
Fast and Accurate Computation of BinomialProbabilitiesCatherine LoaderJuly 9, 20001 IntroductionThe binomial distribution is one of the most commonly used distributions instatistics, with a discrete mass functionP (X = x) = p(x;n; p) = n!x!(n� x)!px(1� p)n�x;x = 0; : : : ; n: (1)In this note, it is shown that an algorithm commonly used for computingp(x;n; p) (including in the statistical packages S, S-Plus and R) is not accuratefor large n. An alternative fast algorithm with improved accuracy is presentedin Section 2. Performance under certain large sample limit theorems is discussedin Section 3. Numerical results and timings are presented in Section 4.2 Computational AlgorithmsA direct implementation of p(x;n; p) would multiply out all the factorials andpowers appearing in (1). This is accurate even for moderately large n, providedthat one is careful to avoid unnecessary under
ow and over
ow problems. Ap-pendix B provides an implementation. But the algorithm is O(n), making itunsuitable for routine use.An alternative computation is to write (1) aslog(p(x;n; p)) = log(n!)�log(x!)�log((n�x)!)+x log(p)+(n�x) log(1�p): (2)Since n! = �(n + 1) and the log-gamma function is provided in most math li-braries, this provides a convenient O(1) algorithm for computing p(x;n; p). Thisis the algorithm used in S, S-Plus and R. It is also recommended in Numeri-cal Recipes (Press, Teukolsky, Vetterling and Flannery 1992, Section 6.1) forcomputing the binomial coe�cient n!=x!(n� x)!.This classic algorithm is numerically inaccurate for large n. To see this,suppose n = 2 � 106, x = 106 and p = 0:5. Then log(n!) � 2:7 � 107, whilelog(p(x;n; p)) � �7:5. This implies that cancellation in the subtractions in (2)1

will result in the loss of about seven signi�cant �gures of precision. This is quitesevere, and gets worse for larger n.The algorithm recommended in this note is based on a saddle point expan-sion: log(p(x;n; p)) = log(p(x;n; x=n))�D(x;n; p) (3)where the deviance D(x;n; p) is de�ned asD(x;n; p) = log(p(x;n; x=n))� log(p(x;n; p))= x log(xnp) + (n� x) log(n� xn(1� p)):Since both log(p(x;n; x=n)) and �D(x;n; p) are negative, there is no loss ofprecision due to the subtraction in (3).Evaluation of p(x;n; x=n) uses the Stirling-De Moivre series:log(n!) = 12 log(2�n) + n log(n)� n+ �(n) (4)where �(n) = 112n � 1360n3 + 11260n5 +O(n�7):Using this expansion for the factorials in log(p(x;n; x=n)), signi�cant cancella-tion occurs. In particular, the n log(n)� n terms all disappear. This givesp(x;n; x=n) =r n2�x(n� x)e�(n)��(x)��(n�x):We remark that the expansion (4) is routinely used in evaluating the log-gammafunction and with simpli�cations is used to compute the binomial coe�cientsby the dbinom.f routine in SLATEC (1993). But simplifying the binomial coef-�cient alone is not su�cient for accurate computation of binomial probabilities;parts of the coe�cient must be incorporated into the deviance.Inspection of the deviance D(x;n; p) shows (dependent on the sign of x �np) that one of the log terms is positive and the other negative, creating thepossibility of loss of signi�cance. To avoid this problem, we writeD(x;n; p) = npD0(xnp) + nqD0(n� xnq) (5)where D0(�) = � log(�) + 1� � and q = 1� p. This function is non-negative forall �. For � close to 1, D0(�) can be evaluated through the series expansionnpD0(xnp) = (x� np)2x+ np + 2x 1Xj=1 v2j+12j + 1where v = (x� np)=(x+ np). For other values of �, D0(�) is evaluated directly.Poisson Probabilities. The Poisson distribution has mass functionP (X = x) = r(x;�) = �xx! e��:2

The algorithm similar to (2) has similar cancellations. A more stable algorithmalong the lines of (3) is r(x;�) = 1p2�xe��(x)��D0(x=�): (6)3 Limit TheoremsThree common limit theorems for the binomial distribution are1. Poisson limit: limn!1 p(x;n; �=n) = �xx! e��:2. Central limit:limn!1pnpq � p([np+ cpnpq];n; p) = 1p2� e�c2=2:3. Large Deviation limit. For �p < � < 1� p �xed, and x = n(p+ �),limn!1 p(x;n; p)p�(x;n; p) = 1where p�(x;n; p) =r n2�x(n� x)e�D(x;n;p):Numerically, the classic algorithm (2) does not obey any of these limit theoremsand ultimately shows divergence as n increases. The saddle point algorithmobeys all three, essentially up to the limits of machine precision.Proofs:1. Under the Poisson limit, the binomial algorithm (3) reduces to the Poissonalgorithm (6), since n=(n�x)! 1 and �(n), �(n�x) and the second termof the deviance (5) all converge to 0.2. Under the central limit, x=np = 1+ cpq=np! 1 and npD0(x=np)! qc2using just the �rst term of the series expansion. Likewise, nqD0((n �x)=nq)! pc2 and D(x;n; p)! c2.Note that under the central limit, under
ow usually occurs at n � 1032,since np and np+ cpnpq will be numerically equal.3. The large deviation limit is trivial, since p�(x;n; p) is the saddle pointmethod without the error terms �(n) � �(x) � �(n� x). The error termsconverge to 0.
3

o
o

o o o
o

o

o

o o

o o

o o o

o
o

o o o o
o

n

A
gr

ee
m

en
t (

of

 D
ig

its
)

10^1 10^3 10^5 10^7

8
10

12
14

16 + + +

+ +

+
+

+ +
+

+
+ + +

+
+ +

+ + +
+ +

o Classic
+ Saddle Pt

Figure 1: Comparison of computed p(0:3n;n; 0:3) with multiplied-out results.4 ExamplesOur �rst example computes p(0:3n;n; 0:3) for various values of n, using themultiplication, classic and saddle point algorithms. Letting p0; p1 and p2 be theprobabilities produced by the three algorithms, we compute the discrepancy� log10 jpjp0 � 1j; j = 1; 2:This essentially counts the number of signi�cant decimal digits the algorithmsagree on. Figure 1 shows the results, for n ranging from 10 to 108. The classicalgorithm shows discrepancy beginning at n = 100, while the Saddle point andmultiplication algorithms agree up to n = 1000. At larger sample sizes, thereare substantial discrepancies between all three algorithms, although we cannottell from this �gure which is correct.Our next example evaluatesS(n) = [n=2]Xx=0 p(x;n; 0:5)4

* * * * *** **

*
*

*

* * * ** * *

*

*
*

*

*

*

*

**
**

*
* *

n

A
cc

ur
ac

y
(#

 o
f d

ig
its

)

10 100 1000 10000 100000

10
12

14
16

18

o

o o
o

oo

o
o
oo

o
o

o

o o

o
oo

o oo o
o

o
o

oo

o

oooooo

o

o

+
+ ++++

+

++
++

+ +

+ +

+

+

++

+

+
+

+
+

+

+

+
++

++

+++
+
+

* Multipl’n
o Classic
+ Saddle Pt.

Figure 2: Signi�cant digits of accuracy for a binomial sum. `18' denotes exactto full machine precision.for n odd. The sum should be 0:5 and numerical accuracy is assessed throughthe measure � log10 j2S(n)� 1jwhich counts the number of decimal digits of accuracy. Figure 2 shows theresults for a range of n. In particular, the classic algorithm is quite inaccuratefor large n. The multiplication algorithm is best (usually exact) for n < 100.For larger n, the saddle point method is best, and maintains its performance upto n = 200001. Note that multiplication by p = 0:5 can be performed with noloss of precision; performance of the multiplication algorithm may be worse forother values of p.The next two examples study the convergence of computed probabilities totheoretical limits. Using either the central limit or large deviation limit,p2� � 0:21 � p(0:3n;n; 0:3)! 1:We compute p(0:3n;n; 0:3) using both the classic and saddle point algorithms5

o
o

o
o

o
o

o o
o

o

o

o
o

o
o o o

n

Li
m

it
A

gr
ee

m
en

t (

di
gi

ts
)

10^1 10^4 10^7 10^10 10^14

0
5

10
15

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+ +

o Classic
+ Saddle Pt.

Figure 3: Convergence to the central limit for p = 0:3 and x = np.and compute the measurelog10 jp2� � 0:21 � p(0:3n;n; 0:3)� 1j:This indicates the number of decimal digits agreement between the computedprobability and the desired limit. In Figure 3, the saddle point algorithm con-verges to the desired limit, with about 15 digits agreement at n = 1015. Theclassic algorithm initially shows convergence, but for n � 108 the round-o� errorsets in, and the computed probability diverges.Figure 4 studies the algorithms under the Poisson limit for x = 3 and � = 2.The error measure is � log10 jp̂=p0 � 1jwhere p0 = 4e�2=3 is the Poisson probability. The results are very similar to thecentral limit results in Figure 3, with the classic algorithm diverging for n � 108,while the saddle point algorithm improves essentially to machine precision.Table 1 reports timings for the algorithms at various sample sizes, averagedover 106 calls. The multiplication algorithm is fastest at n = 10 but is notcompetitive for larger sample sizes. In most cases, the classic algorithm is6

o
o

o
o

o
o

o o
o

o
o

o
o o

o o o o o

n

Li
m

it
A

gr
ee

m
en

t (

of
 d

ig
its

)

10^1 10^5 10^9 10^13 10^17

0
5

10
15

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+ + + +

o Classic
+ Saddle Pt.

Figure 4: Convergence to the Poisson limit for x = 3 and � = 2.slightly faster than the saddle point method (S.P. wins at n = 10, since it usesstored values for �(n); n � 15).All results presented in this section were computed on a 400 MHz. PentiumPC running Linux (RedHat 6.0).A Saddle Point AlgorithmThe following code implements the saddle point algorithm. The entry point isdbinom(x,n,p). Also provided is dpois(x,lb) for Poisson probabilities.The program uses stored values of �(n);n = 1; : : : ; 15. These were computedin Maple (Char, Geddes, Gonnet, Leong, Monagan and Watt 1991) using theformula �(n) = log(n!ennnp2�n):#include <math.h>/* NTYPE is the type used for the n and x arguments.7

n mult. class. S.P.10 1.75 4.11 2.97100 16.53 4.03 4.581000 166.80 4.15 4.4410000 4.53 4.63100000 4.55 4.641000000 4.45 4.55Table 1: Timings, in microseconds per call, for the algorithms at various samplesizes.For 32-bit integers, the maximum n is 2^31-1=2147483647.If larger n is required, NTYPE must be double.*/typedef int NTYPE;#define PI2 6.283185307179586476925286#define S0 0.083333333333333333333 /* 1/12 */#define S1 0.00277777777777777777778 /* 1/360 */#define S2 0.00079365079365079365079365 /* 1/1260 */#define S3 0.000595238095238095238095238 /* 1/1680 */#define S4 0.0008417508417508417508417508 /* 1/1188 */static double sfe[16] = {0, 0.081061466795327258219670264,0.041340695955409294093822081, 0.0276779256849983391487892927,0.020790672103765093111522771, 0.0166446911898211921631948653,0.013876128823070747998745727, 0.0118967099458917700950557241,0.010411265261972096497478567, 0.0092554621827127329177286366,0.008330563433362871256469318, 0.0075736754879518407949720242,0.006942840107209529865664152, 0.0064089941880042070684396310,0.005951370112758847735624416, 0.0055547335519628013710386899};/* stirlerr(n) = log(n!) - log(sqrt(2*pi*n)*(n/e)^n) */double stirlerr(n)NTYPE n;{ double nn;if (n<16) return(sfe[(int)n]);nn = (double)n;nn = nn*nn;if (n>500) return((S0-S1/nn)/n);if (n>80) return((S0-(S1-S2/nn)/nn)/n);if (n>35) return((S0-(S1-(S2-S3/nn)/nn)/nn)/n);8

return((S0-(S1-(S2-(S3-S4/nn)/nn)/nn)/nn)/n);}/* Evaluate the deviance termbd0(x,np) = x log(x/np) + np - x*/double bd0(x,np)NTYPE x;double np;{ double ej, s, s1, v;int j;if (fabs(x-np)<0.1*(x+np)){ s = (x-np)*(x-np)/(x+np);v = (x-np)/(x+np);ej = 2*x*v;for (j=1; ;j++){ ej *= v*v;s1 = s+ej/(2*j+1);if (s1==s) return(s1);s = s1;}}return(x*log(x/np)+np-x);}double dbinom(x,n,p)NTYPE x, n;double p;{ double lc;if (p==0.0) return((x==0) ? 1.0 : 0.0);if (p==1.0) return((x==n) ? 1.0 : 0.0);if (x==0) return(exp(n*log(1-p)));if (x==n) return(exp(n*log(p)));lc = stirlerr(n) - stirlerr(x) - stirlerr(n-x)- bd0(x,n*p) - bd0(n-x,n*(1.0-p));return(exp(lc)*sqrt(n/(PI2*x*(n-x))));}double dpois(x,lb)NTYPE x;double lb;{ if (lb==0) return((x==0) ? 1.0 : 0.0);if (x==0) return(exp(-lb));return(exp(-stirlerr(x)-bd0(x,lb))/sqrt(PI2*x));} 9

B Multiplication AlgorithmThe routine dbinom_mult(x,n,p) evaluates binomial probabilities using themultiplication algorithm, in a method that avoids unnecessary over
ow andunder
ow. The probability is factorized asp(x;n; p) = xYi=1 n� x+ ii xYi=1 p n�xYi=1 (1� p):Terms from the three products are used in an order to keep the accumulatedproduct as close to 1 as possible, until the �rst product is exhausted.double dbinom_mult(x,n,p)int x, n;double p;{ double f;int j0, j1, j2;if (2*x>n) return(dbinom_mult(n-x,n,1-p));j0 = j1 = j2 = 0;f = 1.0;while ((j0<x) | (j1<x) | (j2<n-x)){ if ((j0<x) && (f<1)){ j0++;f *= (double)(n-x+j0)/(double)j0;}else{ if (j1<x) { j1++; f *= p; }else { j2++; f *= 1-p; }}}return(f);}ReferencesChar, B. W., K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monaganand S. M. Watt (1991). Maple V Language Reference Manual. New York:Springer-Verlag.Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Nu-merical Recipes in C. The Art of Scienti�c Computing. Cambridge UniversityPress.SLATEC (1993). Common mathematical library, version 4.1. Netlib Archive.http://www.netlib.org/slatec 10

