
In the first example, test_parrayfun_1.m, the function:

y (n)= ∫
0

π(n−2)/n

[cosn(x)+sin(n−1)
(x)]dx

is calculated for n∈[0 , nmax] , using four different ways. A large number of points is used,
nmax=10,000 , in order to clearly show the calculation time saving when using multiple micropro-

cessor cores by means of parrarrayfun of the parallel package.

test_parrarrayfun_1.m

In this script 4 ways of calculating the values of a one-dimensional function
are compared, the time taken by each way is measured and it is verified that
there are no discrepancies in the results.

pkg load parallel

nmax = 10000; # Number of points where the function is calculated

function [a,b] = myfun(n); # Function used in this test
 a = pi*(n-2)/n;
 f = @(x) (cos(x).^n + sin(x).^(n-1));
 b = quadgk(f,0,a);
endfunction

Fist method, using a for loop, defining the function to calculate
within the loop.
tic
for n = 1:nmax;
 a1(n) = pi*(n-2)/n;
 b1(n) = quadgk(@(x) (cos(x).^n + sin(x).^(n-1)),0,a1(n));
endfor
t1 = toc

Second method, using a for loop and calling "myfun"
tic for n = 1:nmax [a2(n),b2(n)] = myfun(n); endfor
t2= toc

Third method, using arrayfun to call "myfun"
tic ni = 1:nmax; [a3,b3] = arrayfun("myfun",ni);
t3 = toc

Forth method, using parrayfun to call "myfun"
tic
ni = 1:nmax; [a4,b4] = pararrayfun(4,@(n) myfun(n),ni);
t4 = toc

Are discrepancies in the results?
discrepancies_1 = max(a2-a1) + max(b2-b1) + max(a3-a1)
discrepancies_2 = max(b3-b1) + max(a4-a1) + max(b4-b1)

Results
t1 = 19.212 sec t2 = 19.419 sec t3 = 19.324 sec t4 = 6.2121 sec

discrepancies_1 = 0 discrepancies_2 = 0

It can be seen that the pararrayfun function, using all the 4 processor cores, divides the calculation
time by 3.

In the second example, test_parrayfun_2.m, a 2D function:

z (xo , yo)=∫
−L

L

∫
−L

L

[cos [(x−xo)
2
+(y− y o)

2
]

L]
2

dxdy with xo , yo∈[−0.8⋅L ,0.8⋅L]

is calculated for a two dimension array of points, (xo , yo) , 51 x 51 = 2601 points. In this case, the
calculation time for each of these points is not negligible.

test_parrarrayfun_2.m

In this script 2 ways of calculating the values of a two-dimensional function
are compared, the time taken by each way is measured and it is verified that
there are no discrepancies in the results. Each of the function values is
calculated by means of a two-dimensional integral.

pkg load parallel

Square root of the number of points where the function is calculated.
npo = 51;

Dimensions of the integration domain
L = 10; xa = -L; xb = L; ya = -L; yb = L;

Function integrand definition
function intg = integrando(x,y,xo,yo,L)

 intg = cos(((x-xo).^2 + (y-yo).^2)/L).^2;
endfunction

Numerical integration definition
function res = Int_Num(xo,yo,L,xa,xb,ya,yb);
 res = dblquad(@(x,y) integrando(x,y,xo,yo,L), xa, xb, ya, yb);
endfunction

Fist method, using two for loops, defining the function to calculate
within the double loop.
tic
for m = 1:npo
 xo = L*0.8*((2*(m-1)/(npo-1))-1);
 for l = 1:npo
 yo = L*0.8*((2*(l-1)/(npo-1))-1);
 INTENSITY_1(m,l) = dblquad(@(x,y) integrando(x,y,xo,yo,L),xa,xb,ya,yb);
 endfor
endfor
t1 = toc

Second method, using pararrayfun to call Int_Num
range = linspace(-L*0.8,L*0.8,npo);
[xo,yo] = meshgrid(range);
tic INTENSITY_2 = pararrayfun(4,@(xo,yo) Int_Num(xo,yo,L,xa,xb,ya,yb),xo,yo);
t2 = toc

discrepancy = max(max(INTENSITY_2-INTENSITY_1))

Results
t1 = 1789.05 sec = 29 min 49.05 sec t2 = 472.984 sec = 7 min 53 sec

t1/t2 = 3.78

discrepancy = 1.1369e-13 # maximum discrepancy

It can be seen that the pararrayfun function, using all the 4 processor cores, divides the calculation
time by 3.78.
An additional advantage of using parrarrayfun is that it informs you of the calculations that are already
done, and therefore of what remains to be done. Ex:
parcellfun: 525/2061 jobs done

The calculation times for these two examples were obtained using a PC with a CPU Intel i52500K @
3.30 GHz with 4 cores and 4 threads.

