned.
> - offset = ImmBranch() << kInstructionSizeLog2;
> - }
> - return base + offset;
> -}
> -
> -
> -int Instruction::ImmBranch() const {
> - switch (BranchType()) {
> - case CondBranchType: return ImmCondBranch();
> - case UncondBranchType: return ImmUncondBranch();
> - case CompareBranchType: return ImmCmpBranch();
> - case TestBranchType: return ImmTestBranch();
> - default: VIXL_UNREACHABLE();
> - }
> - return 0;
> -}
> -
> -
> -void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
> - if (IsPCRelAddressing()) {
> - SetPCRelImmTarget(target);
> - } else {
> - SetBranchImmTarget(target);
> - }
> -}
> -
> -
> -void Instruction::SetPCRelImmTarget(const Instruction* target) {
> - ptrdiff_t imm21;
> - if ((Mask(PCRelAddressingMask) == ADR)) {
> - imm21 = target - this;
> - } else {
> - VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
> - uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
> - uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
> - imm21 = target_page - this_page;
> - }
> - Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
> -
> - SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
> -}
> -
> -
> -void Instruction::SetBranchImmTarget(const Instruction* target) {
> - VIXL_ASSERT(((target - this) & 3) == 0);
> - Instr branch_imm = 0;
> - uint32_t imm_mask = 0;
> - int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
> - switch (BranchType()) {
> - case CondBranchType: {
> - branch_imm = Assembler::ImmCondBranch(offset);
> - imm_mask = ImmCondBranch_mask;
> - break;
> - }
> - case UncondBranchType: {
> - branch_imm = Assembler::ImmUncondBranch(offset);
> - imm_mask = ImmUncondBranch_mask;
> - break;
> - }
> - case CompareBranchType: {
> - branch_imm = Assembler::ImmCmpBranch(offset);
> - imm_mask = ImmCmpBranch_mask;
> - break;
> - }
> - case TestBranchType: {
> - branch_imm = Assembler::ImmTestBranch(offset);
> - imm_mask = ImmTestBranch_mask;
> - break;
> - }
> - default: VIXL_UNREACHABLE();
> - }
> - SetInstructionBits(Mask(~imm_mask) | branch_imm);
> -}
> -
> -
> -void Instruction::SetImmLLiteral(const Instruction* source) {
> - VIXL_ASSERT(IsWordAligned(source));
> - ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
> - Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
> - Instr mask = ImmLLiteral_mask;
> -
> - SetInstructionBits(Mask(~mask) | imm);
> -}
> -
> -
> -VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
> - VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D
> ||
> - vform == kFormatH || vform == kFormatS || vform == kFormatD);
> - switch (vform) {
> - case kFormat8H: return kFormat8B;
> - case kFormat4S: return kFormat4H;
> - case kFormat2D: return kFormat2S;
> - case kFormatH: return kFormatB;
> - case kFormatS: return kFormatH;
> - case kFormatD: return kFormatS;
> - default: VIXL_UNREACHABLE(); return kFormatUndefined;
> - }
> -}
> -
> -
> -VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
> - VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S
> ||
> - vform == kFormatB || vform == kFormatH || vform == kFormatS);
> - switch (vform) {
> - case kFormat8B: return kFormat8H;
> - case kFormat4H: return kFormat4S;
> - case kFormat2S: return kFormat2D;
> - case kFormatB: return kFormatH;
> - case kFormatH: return kFormatS;
> - case kFormatS: return kFormatD;
> - default: VIXL_UNREACHABLE(); return kFormatUndefined;
> - }
> -}
> -
> -
> -VectorFormat VectorFormatFillQ(const VectorFormat vform) {
> - switch (vform) {
> - case kFormatB:
> - case kFormat8B:
> - case kFormat16B: return kFormat16B;
> - case kFormatH:
> - case kFormat4H:
> - case kFormat8H: return kFormat8H;
> - case kFormatS:
> - case kFormat2S:
> - case kFormat4S: return kFormat4S;
> - case kFormatD:
> - case kFormat1D:
> - case kFormat2D: return kFormat2D;
> - default: VIXL_UNREACHABLE(); return kFormatUndefined;
> - }
> -}
> -
> -VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
> - switch (vform) {
> - case kFormat4H: return kFormat8B;
> - case kFormat8H: return kFormat16B;
> - case kFormat2S: return kFormat4H;
> - case kFormat4S: return kFormat8H;
> - case kFormat1D: return kFormat2S;
> - case kFormat2D: return kFormat4S;
> - default: VIXL_UNREACHABLE(); return kFormatUndefined;
> - }
> -}
> -
> -VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
> - VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform ==
> kFormat2S);
> - switch (vform) {
> - case kFormat8B: return kFormat16B;
> - case kFormat4H: return kFormat8H;
> - case kFormat2S: return kFormat4S;
> - default: VIXL_UNREACHABLE(); return kFormatUndefined;
> - }
> -}
> -
> -
> -VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
> - VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform ==
> kFormat4S);
> - switch (vform) {
> - case kFormat16B: return kFormat8B;
> - case kFormat8H: return kFormat4H;
> - case kFormat4S: return kFormat2S;
> - default: VIXL_UNREACHABLE(); return kFormatUndefined;
> - }
> -}
> -
> -
> -VectorFormat ScalarFormatFromLaneSize(int laneSize) {
> - switch (laneSize) {
> - case 8: return kFormatB;
> - case 16: return kFormatH;
> - case 32: return kFormatS;
> - case 64: return kFormatD;
> - default: VIXL_UNREACHABLE(); return kFormatUndefined;
> - }
> -}
> -
> -
> -unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
> - VIXL_ASSERT(vform != kFormatUndefined);
> - switch (vform) {
> - case kFormatB: return kBRegSize;
> - case kFormatH: return kHRegSize;
> - case kFormatS: return kSRegSize;
> - case kFormatD: return kDRegSize;
> - case kFormat8B:
> - case kFormat4H:
> - case kFormat2S:
> - case kFormat1D: return kDRegSize;
> - default: return kQRegSize;
> - }
> -}
> -
> -
> -unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
> - return RegisterSizeInBitsFromFormat(vform) / 8;
> -}
> -
> -
> -unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
> - VIXL_ASSERT(vform != kFormatUndefined);
> - switch (vform) {
> - case kFormatB:
> - case kFormat8B:
> - case kFormat16B: return 8;
> - case kFormatH:
> - case kFormat4H:
> - case kFormat8H: return 16;
> - case kFormatS:
> - case kFormat2S:
> - case kFormat4S: return 32;
> - case kFormatD:
> - case kFormat1D:
> - case kFormat2D: return 64;
> - default: VIXL_UNREACHABLE(); return 0;
> - }
> -}
> -
> -
> -int LaneSizeInBytesFromFormat(VectorFormat vform) {
> - return LaneSizeInBitsFromFormat(vform) / 8;
> -}
> -
> -
> -int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
> - VIXL_ASSERT(vform != kFormatUndefined);
> - switch (vform) {
> - case kFormatB:
> - case kFormat8B:
> - case kFormat16B: return 0;
> - case kFormatH:
> - case kFormat4H:
> - case kFormat8H: return 1;
> - case kFormatS:
> - case kFormat2S:
> - case kFormat4S: return 2;
> - case kFormatD:
> - case kFormat1D:
> - case kFormat2D: return 3;
> - default: VIXL_UNREACHABLE(); return 0;
> - }
> -}
> -
> -
> -int LaneCountFromFormat(VectorFormat vform) {
> - VIXL_ASSERT(vform != kFormatUndefined);
> - switch (vform) {
> - case kFormat16B: return 16;
> - case kFormat8B:
> - case kFormat8H: return 8;
> - case kFormat4H:
> - case kFormat4S: return 4;
> - case kFormat2S:
> - case kFormat2D: return 2;
> - case kFormat1D:
> - case kFormatB:
> - case kFormatH:
> - case kFormatS:
> - case kFormatD: return 1;
> - default: VIXL_UNREACHABLE(); return 0;
> - }
> -}
> -
> -
> -int MaxLaneCountFromFormat(VectorFormat vform) {
> - VIXL_ASSERT(vform != kFormatUndefined);
> - switch (vform) {
> - case kFormatB:
> - case kFormat8B:
> - case kFormat16B: return 16;
> - case kFormatH:
> - case kFormat4H:
> - case kFormat8H: return 8;
> - case kFormatS:
> - case kFormat2S:
> - case kFormat4S: return 4;
> - case kFormatD:
> - case kFormat1D:
> - case kFormat2D: return 2;
> - default: VIXL_UNREACHABLE(); return 0;
> - }
> -}
> -
> -
> -// Does 'vform' indicate a vector format or a scalar format?
> -bool IsVectorFormat(VectorFormat vform) {
> - VIXL_ASSERT(vform != kFormatUndefined);
> - switch (vform) {
> - case kFormatB:
> - case kFormatH:
> - case kFormatS:
> - case kFormatD: return false;
> - default: return true;
> - }
> -}
> -
> -
> -int64_t MaxIntFromFormat(VectorFormat vform) {
> - return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
> -}
> -
> -
> -int64_t MinIntFromFormat(VectorFormat vform) {
> - return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
> -}
> -
> -
> -uint64_t MaxUintFromFormat(VectorFormat vform) {
> - return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
> -}
> -} // namespace vixl
> -
> diff --git a/disas/libvixl/vixl/compiler-intrinsics.cc
> b/disas/libvixl/vixl/compiler-intrinsics.cc
> deleted file mode 100644
> index fd551faeb1..0000000000
> --- a/disas/libvixl/vixl/compiler-intrinsics.cc
> +++ /dev/null
> @@ -1,144 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#include "compiler-intrinsics.h"
> -
> -namespace vixl {
> -
> -
> -int CountLeadingSignBitsFallBack(int64_t value, int width) {
> - VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
> - if (value >= 0) {
> - return CountLeadingZeros(value, width) - 1;
> - } else {
> - return CountLeadingZeros(~value, width) - 1;
> - }
> -}
> -
> -
> -int CountLeadingZerosFallBack(uint64_t value, int width) {
> - VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
> - if (value == 0) {
> - return width;
> - }
> - int count = 0;
> - value = value << (64 - width);
> - if ((value & UINT64_C(0xffffffff00000000)) == 0) {
> - count += 32;
> - value = value << 32;
> - }
> - if ((value & UINT64_C(0xffff000000000000)) == 0) {
> - count += 16;
> - value = value << 16;
> - }
> - if ((value & UINT64_C(0xff00000000000000)) == 0) {
> - count += 8;
> - value = value << 8;
> - }
> - if ((value & UINT64_C(0xf000000000000000)) == 0) {
> - count += 4;
> - value = value << 4;
> - }
> - if ((value & UINT64_C(0xc000000000000000)) == 0) {
> - count += 2;
> - value = value << 2;
> - }
> - if ((value & UINT64_C(0x8000000000000000)) == 0) {
> - count += 1;
> - }
> - count += (value == 0);
> - return count;
> -}
> -
> -
> -int CountSetBitsFallBack(uint64_t value, int width) {
> - VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
> -
> - // Mask out unused bits to ensure that they are not counted.
> - value &= (UINT64_C(0xffffffffffffffff) >> (64 - width));
> -
> - // Add up the set bits.
> - // The algorithm works by adding pairs of bit fields together iteratively,
> - // where the size of each bit field doubles each time.
> - // An example for an 8-bit value:
> - // Bits: h g f e d c b a
> - // \ | \ | \ | \ |
> - // value = h+g f+e d+c b+a
> - // \ | \ |
> - // value = h+g+f+e d+c+b+a
> - // \ |
> - // value = h+g+f+e+d+c+b+a
> - const uint64_t kMasks[] = {
> - UINT64_C(0x5555555555555555),
> - UINT64_C(0x3333333333333333),
> - UINT64_C(0x0f0f0f0f0f0f0f0f),
> - UINT64_C(0x00ff00ff00ff00ff),
> - UINT64_C(0x0000ffff0000ffff),
> - UINT64_C(0x00000000ffffffff),
> - };
> -
> - for (unsigned i = 0; i < (sizeof(kMasks) / sizeof(kMasks[0])); i++) {
> - int shift = 1 << i;
> - value = ((value >> shift) & kMasks[i]) + (value & kMasks[i]);
> - }
> -
> - return static_cast<int>(value);
> -}
> -
> -
> -int CountTrailingZerosFallBack(uint64_t value, int width) {
> - VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
> - int count = 0;
> - value = value << (64 - width);
> - if ((value & UINT64_C(0xffffffff)) == 0) {
> - count += 32;
> - value = value >> 32;
> - }
> - if ((value & 0xffff) == 0) {
> - count += 16;
> - value = value >> 16;
> - }
> - if ((value & 0xff) == 0) {
> - count += 8;
> - value = value >> 8;
> - }
> - if ((value & 0xf) == 0) {
> - count += 4;
> - value = value >> 4;
> - }
> - if ((value & 0x3) == 0) {
> - count += 2;
> - value = value >> 2;
> - }
> - if ((value & 0x1) == 0) {
> - count += 1;
> - }
> - count += (value == 0);
> - return count - (64 - width);
> -}
> -
> -
> -} // namespace vixl
> diff --git a/disas/libvixl/vixl/utils.cc b/disas/libvixl/vixl/utils.cc
> deleted file mode 100644
> index 69304d266d..0000000000
> --- a/disas/libvixl/vixl/utils.cc
> +++ /dev/null
> @@ -1,142 +0,0 @@
> -// Copyright 2015, ARM Limited
> -// All rights reserved.
> -//
> -// Redistribution and use in source and binary forms, with or without
> -// modification, are permitted provided that the following conditions are
> met:
> -//
> -// * Redistributions of source code must retain the above copyright notice,
> -// this list of conditions and the following disclaimer.
> -// * Redistributions in binary form must reproduce the above copyright
> notice,
> -// this list of conditions and the following disclaimer in the
> documentation
> -// and/or other materials provided with the distribution.
> -// * Neither the name of ARM Limited nor the names of its contributors may
> be
> -// used to endorse or promote products derived from this software without
> -// specific prior written permission.
> -//
> -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS"
> AND
> -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
> IMPLIED
> -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
> -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
> LIABLE
> -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
> -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
> -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
> -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
> LIABILITY,
> -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
> USE
> -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> -
> -#include "vixl/utils.h"
> -#include <cstdio>
> -
> -namespace vixl {
> -
> -uint32_t float_to_rawbits(float value) {
> - uint32_t bits = 0;
> - memcpy(&bits, &value, 4);
> - return bits;
> -}
> -
> -
> -uint64_t double_to_rawbits(double value) {
> - uint64_t bits = 0;
> - memcpy(&bits, &value, 8);
> - return bits;
> -}
> -
> -
> -float rawbits_to_float(uint32_t bits) {
> - float value = 0.0;
> - memcpy(&value, &bits, 4);
> - return value;
> -}
> -
> -
> -double rawbits_to_double(uint64_t bits) {
> - double value = 0.0;
> - memcpy(&value, &bits, 8);
> - return value;
> -}
> -
> -
> -uint32_t float_sign(float val) {
> - uint32_t rawbits = float_to_rawbits(val);
> - return unsigned_bitextract_32(31, 31, rawbits);
> -}
> -
> -
> -uint32_t float_exp(float val) {
> - uint32_t rawbits = float_to_rawbits(val);
> - return unsigned_bitextract_32(30, 23, rawbits);
> -}
> -
> -
> -uint32_t float_mantissa(float val) {
> - uint32_t rawbits = float_to_rawbits(val);
> - return unsigned_bitextract_32(22, 0, rawbits);
> -}
> -
> -
> -uint32_t double_sign(double val) {
> - uint64_t rawbits = double_to_rawbits(val);
> - return static_cast<uint32_t>(unsigned_bitextract_64(63, 63, rawbits));
> -}
> -
> -
> -uint32_t double_exp(double val) {
> - uint64_t rawbits = double_to_rawbits(val);
> - return static_cast<uint32_t>(unsigned_bitextract_64(62, 52, rawbits));
> -}
> -
> -
> -uint64_t double_mantissa(double val) {
> - uint64_t rawbits = double_to_rawbits(val);
> - return unsigned_bitextract_64(51, 0, rawbits);
> -}
> -
> -
> -float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa) {
> - uint32_t bits = (sign << 31) | (exp << 23) | mantissa;
> - return rawbits_to_float(bits);
> -}
> -
> -
> -double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa) {
> - uint64_t bits = (sign << 63) | (exp << 52) | mantissa;
> - return rawbits_to_double(bits);
> -}
> -
> -
> -int float16classify(float16 value) {
> - uint16_t exponent_max = (1 << 5) - 1;
> - uint16_t exponent_mask = exponent_max << 10;
> - uint16_t mantissa_mask = (1 << 10) - 1;
> -
> - uint16_t exponent = (value & exponent_mask) >> 10;
> - uint16_t mantissa = value & mantissa_mask;
> - if (exponent == 0) {
> - if (mantissa == 0) {
> - return FP_ZERO;
> - }
> - return FP_SUBNORMAL;
> - } else if (exponent == exponent_max) {
> - if (mantissa == 0) {
> - return FP_INFINITE;
> - }
> - return FP_NAN;
> - }
> - return FP_NORMAL;
> -}
> -
> -
> -unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size) {
> - VIXL_ASSERT((reg_size % 8) == 0);
> - int count = 0;
> - for (unsigned i = 0; i < (reg_size / 16); i++) {
> - if ((imm & 0xffff) == 0) {
> - count++;
> - }
> - imm >>= 16;
> - }
> - return count;
> -}
> -
> -} // namespace vixl
> diff --git a/disas/meson.build b/disas/meson.build
> index 7da48ea74a..ba22f7cbcd 100644
> --- a/disas/meson.build
> +++ b/disas/meson.build
> @@ -1,9 +1,4 @@
> -libvixl_ss = ss.source_set()
> -subdir('libvixl')
> -
> common_ss.add(when: 'CONFIG_ALPHA_DIS', if_true: files('alpha.c'))
> -common_ss.add(when: 'CONFIG_ARM_A64_DIS', if_true: files('arm-a64.cc'))
> -common_ss.add_all(when: 'CONFIG_ARM_A64_DIS', if_true: libvixl_ss)
> common_ss.add(when: 'CONFIG_CRIS_DIS', if_true: files('cris.c'))
> common_ss.add(when: 'CONFIG_HEXAGON_DIS', if_true: files('hexagon.c'))
> common_ss.add(when: 'CONFIG_HPPA_DIS', if_true: files('hppa.c'))
> diff --git a/scripts/clean-header-guards.pl b/scripts/clean-header-guards.pl
> index a6680253b1..a7fd8dc99f 100755
> --- a/scripts/clean-header-guards.pl
> +++ b/scripts/clean-header-guards.pl
> @@ -32,8 +32,8 @@ use warnings;
> use Getopt::Std;
>
> # Stuff we don't want to clean because we import it into our tree:
> -my $exclude = qr,^(disas/libvixl/|include/standard-headers/
> - |linux-headers/|pc-bios/|tests/tcg/|tests/multiboot/),x;
> +my $exclude = qr,^(include/standard-headers/|linux-headers/
> + |pc-bios/|tests/tcg/|tests/multiboot/),x;
> # Stuff that is expected to fail the preprocessing test:
> my $exclude_cpp = qr,^include/libdecnumber/decNumberLocal.h,;
>
> diff --git a/scripts/clean-includes b/scripts/clean-includes
> index aaa7d4ceb3..d37bd4f692 100755
> --- a/scripts/clean-includes
> +++ b/scripts/clean-includes
> @@ -51,7 +51,7 @@ GIT=no
> DUPHEAD=no
>
> # Extended regular expression defining files to ignore when using --all
> -XDIRREGEX='^(tests/tcg|tests/multiboot|pc-bios|disas/libvixl)'
> +XDIRREGEX='^(tests/tcg|tests/multiboot|pc-bios)'
>
> while true
> do
> diff --git a/scripts/coverity-scan/COMPONENTS.md
> b/scripts/coverity-scan/COMPONENTS.md
> index 183f26a32c..de2eb96241 100644
> --- a/scripts/coverity-scan/COMPONENTS.md
> +++ b/scripts/coverity-scan/COMPONENTS.md
> @@ -87,9 +87,6 @@ io
> ipmi
> ~ (/qemu)?((/include)?/hw/ipmi/.*)
>
> -libvixl
> - ~ (/qemu)?(/disas/libvixl/.*)
> -
> migration
> ~ (/qemu)?((/include)?/migration/.*)
>
- [PATCH] disas: Remove libvixl disassembler, Thomas Huth, 2022/06/03
- Re: [PATCH] disas: Remove libvixl disassembler, Richard Henderson, 2022/06/03
- Re: [PATCH] disas: Remove libvixl disassembler,
Claudio Fontana <=
- Re: [PATCH] disas: Remove libvixl disassembler, Thomas Huth, 2022/06/03
- Re: [PATCH] disas: Remove libvixl disassembler, Paolo Bonzini, 2022/06/08
- Re: [PATCH] disas: Remove libvixl disassembler, Thomas Huth, 2022/06/09
- Re: [PATCH] disas: Remove libvixl disassembler, Daniel P . Berrangé, 2022/06/09
- Re: [PATCH] disas: Remove libvixl disassembler, Claudio Fontana, 2022/06/09
- Re: [PATCH] disas: Remove libvixl disassembler, Claudio Fontana, 2022/06/09
- What to do with the nanomips disassembler (was: [PATCH] disas: Remove libvixl disassembler), Thomas Huth, 2022/06/09
- RE: What to do with the nanomips disassembler (was: [PATCH] disas: Remove libvixl disassembler), Vince Del Vecchio, 2022/06/09
- Re: What to do with the nanomips disassembler (was: [PATCH] disas: Remove libvixl disassembler), Thomas Huth, 2022/06/09