help-octave
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

ANNOUNCING: Octave Version 1.1.0


From: John Eaton
Subject: ANNOUNCING: Octave Version 1.1.0
Date: Fri, 13 Jan 1995 15:05:14 -0600

Octave version 1.1.0 is now available for ftp from ftp.che.utexas.edu
in the directory /pub/octave.  Gzipped tar files are available.  There
is no patch file to go from version 1.0 to 1.1.0 because there are so
many differences.

A list of user-visible changes since the last release is available in
the file NEWS.  The file ChangeLog in the source distribution contains
a more detailed record of changes made since the last release.

Binaries for several popular systems are also available.  If you would
like help out by making binaries available for other systems, please
contact address@hidden

What is Octave?
---------------

Octave is a high-level interactive language, primarily intended for
numerical computations that is mostly compatible with Matlab.

Octave can do arithmetic for real and complex scalars and matrices,
solve sets of nonlinear algebraic equations, integrate functions over
finite and infinite intervals, and integrate systems of ordinary
differential and differential-algebraic equations.

Octave uses the GNU readline library to handle reading and editing
input.  By default, the line editing commands are similar to the
cursor movement commands used by GNU Emacs, and a vi-style line
editing interface is also available.  At the end of each session, the
command history is saved, so that commands entered during previous
sessions are not lost.

The Octave distribution includes a 200+ page Texinfo manual.  Access
to the complete text of the manual is available via the help command
at the Octave prompt.

Two and three dimensional plotting is fully supported using gnuplot.

The underlying numerical solvers are currently standard Fortran ones
like Lapack, Linpack, Odepack, the Blas, etc., packaged in a library
of C++ classes.  If possible, the Fortran subroutines are compiled
with the system's Fortran compiler, and called directly from the C++
functions.  If that's not possible, you can still compile Octave if
you have the free Fortran to C translator f2c.

Octave is also free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation.

Instructions for obtaining Octave are given below.

Where to get Octave
-------------------

If you are on the Internet, you can copy the latest distribution
version of Octave from the file /pub/octave/octave-M.N.tar.gz, on the
host ftp.che.utexas.edu.  This tar file has been compressed with GNU
gzip, so be sure to use binary mode for the transfer.  M and N stand
for version numbers; look at a listing of the directory through ftp to
see what version is available.  After you unpack the distribution, be
sure to look at the files README and INSTALL.

Installation
------------

Octave requires approximately 50MB of disk storage to unpack and
install (significantly less if you don't compile with debugging
symbols).  In order to build Octave, you will need a current version
of g++, libg++, and GNU make.  If you don't have these tools, you can
get them from many anonymous ftp archives, including ftp.che.utexas.edu,
ftp.uu.net, prep.ai.mit.edu, and wuarchive.wustl.edu, or by writing to
the FSF at 675 Mass Ave, Cambridge, MA 02139, USA.

Octave has been compiled and tested with g++ and libg++ on a
SPARCstation 2 running SunOS 4.1.2, an IBM RS/6000 running AIX 3.2.5,
DEC Alpha systems running OSF/1 1.3 and 3.0, a DECstation 5000/240
running Ultrix 4.2a, and i486 systems running Linux.  It should work
on most other Unix systems that have a working port of g++ and libg++.

Implementation
--------------

Octave is being developed with GNU make, bison (a replacement for
YACC), flex (a replacement for lex), gcc/g++, and libg++ on Sun
SPARCstations, DEC DECstations, and IBM RS/6000s. It should be
easy to port it to any machine that has a working port of gcc/g++.

The underlying numerical solvers are currently standard Fortran ones
like Lapack, Linpack, Odepack, the Blas, etc., packaged in a library
of C++ classes (see the files in the libcruft and liboctave
subdirectories).  If possible, the Fortran subroutines are compiled
with the system's Fortran compiler, and called directly from the C++
functions.  If that's not possible, they are translated with f2c and
compiled with a C compiler.  Better performance is usually achieved if
the intermediate translation to C is avoided.

The library of C++ classes may also be useful by itself, and they are
distributed under the same terms as Octave.

Bugs
----

Please report any problems you have to

  address@hidden

Your bug reports play an essential role in making Octave reliable.

Reporting a bug may help you by bringing a solution to your problem,
or it may not.  In any case, the principal function of a bug report
is to help the entire community by making the next version of Octave
work better.  Bug reports are your contribution to the maintenance of
Octave.

The file BUGS in the top level directory of the source distribution
contains more information about how to provide useful bug reports.

Comments and suggestions are also always welcome.

--
John W. Eaton
address@hidden
Department of Chemical Engineering
The University of Texas at Austin


reply via email to

[Prev in Thread] Current Thread [Next in Thread]