
Use of Gaussian Process Regression in Processing
Scientific Data

J. Hájek

Aeronautical Research and Test Institute, Prague, Czech Republic.

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.

Abstract. We present the method of Gaussian Process Regression (GPR)
and discuss the issues of training and prediction and their efficient realization.
Further, we consider the application of GPR in design optimization and modeling
experimental data.

Introduction

In many areas of science and engineering, we are interested in some physical or mathemat-
ical quantity that is known or assumed to be dependent on several other quantities. Often, we
are not able to specify a closed-form mathematical model (with unknown parameters) of this
dependence; we just assume it behaves ”reasonably” and yet we want to model the dependent
quantity based only on this assumption. This is where non-parametric regression techniques
become important. In this article, we consider the Gaussian Process Regression non-parametric
regression method. For a broad introduction into the topic, see e.g. Rasmussen and Williams
[2006]. We introduce an open-source software package OctGPR implementing the GPR and dis-
cuss some efficiency and robustness implementation issues, and explain how these issues were
solved in OctGPR. We then describe two types of application of GPR (and the software pack-
age itself) in processing scientific data. Finally, we provide a real-life example with processing
experimental data from turbine measurements.

Gaussian Process Regression

Let us formulate the basic problem of non-parametric regression as follows: We are given
a set of vectors xi ∈ Rd, i = 1, . . . , n, which we will call inputs, along with their corresponding
outputs yi ∈ R, i = 1, . . . , n. We shall call these the training data. Given a new input, x̂, we are
interested in predicting the corresponding output ŷ (which is unknown), based on the training
data. Optionally, we may also be interested in some measure of uncertainty of the prediction.

The method of Gaussian process regression makes the assumption that the data can be
well modeled as a sample of a Gaussian process

y(x) = µ(x) + Z(x) + Z0 (1)

Where µ(x) is a deterministic part that models the unconditional expectation of the process,
Z(x) is a Gaussian random field with zero mean and covariance

EZ(x)Z(y) = k(x,y)

and Z0 is a random variable called noise. To simplify matters, we shall make further assumptions
that the mean is a constant plus a linear term

µ(x) = µ0 + µTx (2)

and the covariance is stationary, and depends only on scaled Euclidean distance

k(x,y) = σ2r(‖x− y‖2θ) (3)



JAROSLAV HÁJEK: GPR FOR SCIENTIFIC DATA

where

‖x− y‖2θ =
d∑

k=0

θ2
k(xk − yk)2 (4)

and σ2 = varZ(x). We shall also denote σ2
0 = varZ0 and ν = σ0/σ.

Let us briefly describe the basic GPR equations under these assumptions. We shall denote
by X, y the matrix of training inputs (one input per row) and the column vector of training
outputs, respectively. We denote as R the correlation matrix with elements

Rij = r(‖xi − xj‖2θ), i, j = 1 . . . N. (5)

and C the full covariance matrix

C = σ2R + σ2
0I = σ2(R + ν2I) (6)

where I is the identity matrix. Under these assumptions, given our training data, the prediction
at a new point x0 is given by

ŷ(x) = µ0 + µTx0 + r(x)T (R + ν2I)−1(y −m) (7)

where
m = y − µ0 −Xµ (8)

and r(x) is a vector with elements

ri = r(‖x− xi‖2θ).

This is actually a maximum likelihood estimate as well as a best linear unbiased predictor
(BLUP). A very important feature of GPR models is that they are able to predict also the
standard deviation of the prediction:

σ̂2(x) = σ2 − σ2r(x)T (R + ν2I)−1r(x) { +σ2
0 } (9)

which can serve as a measure of certainty of the model’s prediction, i.e. the model can assess
how certain its prediction is at a particular test input. Note that the σ2

0 term may be included
to stress the fact that the prediction is never certain if noise is present (i.e. even repeated
evaluations need not give identical results). Usually we ignore the noise in prediction variance,
however.

Another attractive feature of GPR is the possibility of automatic tuning of adjustable
parameters by maximum likelihood estimation (MLE). The parameters in question are θ, σ,
σ0, µ and µ0, usually called hyperparameters. Note that θ and µ are vectors, with individual
hyperparameters being θk and µk, k = 1, . . . , d. By using Bayesian statistics, we can evaluate
the marginal likelihood of the data given certain hyperparameters. The marginal likelihood can
be evaluated exactly, based on the assumption that Z(x) is a Gaussian process:

likelihood = (2π)−n/2det(C)−1/2 exp
(
−(y −m)TC−1(y −m)

2

)
(10)

This quantity tells us how likely are our data to occur given a particular model, and thus can
serve as a score of how well the model explains the data. Note that the situation is fundamentally
different from neural networks where a mean squared error is used which measures the quality
of fit - any set of hyperparameters produces a GPR model that fits the data well (it fits exactly
when ν = 0), but the marginal likelihood allows us to discriminate between different GPR
models.



JAROSLAV HÁJEK: GPR FOR SCIENTIFIC DATA

We now seek to find the hyperparameters that maximize the likelihood; this is called
maximum likelihood estimation. Because likelihoods are multiplicative and often very small or
large numbers we usually prefer to work with their logarithms. And because minimization is
more standard, we will formulate the training of a GPR model as minimizing the negative log
likelihood. In this simplest form, we would have a (2d+ 3)-dimensional optimization problem.
Fortunately, it turns out that the negative log likelihood is quadratic w.r.t. m0 and m, so
that these can be optimized exactly and thus eliminated from the optimization. Further, if we
substitute σ0 = σν, σ can also be eliminated. By substituting in the optimal values, we obtain
the so-called concentrated negative log likelihood (CNLL):

nll(θ, ν) =
1
2

log det(R) +
n

2
(
log 2π + log σ̄2

)
(11)

σ̄2 =
1
n

(y −m)T (R + ν2I)−1(y −m) (12)

which we will seek to minimize.

Implementation

We have implemented the GPR method in the OctGPR package for the Octave computing
environment. It is part of the Octave-Forge project, which comprises many additional Octave
packages. The OctGPR package allows building GPR models with several types of correlation
functions and selective inclusion of variables into the linear trend µ(x). Training of hyperpa-
rameters is realized by minimizing the concentrated negative log likelihood (12). Because its
evaluation involves the factorization of a possibly large matrix, we want the optimization pro-
cedure to be efficient in terms of the number of factorizations required. To accomplish this, we
use a gradient-based Quasi-Newton procedure, using matrix calculus to differentiate (12).

For efficiency and robustness, the inverse matrix (R + ν2I)−1 is not formed explicitly in
prediction and CNLL calculation. Rather, the Cholesky factorization of the positive definite
matrix R+ν2I is used. Since the inverse is needed to evaluate derivatives efficiently, however, we
later reuse the Cholesky factorization to turn it into an inverse. In this way, we ensure better ac-
curacy for the CNLL itself, while maintaining maximum efficiency for derivatives computations.
The derivative w.r.t. θk can be expressed as

∂

∂θk
nll =

1
2

tr((R + ν2I)−1 ∂R
∂θk

)− 1
2

oT ∂R
∂θk
o

σ̄2
(13)

where
o = (R + ν2I)−1(y −m) (14)

and ∂R/∂θk is an element-wise partial derivative of the matrix R, obtained by differentiating
(5). The derivative w.r.t. ν2 is

∂

∂ν2
nll =

1
2

tr((R + ν2I)−1)− 1
2
oTo

σ̄2
(15)

Here we use ∂/∂ν2 because the resulting expressions are simpler; it is easy to turn the expressions
into derivatives w.r.t. ν using the chain rule.

Note that once (R + ν2I)−1 is computed from the Cholesky factorization, the derivative
w.r.t. each hyperparameter can be calculated efficiently in O(n2) time (see Appendix). The use
of matrix calculus for efficient evaluation has been suggested in Rasmussen and Williams [2006]
as well as several papers Rasmussen and Williams [1996], Seeger [2004]. However, these do not
seem to use the concentrated likelihood to simplify the optimization. Thus, our method may be
unique by using this combination. In fact we have gone yet further in this direction by noting



JAROSLAV HÁJEK: GPR FOR SCIENTIFIC DATA

that the second derivative w.r.t. ν2 can also be evaluated efficiently given the precomputed
inverse:

∂2

(∂ν2)2
nll = −1

2
tr((R + ν2I)−2) +

oT (R + ν2I)−1o

σ̄2
− 1

2n
(oTo)2

σ4
(16)

The matrix calculus techniques used to derive these expressions can be found in Appendix.
For technical details of the implementation, we refer the interested reader directly to OctGPR
source code. Since ν is typically the most sensitive parameter, the exact second derivative is
very helpful information for the optimization solver. It poses a problem, however: standard
quasi-Newton optimization codes typically provide no option to exploit such an extra bit of
information. That is part of the reason we decided to develop a custom optimization code for
OctGPR.

The optimization code used for training hyperparameters in OctGPR is a custom quasi-
Newton trust-region gradient solver. Trust-region techniques have reputation as providing an
excellent combination of robust global and efficient local convergence. For more information
on trust-region algorithms, see Nocedal and Wright [1999]. The algorithm always requires
evaluating the gradient after the objective, which is very fit for our problem since it allows us
to use just two level-3 (i.e. O(n3)) LAPACK calls (DPOTRF and DPOTRI) to get the objective as
well as all the derivatives. An approximate quadratic model is refined at each step using the
SR1 (symmetric rank-1) update, again see Nocedal and Wright [1999]. However, the estimated
second derivative w.r.t. ν is replaced by the exact value given by equation (15). The SR1
update doesn’t require positive semidefiniteness of the quadratic model, and thus allows good
approximations even in directions of negative curvature.

Another special feature of our trust-region algorithm is the form of the trust region. We
note that (4) actually depends on θ2

k, which means that θk need not be constrained to be
positive - one simply corrects the sign after the optimization. In principle, the same can be said
for ν; however, we often wish to still constrain ν for two reasons: first, ν acts as a safeguard
against ill-conditioning of the matrix R + ν2I, so that we may want to keep it above a certain
threshold if the (symmetric positive definite) matrix R tends to be ill-conditioned; and second,
we sometimes have a guess for the minimum level of noise (for instance, the measurement error
in our data). In fact, we never allow ν to become an exact zero in OctGPR training. For these
reasons, we chose a rather special form of the trust-region subproblem, which can be called
a mixed norm trust-region: In each step, choose δθ, δν that minimize a local approximate
quadratic model of the CNLL:

1
2
δθTBδθ + δνbT δθ +

1
2
aδν2 + gTθ δθ + gνδν (17)

subject to

‖δθ‖θR
≤ ∆ (18a)

∆L
ν ≤ δν ≤ ∆U

ν (18b)

where θR are a reference length scales, computed as reciprocal standard deviations of the input
variables. This strategy makes the training completely insensitive w.r.t. scaling of variables - a
very desirable property.

Compared to the previous software version, which simply wrapped the famous L-BFGS-B
code for the purpose of training, we have seen up to 5-times reduction in the number of fac-
torizations (and consequently training time) and also improved robustness (the L-BFGS-B code
often failed with abnormal termination in line search).

The OctGPR package is part of OctaveForge, can be downloaded from its website and
installed into an existing Octave installation using Octave’s package management functions.
The URL is http://octave.sourceforge.net/packages/octgpr.html.



JAROSLAV HÁJEK: GPR FOR SCIENTIFIC DATA

Applications

Design Optimization

The use of regression techniques in optimization has found much attention during the past
decade or two. Basically, the idea is to combine the robustness of stochastic global search
methods like genetic algorithms or evolutionary strategies (for overview of these methods, see
Deb [2002]) with the efficiency of traditional gradient-based algorithms. The key point to note
is that the gradient procedures gain their efficiency through building a model for the unknown
function, whereas most stochastic techniques just compare function values. In the most general
sense, a model-based optimization algorithm proceeds as follows:

1. Build a local model for the unknown function, along with a trust region for the model.

2. Optimize the local model within the trust region.

3. Validate the optimization result, update the local model, and restart unless terminating
conditions are met.

It is evident that we shall aim to use a non-parametric regression technique in step 1 and a
stochastic optimization algorithm in step 2. Note that in some cases, if we have sufficient data
in advance and we do not require validation, it may be unnecessary to restart.

Measurement error estimation

Another interesting application of the GPR method is to use it for estimating measurement
errors. When we measure the effects of certain phenomena in physics, we are often interested
in an estimate of the errors of our measurement, without the necessity to repeat experiments.
Usually this is done by fitting a parametric model to the measured data and using the residual
errors to build an estimate of the measurement error. The problem with the parametric approach
is that it is necessary to specify a correct parametric model for the data, i.e. describe the
underlying physical process by an equation, otherwise a systematic error is introduced. If
such an equation is not available (or is very complicated), we may, however, still estimate
the measurement error using non-parametric data models. GPR, with its automatic MLE
estimation of the hyperparameters, seems an ideal candidate for this task: the noise term in
equation (1) can be readily associated with the measurement error. This means that we can
estimate the measurement error (standard deviation of measurement) by training the GPR
model on the measurement data and then calculate σ0 = νσ.

A practical example

We have used the GPR method to process data from tunnel measurements of a rotor blade
of a steam turbine. The measured quantity was the loss of entropy, dependent on the angle of
attack and the inlet Mach number. An interested reader can find more details in Luxa et al.
[2007] Since it was not possible to control Mach number exactly, the measurements are scattered
in the second dimension, i.e. they are semi-gridded. Note that this makes no difference in GPR;
the data could as well be completely scattered.

We analyse the data with two goals in mind: first, we want to locate local optima of the
entropy loss, and second, we want an estimate of the measurement error. As we have explained
in previous sections, both goals are achieveable using GPR. A grayscale map of the prediction
of a GPR model trained for this experimental data is shown in Figure 1. The local minima can
be readily indentified on this map; of course, their exact locations could be found by simple
numerical methods.

The absolute error (i.e. the standard deviation) was estimated from the GPR model to be
0.25% (here the absolute error is expressed in % because the measured quantity is dimensionless
and expressed in %).



JAROSLAV HÁJEK: GPR FOR SCIENTIFIC DATA

M
ac

h 
nu

m
be

r

angle of attack

entropy loss GPR model

0.4

0.6

0.8

1

1.2

1.4

-30 -20 -10 0 10 20 30 40

 4.2%
 4.2%
 4.3%
 4.5%
 4.8%
 5.2%
 5.7%
 6.2%
 6.8%
 7.5%
 8.3%
 9.2%
10.2%
11.2%
12.3%
13.5%
14.8%

Figure 1. Map of entropy loss dependence on blade angle of attack and Mach number. Darker
areas correspond to smaller loss.

Conclusions and future research directions

We have presented the GPR method for data modeling along with its efficient Open Source
implementation, and shown some unique features of the implementation. We have also shown
an application to real problem.

The Gaussian Process Regression has received much interest from the machine learning
and statistical community during the past decade. It has proven itself to be a very effective
tool for data analysis, often outperforming neural networks based on its mathematical elegance
and insight. Because its principal disadvantage is the O(N3) scaling, many papers concerned
with GPR seek ways how to improve this scaling (e.g., Seeger, Williams and Lawrence [2003]).
Most of these focus on some finite-dimensional approximations of posterior distribution - for an
excellent review, see Quiñonero-Candela and Rasmussen [2005].

We are currently investigating some completely new approach which does not use sparse
approximation but rather a dense one with structure. This direction seems to hold much
promise, but the research is far from being complete. It seems, however, that the fact that
GPR considers the mutual influence of every pair of training inputs (and consequently, it needs
to deal with a dense N×N matrix), is where it gets its good features from. It thus seems unlikely
that we could reduce it much without losing some features (and the above mentioned papers
support this idea). And indeed, if the data we analyse comes from expensive experimental
measurements or expensive computations (e.g. CFD), we do not even expect to have more
than, say, a thousand of measurements (and usually less), which the GPR can easily handle on
today’s computers. Another interesting option is using derivative information in GPR. This is
not very complicated in the absence of noise but issues arise when noise is present. We shall aim
to provide the possibility for specifying derivatives as well as relative noise variation in future
versions of OctGPR.



JAROSLAV HÁJEK: GPR FOR SCIENTIFIC DATA

References

Rasmussen C. E., Williams, C. K. I., Gaussian Processes for Machine Learning, MIT Press, 2006, ISBN 0-262-
18253-X.

Rasmussen C. E., Williams, C. K. I., Gaussian Processes for Regression, Advances in Neural Information Pro-
cessing Systems, 8, 1996.

Seeger, M., Gaussian Processes for Machine Learning, International Journal of Neural Systems, 14, 2004.
Nocedal, J., Wright, S. J., Numerical optimization, Springer Verlag, 1999, ISBN 0-387-98793-2.
Seeger, M., Williams, C. K. I., Lawrence, N. D., Fast Forward Selection to Speed Up Sparse Gaussian Process

Regression, Workshop on AI and Statistics, 9, 2003.
Quiñonero-Candela, J, Rasmussen, C. E., A unifying view of sparse approximate Gaussian process regression,

Journal of Machine Learning Research, 6, 2005.
Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, Wiley & Sons, 4, 2002, ISBN 0-471-

87339-X.
Luxa, M., Simurda, D., Synac, J., Safarik, P., Aerodynamics at off Design Performance of Root Section of Rotor

Blade Last Stage of Large Output Steam Turbine, str.4/1-8, Steam Turbines and Other Turbomachinery 2007,
SKODA POWER, Plzen, 2007.


