Fast and Accurate Computation of Binomial
Probabilities

Catherine Loader

July 9, 2000

1 Introduction

The binomial distribution is one of the most commonly used distributions in
statistics, with a discrete mass function

P(X::U):p(:n;mp):'nilp’”(l—p)”’w;x:07...,n. (1)
z!(n — x)!

In this note, it is shown that an algorithm commonly used for computing
p(x;n,p) (including in the statistical packages S, S-Plus and R) is not accurate
for large n. An alternative fast algorithm with improved accuracy is presented
in Section 2. Performance under certain large sample limit theorems is discussed

in Section 3. Numerical results and timings are presented in Section 4.

2 Computational Algorithms

A direct implementation of p(z;n,p) would multiply out all the factorials and
powers appearing in (1). This is accurate even for moderately large n, provided
that one is careful to avoid unnecessary underflow and overflow problems. Ap-
pendix B provides an implementation. But the algorithm is O(n), making it
unsuitable for routine use.

An alternative computation is to write (1) as

log(p(x;n,p)) = log(n!)—log(z!) —log((n—=)!)+z log(p)+(n—=z)log(1-p). (2)

Since n! = I'(n 4+ 1) and the log-gamma function is provided in most math li-
braries, this provides a convenient O(1) algorithm for computing p(x; n, p). This
is the algorithm used in S, S-Plus and R. It is also recommended in Numeri-
cal Recipes (Press, Teukolsky, Vetterling and Flannery 1992, Section 6.1) for
computing the binomial coefficient n!/z!(n — x)!.

This classic algorithm is numerically inaccurate for large n. To see this,
suppose n = 2 x 10, 2 = 10% and p = 0.5. Then log(n!) ~ 2.7 x 107, while
log(p(z;n,p)) =~ —7.5. This implies that cancellation in the subtractions in (2)

will result in the loss of about seven significant figures of precision. This is quite
severe, and gets worse for larger n.
The algorithm recommended in this note is based on a saddle point expan-
sion:
log(p(z; n, p)) = log(p(x;n, x/n)) — D(x;n, p) (3)

where the deviance D(x;n,p) is defined as

D(zin,p) = log(p(z;n,z/n)) - log(p(z;n,p))
wlog(i) +(n—2x) log(g
np n(l —p)

).

Since both log(p(x;n,x/n)) and —D(x;n,p) are negative, there is no loss of
precision due to the subtraction in (3).
Evaluation of p(z;n,z/n) uses the Stirling-De Moivre series:

log(n!) = %log(Zﬂ'n) + nlog(n) —n+ d(n) (4)
where . . 1
- - -7
0n) = T3 ~ 36007 " 126005 T O™)

Using this expansion for the factorials in log(p(z;n, z/n)), significant cancella-
tion occurs. In particular, the nlog(n) — n terms all disappear. This gives

n 8(n)—d(2)~8(n—z)_

p(z;n,z/n) = me

We remark that the expansion (4) is routinely used in evaluating the log-gamma
function and with simplifications is used to compute the binomial coefficients
by the dbinom. f routine in SLATEC (1993). But simplifying the binomial coef-
ficient alone is not sufficient for accurate computation of binomial probabilities;
parts of the coefficient must be incorporated into the deviance.

Inspection of the deviance D(x;n,p) shows (dependent on the sign of x —
np) that one of the log terms is positive and the other negative, creating the
possibility of loss of significance. To avoid this problem, we write

) (5)

n—x

nq

T
D(x;n,p) = npDo(—) + ngDo(
np
where Dg(e) = elog(e) + 1 — € and ¢ = 1 — p. This function is non-negative for
all €. For € close to 1, Dg(e) can be evaluated through the series expansion
20+

2j + 1

npD
p O(np T+ np

j=1

where v = (z — np)/(z + np). For other values of €, Dg(e) is evaluated directly.
Poisson Probabilities. The Poisson distribution has mass function
x

P(X =z)=r(z;\) = Ee”‘.

The algorithm similar to (2) has similar cancellations. A more stable algorithm
along the lines of (3) is

1
r(z;\) = 2m676(z)7w0(z/x)' (©)

3 Limit Theorems

Three common limit theorems for the binomial distribution are

1. Poisson limit: A
.) _ Y
nll)rréop(-’ﬁ,n,/\/”) = Ee :

2. Central limit:

1 2
lim /npq - p([np + cy/npgl;n,p) = e /2,
Jim /npg - p([np + cy/npgl; 1, p) W

3. Large Deviation limit. For —p < e < 1 — p fixed, and z = n(p + €),

lim p(z;n,p)

-1
n—o0 p* (w51, p)

where

n .
P (@i, p) = e~ Dlein)

2rx(n — x)

Numerically, the classic algorithm (2) does not obey any of these limit theorems
and ultimately shows divergence as n increases. The saddle point algorithm
obeys all three, essentially up to the limits of machine precision.

Proofs:

1. Under the Poisson limit, the binomial algorithm (3) reduces to the Poisson
algorithm (6), since n/(n—2x) — 1 and §(n), 6(n —z) and the second term
of the deviance (5) all converge to 0.

2. Under the central limit, z/np = 1 + ¢\/q/np — 1 and npDq(x/np) — qc?
using just the first term of the series expansion. Likewise, ngDq((n —
x)/nq) = pc* and D(z;n,p) — c*.

Note that under the central limit, underflow usually occurs at n = 1032,
since np and np + ¢y/npq will be numerically equal.

3. The large deviation limit is trivial, since p*(x;n,p) is the saddle point
method without the error terms §(n) — §(z) — §(n — x). The error terms
converge to 0.

(o]
4 .+
— + +
0 +
0 + 4
— +
2 3 0 T,
2 O0p 0 +
a o +
© 0 Ty
N
& - 0 Ty
= ° +
+
() o o +
E o +
L =7 090 +,
= 0
<
0 Classic 0
i 0
@ + Saddle Pt %006
0
T T T T T T T T
10mM 1073 10"5 1077

Figure 1: Comparison of computed p(0.3n;n,0.3) with multiplied-out results.

4 Examples

Our first example computes p(0.3n;n,0.3) for various values of n, using the
multiplication, classic and saddle point algorithms. Letting pg, p1 and ps be the
probabilities produced by the three algorithms, we compute the discrepancy

Dj .
—lo — —1);7=1,2.
g10|p0 ‘

This essentially counts the number of significant decimal digits the algorithms
agree on. Figure 1 shows the results, for n ranging from 10 to 108. The classic
algorithm shows discrepancy beginning at n = 100, while the Saddle point and
multiplication algorithms agree up to n = 1000. At larger sample sizes, there
are substantial discrepancies between all three algorithms, although we cannot
tell from this figure which is correct.

Our next example evaluates

[n/2]
S(n) = Z p(z;n,0.5)

z=0

‘°_°| H kk xxoFxx x T+ + ¥ * + +
ors] O
n 16 " + o+ +
ha] —
5 LR . J;++ ta e+
E (0] 00 (0] ** % * ok
o * * *x
< % o * o
~— — — w 0 *** *
>
) 00 00
g 00
o}
§ Y - %00,
* MultipI'n o o] o
: o}
0 Classic %
+ 0
o | Saddle Pt. 00300 o
T T T T T
10 100 1000 10000 100000
n

Figure 2: Significant digits of accuracy for a binomial sum. ‘18’ denotes exact
to full machine precision.

for n» odd. The sum should be 0.5 and numerical accuracy is assessed through
the measure
—logy [25(n) — 1

which counts the number of decimal digits of accuracy. Figure 2 shows the
results for a range of n. In particular, the classic algorithm is quite inaccurate
for large n. The multiplication algorithm is best (usually exact) for n < 100.
For larger n, the saddle point method is best, and maintains its performance up
to n = 200001. Note that multiplication by p = 0.5 can be performed with no
loss of precision; performance of the multiplication algorithm may be worse for
other values of p.

The next two examples study the convergence of computed probabilities to
theoretical limits. Using either the central limit or large deviation limit,

V2m x 0.21 - p(0.3n;n,0.3) — 1.

We compute p(0.3n;n,0.3) using both the classic and saddle point algorithms

+ +
v 0 Classic *
(0 + Saddle Pt. +
2 +
©
+
& +
IS 3 +
£
g ° 0
) 6 0
< ® (0]
= A o)
E) 0
- ® 0
® (0] o
o 00O
T T T

00 1004 10h7 10M0 10nM4

Figure 3: Convergence to the central limit for p = 0.3 and z = np.

and compute the measure
logyq [V2m % 0.21 - p(0.3n;n,0.3) — 1].

This indicates the number of decimal digits agreement between the computed
probability and the desired limit. In Figure 3, the saddle point algorithm con-
verges to the desired limit, with about 15 digits agreement at n = 10'®. The
classic algorithm initially shows convergence, but for n > 10% the round-off error
sets in, and the computed probability diverges.
Figure 4 studies the algorithms under the Poisson limit for z = 3 and A = 2.
The error measure is
—logy p/po — 1]

where py = 4e2/3 is the Poisson probability. The results are very similar to the
central limit results in Figure 3, with the classic algorithm diverging for n > 108,
while the saddle point algorithm improves essentially to machine precision.
Table 1 reports timings for the algorithms at various sample sizes, averaged
over 10% calls. The multiplication algorithm is fastest at n = 10 but is not
competitive for larger sample sizes. In most cases, the classic algorithm is

++ + 4+
—~ 9 4| 0 Classic +
2] +
5 * Saddle Pt.
8 +
©
- +
o +
E o | +
- -
qC) +
= +
g ®o
S & o
< W o (U] 0
0
= (]
= ®
o)
o 0O 0000
T T T T

107 1075 1009 10M3 1077

Figure 4: Convergence to the Poisson limit for £ = 3 and A = 2.

slightly faster than the saddle point method (S.P. wins at n = 10, since it uses
stored values for §(n),n < 15).

All results presented in this section were computed on a 400 MHz. Pentium
PC running Linux (RedHat 6.0).

A Saddle Point Algorithm

The following code implements the saddle point algorithm. The entry point is
dbinom(x,n,p). Also provided is dpois(x,1b) for Poisson probabilities.

The program uses stored values of §(n);n = 1,...,15. These were computed
in Maple (Char, Geddes, Gonnet, Leong, Monagan and Watt 1991) using the

formula
nle”

6(n) = log(m

).

#include <math.h>

/* NTYPE is the type used for the n and x arguments.

n mult. class. S.P.
10 1.75 4.11 2.97
100 16.53 4.03 4.58
1000 166.80 4.15 4.44

10000 4.53 4.63
100000 4.55 4.64
1000000 4.45 4.55

Table 1: Timings, in microseconds per call, for the algorithms at various sample
sizes.

For 32-bit integers, the maximum n is 2731-1=2147483647.
If larger n is required, NTYPE must be double.

*/

typedef int NTYPE;

#define PI2 6.283185307179586476925286

#define SO 0.083333333333333333333 /% 1/12 %/
#define S1 0.00277777777TTTTT7TT7T7T7T778 /* 1/360 */
#define S2 0.00079365079365079365079365 /* 1/1260 */
#define S3 0.000595238095238095238095238 /* 1/1680 */
#define S4 0.0008417508417508417508417508 /* 1/1188 */

static double sfe[16] = {

0, 0.081061466795327258219670264,

0.041340695955409294093822081, 0.0276779256849983391487892927,
.020790672103765093111522771, 0.0166446911898211921631948653,
.013876128823070747998745727, 0.0118967099458917700950557241,
.010411265261972096497478567, 0.0092554621827127329177286366,
.008330563433362871256469318, 0.0075736754879518407949720242,
.006942840107209529865664152, 0.0064089941880042070684396310,
.005951370112758847735624416, 0.0055547335519628013710386899

O O O O O O

};

/* stirlerr(n) = log(n!) - log(sqrt(2*pi*n)*(n/e)°n) */
double stirlerr(n)
NTYPE n;
{ double nn;
if (n<16) return(sfe[(int)n]);
nn = (double)n;
nn = nn*nn;
if (n>500) return((S0-Si1/nn)/n);
if (n>80) return((S0-(S1-S2/nn)/nn)/n);
if (n>35) return((S0-(S1-(S2-S3/nn)/nn)/nn)/n);

return((S0-(S1-(S2-(S3-S4/nn) /nn)/nn) /nn) /n) ;
}

/* Evaluate the deviance term
bd0(x,np) = x log(x/np) + np - x
*/
double bdO(x,np)
NTYPE x;
double np;
{ double ej, s, sl, v;
int j;
if (fabs(x-np)<0.1*(x+np))
{ s = (x-np)*(x-np)/ (x+np) ;
v = (x-np)/(x+np);
ej = 2%x*v;
for (j=1; ;j++)
{ ej *= vx*v;
sl = s+ej/(2%j+1);
if (s1==s) return(sl);
s = s1;
}
}
return(x*log(x/np)+np-x) ;

}

double dbinom(x,n,p)

NTYPE x, n;

double p;

{ double Ic;
if (p==0.0) return((x==0) 7 1.0 : 0.0);
if (p==1.0) return((x==n) 7 1.0 : 0.0);
if (x==0) return(exp(n*log(1l-p)));
if (x==n) return(exp(n*log(p)));
lc = stirlerr(n) - stirlerr(x) - stirlerr(n-x)

- bd0(x,n*p) - bd0(n-x,n*(1.0-p));

return(exp(1lc)*sqrt(n/ (PI2*x* (n-x))));

}

double dpois(x,1lb)
NTYPE x;
double 1b;
{ if (1b==0) return((x==0) ? 1.0 : 0.0);
if (x==0) return(exp(-1b));
return(exp(-stirlerr(x)-bd0(x,1b))/sqrt (PI2*x));
}

B Multiplication Algorithm

The routine dbinom_mult(x,n,p) evaluates binomial probabilities using the
multiplication algorithm, in a method that avoids unnecessary overflow and
underflow. The probability is factorized as

plain,p) =[] n%w 1I» H (1-p).
i=1 i=1 i=1

Terms from the three products are used in an order to keep the accumulated
product as close to 1 as possible, until the first product is exhausted.

double dbinom_mult(x,n,p)
int x, n;
double p;
{ double f;
int jO, j1, j2;
if (2*x>n) return(dbinom_mult(n-x,n,1-p));
j0 = §1 = j2 = 0
f =1.0;
while ((jO<x) | (ji<x) | (j2<n-x))
{ if ((jo<x) && (£<1))
{ jo++;
f *= (double) (n-x+j0)/(double) jO;
}
else
{ if (j1<X) { jl++; £ *= p; }
else { j2++; £ *= 1-p; }
}
}

return(f);

References

Char, B. W.; K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan
and S. M. Watt (1991). Maple V Language Reference Manual. New York:
Springer-Verlag.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Nu-
merical Recipes in C. The Art of Scientific Computing. Cambridge University
Press.

SLATEC (1993). Common mathematical library, version 4.1. Netlib Archive.
http://www.netlib.org/slatec

10

