
C++ with Matlab
Tutorial

55:148

Digital Image Processing

2007.10.16

Why use C/C++ with Matlab?

• Matlab can be slow

• C++ can be fast

– How can we integrate C++’s speed with
Matlab’s convenience?Matlab’s convenience?

• Goal:

-Implement critical functions with (fast)
C++ code, and use (slow) Matlab code
for data structure management (which
can be difficult/annoying in C++)

How do we integrate C++ with Matlab?

• Matlab allows the use of MEX files

–MEX files are pre-compiled files
that are called from Matlab

–Can be compiled from Matlab .m –Can be compiled from Matlab .m
files

–Can also be compiled from external
C++ code.

• This will be our focus

The components of a MEX file

• Every MEX file consists of two parts:

– A gateway routine that interfaces with
Matlab. This is the entry point for the C++
code. Must be called mexFunction()

– Any number of subroutines that are called – Any number of subroutines that are called
from the gateway routine. The bulk of
your computation will be inside these
subroutines.

The components of a MEX file

• MEX I/O:

• The gateway routine
is passed four
parameters: int
nlhs, mxArray
*plhs[], int nrhs,
mxArrary * prhs []mxArrary * prhs []

• nlhs: the number of

outputs

• plhs[] : an array of

outputs

• nrhs : the number of

inputs

• prhs[] : an array of

inputs

Tutorial:

•We will create a MEX file to implement a
median filter
•Implemented in C++ using M$ Visual
Studio 2005

•MEX code will be contained in a DLL •MEX code will be contained in a DLL
(Dynamic-Link Library)

Tutorial:

•Open Visual Studio 2005
•Start->Program Files->Programming Tools
->Microsoft Visual Studio 2005

Tutorial:

•File->New->Project
•Select Visual C++
•Select Win32

•select win32 project
•name it MedianFilter
•OK

Tutorial:

•Click ‘Next’
•Select “DLL”
•Check “Export Symbols”
•Check “Empty Project”
•Click “Finish”

Tutorial:

•Project->Add New Item
•Select “Code”

•Highlight “C++ File”
•Name it “mexFunction.cpp”
•Add

Tutorial:

•Project->MedianFilter Properties
•Expand “Configuration Properties”

•Expand “C/C++”
•Highlight “General”

•Click in the “Additional Include Directories” field
•Click the “…” button

•Click the “New Line” button
•Click the “…” button
•Browse to “C:\Program
Files\Mathworks\Matlab\R2007a\extern\include”
•OK

Tutorial:

•Project->MedianFilter Properties (CONTINUED)
•Highlight “Preprocessor”

•Click in the “Preprocessor Definitions” field
•Click the “…” button
•Add “MATLAB_MEX_FILE” on a new line
•OK

•Highlight “Code Generation”
•Change “Runtime Library” to “Multi-threaded
Debug”

Tutorial:

•Project->MedianFilter Properties (CONTINUED)
• Expand “Linker”

•Highlight “General”
•Change “Output file” to “$(OutDir)\MedianFilter.dll”
•In the “Additional Library Directories” field, add:

“C:\Program Files\
Mathworks\Matlab\R2007a\extern\lib\win32\microsoft"

•Highlight “Input”
•In “Module Definition File”, add ".\mexFunction.def"

•Click Apply
•Click OK

Tutorial:

•Add a new text file in your project directory named
“mexFunction.def”

•Add the following lines:

LIBRARY “MedianFilter"
EXPORTS

mexFunction

Tutorial:

•Project->Add New Item
•Select “Code”

•Select “Header File”
•Name it “mexFunction.h”
•Add

•Add the following lines to your new header file:
#include "matrix.h”
#include "mex.h”
#define MEX_FUNCTION_EXPORTS

#ifdef MEX_FUNCTION_EXPORTS#ifdef MEX_FUNCTION_EXPORTS
#define MEX_FUNCTION_API __declspec(dllexport)
#else
#define MEX_FUNCTION_API __declspec(dllimport)
#endif

MEX_FUNCTION_API void mexFunction(int nlhs,
mxArray* plhs[],int nrhs, mxArray* prhs[]);

Tutorial:

•In your .cpp file, add the following lines:

#include "mexFunction.h"
#pragma comment(lib, "libmx.lib")
#pragma comment(lib, "libmat.lib")
#pragma comment(lib, "libmex.lib")#pragma comment(lib, "libmex.lib")

•Check that what you’ve done so far will
compile. Of course, it won’t do anything, but
it’s good to check for errors.

Tutorial:

•We’re now in a position to actually start coding.
Let’s start with our gateway function,
mexFunction().

•Add the following lines to your file:

void mexFunction (int nlhs , mxArray * void mexFunction (int nlhs , mxArray *
plhs[], int nrhs, mxArray *prhs[]){

}

•This defines the entry point for our program,
and declares the four variables that we will
need to talk to Matlab.

Tutorial:

•We should decide what we will be
passing in, and what we will be passing
back. We’re implementing a median filter
to process an image, so what will our
inputs be? Obviously, we’ll need an input inputs be? Obviously, we’ll need an input
image. We could also define an arbitrary
filtering radius, but that would makes
things a little more complicated. Let’s
keep it simple: we’ll pass a matrix in, and
we’ll pass the filtered matrix back out.

Tutorial:

•Thus, for our function:
nlhs = 1
nrhs = 1
prhs [0] is the input image, prhs [0] is the input image,
plhs[0] is the output image.

Tutorial:

Where to start? Let’s take care of the
input matrix first. Define a pointer to a
matrix of type mxArray :

mxArray *matrixIn;

Where should this pointer point? Well,
how about our input image?

matrixIn = prhs[0];

Tutorial:

We’re working with a 2D array (an
image),but it is stored as a 1D array.
Thus, it will probably be useful to know
where our row and column bounds are.
We can get the size of our mxn matrix
with:with:

m = mxGetM(matrixIn);
n = mxGetN(matrixIn);

Now, the (i,j) element of the image is at:

image[(m*i)+j]

Tutorial:

Ok. Now we’ve taken care of the input
matrix. Let’s define an output matrix of the
same size as the input matrix.
Remembering that plhs[0] is a reference

to the output matrix, we can do this with:

plhs[0] =
mxCreateDoubleMatrix(m,n,mxREAL);

Tutorial:

Now we’re in a position to write our MedianFilter()
function. If we weren’t dealing with Matlab, we could call
it with:

MedianFilter(&matrixIn, &matrixOut, m, n);

We’re in Matlab-land now, however, so instead of the
“address-of” operator (&), we need to do the following:“address-of” operator (&), we need to do the following:

MedianFilter(mxGetPr(matrixIn),
mxGetPr(plhs[0]), m, n);

The mxGetPr() function returns the address of the first

element of the matrix.

Tutorial:

Let’s write our MedianFilter() function.

We are passing by reference (thus our
function doesn’t return anything) so it’s of
type void . We are passing it the addresses
of two matrices of type double , so we of two matrices of type double , so we

declare our first two input arguments as
double* . We are also passing it two

integers, so putting everything together, we
have:

Tutorial:

void MedianFilter(double * imageIn ,
double* imageOut, int m, int n){
}

•Make sure you add a function prototype to
your header:your header:

void MedianFilter(double *,
double*, int, int);

Tutorial:
Now for the actual algorithm. we’ll begin our loop at
three so that we don’t need to worry about what to do
when our kernel is close to the borders. If we format our
input image correctly in Matlab, everything will work out
fine…

vector<double> neighborhood;
double median;
int u,v,i,j;

//matlab stores matrices by column, so it’s
//most efficient to have our outer loop parse
//through rows, and our inner loop parse
//through columns(i.e. * not* //like you’re
//reading English)
for(i=3;i<n-2;i++){

for(j=3;j<m-2;j++){

Tutorial:

//construct the new neighborhood:
//first, reset the vector
neighborhood.clear();

//get the five horizontal elements
for(u=i-2;u<i+3;u++) {

neighborhood.push_back(imageIn[(m*u)+j]);
}

//get the two top elements
for(v=j-2;v<j;v++){

neighborhood.push_back(imageIn[(m*i)+v]);
}

//get the two bottom elements
for(v=j+1;v<j+3;v++){

neighborhood.push_back(imageIn[(m*i)+v]);
}

Tutorial:

//we now have a 9 pixel neighborhood...
//first, sort the neighborhood
sort(neighborhood.begin(), neighborhood.end());
//now pick out the median:
median = neighborhood[4];

//assign the current pixel to the median//assign the current pixel to the median
imageOut [(m*i)+j] = median;

Tutorial:

Let’s see if this compiles. Nope. We forgot to
include some things:

#include <vector>
#include <algorithm>

using namespace std; using namespace std;

Now it should compile. We should probably call
our function at some point, so stick this at the
bottom of mexFunction():

MedianFilter(mxGetPr(matrixIn),
mxGetPr(plhs[0]), m, n);

Tutorial:

Good. We’re done with the C++ side
of things. Now we need to write the
Matlab side of things. Start up Matlab
and start a new .m file. This .m file
only needs one line:

Function filtered =
MedianFilter(I);

Tutorial:

Save it as MedianFilter.m in the
same directory that Visual Studio
wrote the .DLL file (should be
“<project directory>\

medianFilter\Debug\”). Now medianFilter\Debug\”). Now
create another .m file, name it
test.m or something of the sort.

Tutorial:

Make your test.m file look like this:

%read in a test image
I = imread('medlines.gif');
dim = size(I); %get the size

%pad the image with 4 pixels
J = zeros(dim+4);
J(3:dim(1)+2,3:dim(2)+2) = I;

Tutorial:

%take care of padding our extra 4
columns
J(:,1) = J(:,4);
J(:,2) = J(:,3);
J(:,dim(2)+3) = J(:,dim(2)+2);
J(:,dim(2)+4) = J(:,dim(2)+1);

%take care of padding our extra 4 rows
J(1,:) = J(4,:);
J(2,:) = J(3,:);
J(dim(1)+3,:) = J(dim(1),:);
J(dim(1)+4,:) = J(dim(1)-1,:);

Tutorial:

%pass our padded image to MEX
routine
K = MedianFilter(J);

%throw away the padding
K = K(3:dim(1)+2,3:dim(2)+2);K = K(3:dim(1)+2,3:dim(2)+2);
imshow(K,[0 255]); %show it

clear mex %useful for debugging

Tutorial:

Now make sure that your test image is in the same folder
as the other files, and run your test.m script. If
everything went according to plan, you should see your
processed image pop up.

One advantage of this median filter is that it is edge-
preserving. If your function worked correctly, you should
still see the white lines in the image.

Exercise:

Modify this example to implement a 5x5
averaging filter. Thus, each pixel of the
output image should contain the average
value of the corresponding 5x5 region of
the input image.the input image.

