
Using Automake in the Groff project

Contents

1. Overview, the initial build .1
1.1. First build .1
1.2. Automake in the autotools process .2
1.3. Modification of autotools files . .3

2. Building a program .3
2.1. A program and its source files . .3
2.2. Linking against a library .4
2.3. Preprocessor flags .5
2.4. Cleaning. .5
2.5. Dependencies. .5
2.6. Scripts .6

3. Non-recursive make schema .7
3.1. 1st possibility: make recursion .7
3.2. Non-recursive make used by the Groff project .7

4. Installing data .8
4.1. A simple case . .8
4.2. Dealing with generated files .10

5. Extending Automake's rules .10
5.1. Local clean rules . .11
5.2. Local install/uninstall rules and hooks .11

- i -

Using Automake in the Groff project
by

Bertrand Garrigues

©Free Software Foundation 2014

Using Automake in the Groff project
by

Bertrand Garrigues

This is a quick overview of how to use ‘automake’ in the groff project, and is intended to
help the developers and contributors to find their way when they have to make some changes
to the sources files or to the data that are installed. If you need more details on ‘automake’,
here are some reading suggestions:
• the Automake Manual:

http://www.gnu.org/software/automake/manual/automake.html.
• A book by John Calcote, with good practical examples:

http://fsmsh.com/2753
• This site, by Diego Petteno, with good practical examples too:

https://autotools.io/index.html

1. Overview, the initial build

1.1. First build

Groff integrates the ‘gnulib’ and uses its ‘bootstrap’ script. When compiling from the git
repository, you should first invoke this script:

$./bootstrap

This will:
• Clone the gnulib repository as a git submodule in 'gnulib', add the needed gnulib sources

files in ‘lib', add the needed gnulib m4 macros in ‘gnulib_m4'.
• Invoke autoreconf that will call all the ‘GNU autotools' (‘aclocal', ‘autoheader', ‘autoconf',

‘automake') in the right order for creating the following files:
– INSTALL (a symlink to gnulib's INSTALL file)
– Makefile.in
– aclocal.m4
– autom4te.cache/
– build-aux/ (that contains all the helper scripts)

-1-

http://www.gnu.org/software/automake/manual/automake.html.
http://fsmsh.com/2753
https://autotools.io/index.html

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

– configure
– src/include/config.hin

Note that aclocal.m4 is generated and the groff m4 macros are included via the acinclude.m4
file.

At this point you can invoke the ‘configure' script and call ‘make' to build the groff
project. You can do it in the source tree:

$./configure
$ make

You can also build groff in an out of source build tree, which is cleaner:

$ mkdir build
$ cd build
$../configure
$ make

Note that parallel build is also supported and make can be invoked with the -j option, which
will greatly speed up the build.

1.2. Automake in the autotools process

Automake's main job is to generate a Makefile.in file (this file is maintained manually on
projects using only autoconf). The main file processed by ‘automake' is the Makefile.am file,
which eventually generates a Makefile. The (simplified) process is:
• ‘aclocal' generates the ‘aclocal.m4' file from ‘configure.ac' and the user-defined macros in

‘acinclude.m4'.
• ‘autoheader' generates config.h.in.
• ‘autoconf' generates the ‘configure' script from ‘aclocal.m4' and ‘configure.ac'
• ‘automake' generates Makefile.in from Makefile.am and the ‘configure.ac' file. It also gen-

erates some helper scripts, on the groff project they are located in build-aux.
• ‘configure' generates ‘config.status'
• ‘config.status' generates the Makefile and config.h.
Finally, ‘autoreconf' is the program that can be used to call these various tools in the correct
order.

-2-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

Automake defines a set of special variables that are used to generate various build rules
in the final Makefile. Note however that if Automake's pre-defined rules are not enough, you
still have the possibility to add handwritten standard ‘make' rules in a Makefile.am: these
rules will be copied verbatim in the Makefile.in and then in the final Makefile.

1.3. Modification of autotools files

Previously, when groff used ‘autoconf' only and not ‘automake', you had to invoke manually
the autotools, depending on what you modified. For example, to change the file ‘aclocal.m4',
you had to run the shell command 'aclocal -I m4'; to recreate the files ‘configure' and ‘Make-
file', you had to use the command 'autoreconf -I m4'.

Now, as groff uses ‘automake', you don't need to run ‘autoreconf'. If you make some
changes in Makefile.am or configure.ac, all the files that need to be updated will be regener-
ated when you execute ‘make'.

2. Building a program

2.1. A program and its source files

Generally speaking, when using ‘automake' you will have to write a Makefile.am file and use
the variable bin_PROGRAMS to declare a program that should be built, and then list the
sources of this program in a variable that starts with the name of your program and ends with
_SOURCES . In the groff project we have only 1 top-level Makefile.am that includes several
.am files.

Take for example the build of grolbp, in src/devices/grolbp/grolbp.am. The file starts
with:

bin_PROGRAMS += grolbp

This says that a program named ‘grolbp' is added to the list of the programs that should be
built. Note that bin_PROGRAMS is initialized to an empty string in the top-level Make-
file.am, which includes grolbp.am. We will see later why we don't write directly
bin_PROGRAMS = grolbp in a Mak efile.am in the grolbp directory.

-3-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

Then, we list the sources of grolbp like this:

grolbp_SOURCES = \
src/devices/grolbp/lbp.cpp \
src/devices/grolbp/lbp.h \
src/devices/grolbp/charset.h

As you added ‘grolbp' to bin_PROGRAMS you need to define the sources of grolbp in the
variable grolbp_SOURCES . If you write in another file bin_PROGRAMS += foo, you
will list the sources of ‘foo' in foo_SOURCES .

With these two statements, the resulting generated Makefile will contain everything that
is needed to build, clean, install and uninstall the ‘grolbp' binary when invoking the adequate
make command. Also, the source files listed in grolbp_SOURCES will automatically be
included in the distribution tarball. That is why the headers are also listed in
grolbp_SOURCES: it is not necessary to add them in order to correctly build ‘grolbp', but
this way the headers will be distributed.

Note that:
• The path to the files are relative to the top-level directory.
• The binaries are generated in the top-level build directory.
• The .o files are generated in the directory where the source files are located, or, in the case

of an out-of-source build tree, in a directory that is the replication of the source tree direc-
tory. For example if you built groff in a ‘build' directory, lbp.o (object file from src/devices/
grolbp/lbp.cpp) will be located in build/src/devices/grolbp/lbp.o.

We will also see later the reasons, this is due to the non-recursive make design.

2.2. Linking against a library

To list which libraries grolbp needs to link against, we just write:

grolbp_LDADD = $(LIBM) \
libdriver.a \
libgroff.a \
lib/libgnu.a

Again, we use the variable grolbp_LDADD because we added a program named ‘grolbp'.

-4-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

This will also automatically set build dependencies between ‘grolbp' and the libraries it
needs: ‘libdriver.a' and ‘libgroff.a', that are convenience libraries built within the groff
project, will be compiled before grolbp.

2.3. Preprocessor flags

Preprocessor flags that are common to all the binaries are listed in the variable
AM_CPPFLAGS in the top-level Makefile.am. If a ‘foo' binary needs specific preprocessor
flags, use foo_CPPFLAGS, for example, in src/devices/xditview/xditview.am, extra flags are
needed to build gxditview and are added like this:

gxditview_CPPFLAGS = $(AM_CPPFLAGS) $(X_CFLAGS) -Dlint \
-I$(top_builddir)/src/devices/xditview

The use of specific CPPFLAGS changes the name of the generated objects: the .o object
files are prefixed with the name of the program. For example, the .o file corresponding to src/
devices/xditview/device.c will be src/devices/xditview/gxditview-device.o.

2.4. Cleaning

You don't need to write rules to clean the programs listed in bin_PROGRAMS, ‘automake'
will write them for you. However, some programs might have generated sources that should
be cleaned. In this case, you have mainly two special variables to list extra files that should
be cleaned:
• MOSTLYCLEANFILES for files that should be cleaned by ‘make mostlyclean'
• CLEANFILES for files that should be cleaned by ‘make clean'

There is also the possibility to write custom rules, we will see that later.

2.5. Dependencies

We have already seen that when linking against a convenience library, the dependencies are
already created by ‘automake'. However, some dependencies still need to be manually added,
for example when a source file includes a generated header. In this case, the easiest way is to
add a plain-make dependency. For example, src/roff/groff/groff.cpp includes defs.h, which is
a generated header. We just add in src/roff/groff/groff.am:

-5-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

src/roff/groff/groff.$(OBJEXT): defs.h

2.6. Scripts

A part from bin_PROGRAMS, there is another similar special variable for scripts:
bin_SCRIPTS . The scripts listed in this variable will automatically be built (of course you
have to provide your custom rule to build the script), installed and uninstalled when invoking
'make', 'make install' and 'make uninstall'. The main difference is that unlike the programs
listed in bin_PROGRAMS, the scripts will not be cleaned by default. They are not distributed
by default either. In the groff project, bin_SCRIPTS are cleaned because they are added to
MOSTLYCLEANFILES in the top-level Makefile.am.

A simple example are the gropdf and pdfmom scripts in src/devices/gropdf/gropdf.am:

bin_SCRIPTS += gropdf pdfmom
[...]

gropdf: $(gropdf_dir)/gropdf.pl $(SH_DEPS_SED_SCRIPT)
rm -f $@
sed -f $(SH_DEPS_SED_SCRIPT) \

-e "s|[@]VERSION[@]|$(VERSION)|" \
-e "s|[@]PERL[@]|$(PERL)|" \
-e "s|[@]GROFF_FONT_DIR[@]|$(fontpath)|" \
-e "s|[@]RT_SEP[@]|$(RT_SEP)|" $(gropdf_dir)/gropdf.pl >$@

chmod +x $@

pdfmom: $(gropdf_dir)/pdfmom.pl $(SH_DEPS_SED_SCRIPT)
rm -f $@
sed -f $(SH_DEPS_SED_SCRIPT) \

-e "s|[@]VERSION[@]|$(VERSION)|" \
-e "s|[@]PERL[@]|$(PERL)|" $(gropdf_dir)/pdfmom.pl >$@

chmod +x $@

Note that in this example the '@' symbol is protected by square brackets to prevent the substi-
tution of the variable by ‘automake'.

-6-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

3. Non-recursive make schema

There are two possibilities to organize the Makefile.am of a large project, using a recusive or
a non-recursive ‘make'.

3.1. 1st possibility: make recursion

A top level Makefile.am includes other Makefile.am, using the SUBDIRS directive, and the
Makefile.am of each sub-directory lists the programs that should be built. If we had chosen
this type of organization, we would have a Makefile.am in src/devices/grolbp and in each
directory that contain sources to build a program (tbl, eqn, troff etc ...). We would write in the
top-level Makefile.am:

SUBDIRS = src/devices/grolbp \
... (and all the dir that build a program or a script)

and in src/devices/grolbp, we would have a file Makefile.am that contains:

bin_PROGRAMS = grolbp
grolbp_SOURCES = lbp.cpp lbp.h charset.h

Only ‘grolbp' is affected to the variable bin_PROGRAMS . It would be the same in, say,
src/roff/troff: you would have a Makefile.am with bin_PROGRAMS = troff . W e would
have 1 generated Makefile per Makefile.am file: in the build tree you will have the top-level
Makefile, grolbp's Makefile in src/devices/grolbp, troff's Makefile in src/roff/troff, and so on.
When calling ‘make' to build everything, make will be recursively called in all the directories
that have a Makefile. Thus, the paths are logically relative to the directory that contains the
Makefile.am.

This approach has the disadvantage of making dependencies harder to solve: each
Makefile does not know the targets of the other Makfiles. It also makes the build slower.

3.2. Non-recursive make used by the Groff project

The second possibility, that was chosen on groff project, is to use a non-recursive make
schema. It is described in paragraph 7.3 of the Automake manual (“An Alternative Approach

-7-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

to Subdirectories”), based on the following parper from Peter Miller: Recursive Make
Considered Harmful http://miller.emu.id.au/pmiller/books/rmch/

The idea is to have a single Makefile that contains all the rules. That is why we have
only a single Makefile.am in the top-level directory which includes all the .am files that
define rules to build the various programs. The inclusion is done with the include direc-
tive, not SUBDIRS . Using 'include' is like copying the content of the included file into the
top-level Makefile.am, and will not generate other Makefile. We first say in this top-level
Makefile.am:

bin_PROGAMS =

and then all the .am files that define a program to be built (e.g. src/devices/grolbp/grolbp.am,
src/roff/troff/troff.am, and so on) overload this variable, so that at the end, all the programs
that should be built are listed in this bin_PROGRAMS variable. This is the reason why all the
paths in the various .am files are relative to the top-level directory: at the end we will have
only one Makefile in the top-level directory of the build tree.

As the resulting single Makefile knows all the targets, the dependencies are easier to
manage. The build is also faster, particularly when compiling a single file: make is called
once only and the file will be instantly rebuilt, while on a recursive make system, make will
have to be invoked in all the sub-directories.

Note also that in order to make ‘gnulib' work with this non-recursive schema, the ‘non-
recursive-gnulib-prefix-hack' configuration should be selected in bootstrap.conf.

4. Installing data

Variables that end with _DATA are special variables used to list files that should be installed
in a particular location. The prefix of the variables should refer to another previously defined
variable that ends with a ‘dir' suffix. This varibale that ends with ‘dir' defines where the files
should be installed.

4.1. A simple case

For example, in font/devX100/devX100.am, we can see this:

-8-

http://miller.emu.id.au/pmiller/books/rmch/

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

if !WITHOUT_X11
devX100fontdir = $(fontdir)/devX100
devX100font_DATA = $(DEVX100FONTS)
endif

EXTRA_DIST += $(DEVX100FONTS)

DEVX100FONTS is just a list font files, defined at the begining of devX100.am. fontdir
is where all the font directories are installed, it is defined in the top-level Makefile.am. The
conditional if !WITHOUT_X11 is used to prevent the installation of these files if X11 is
not available.

We first define where we wants to install the devX100 fonts with:

devX100fontdir = $(fontdir)/devX100

Because we declared a variable ending with ‘dir', we are allowed to define
devX100font_DATA (you remo ve the ‘dir' suffix and add _DATA). Note that wildcards
are not supported in the special variable that end with _DATA

With these two lines, ‘make install' will install the files listed in DEVX100FONTS and
‘make uninstall' will uninstall them. devX100fontdir will be automatically created if
missing during the installation process, but not removed during the uninstall. The complete
fontdir is remo ved by a custom uninstall rule (uninstall_groffdirs in Makefile.am).

Because the files listed in devX100font_DATA are not distributed by default, we
explicitely added them to the EXTRA_DIST variable, which lists all the files that should be
distributed and that are not taken into account by the default automake rules.

EXTRA_DIST += $(DEVX100FONTS)

Another possibility would have being to add a ‘dist' prefix to the devX100font_DATA
variable, in this case the use of EXTRA_DIST is useless (except of course if
WITHOUT_X11 is true, in this case we don't install the files but we still have to distribute
them):

-9-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

if !WITHOUT_X11
devX100fontdir = $(fontdir)/devX100
dist_devX100font_DATA = $(DEVX100FONTS)
else
EXTRA_DIST += $(DEVX100FONTS)
endif

4.2. Dealing with generated files

In the previous example, all the font files that must be installed were already present in the
source tree. But in some cases, you need to generate the files you intend to install. In this
case, the files should be installed but not distributed. A simple way to deal with this is to add
a ‘nodist' prefix to your xxx_DATA variable.

For example in font/devps/devps.am, we have a list of font files already present in the
source tree, defined by DEVPSFONTFILES, and another list of font files that are generated,
listed in the variable DEVPSFONTFILES_GENERATED . They should all by installed in a
‘devps' directory under the fontdir. Thus the following three lines, where we use the ‘dist' and
‘nodist' prefixes:

devpsfontdir = $(fontdir)/devps
dist_devpsfont_DATA = $(DEVPSFONTFILES)
nodist_devpsfont_DATA = $(DEVPSFONTFILES_GENERATED)

The generated files are not cleaned by default, thus we add:

MOSTLYCLEANFILES += $(DEVPSFONTFILES_GENERATED)

5. Extending Automake's rules

-10-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

5.1. Local clean rules

In most of the cases, the files that need to be cleaned are automatically determined by
‘automake', or were added to the MOSTCLEANFILES or CLEANFILES variables. However,
you might need to define a specific rule to clean some files that were not added to any list.
Automake defines a set of targets to extend the clean targets with your own rules: clean-local,
mostlyclean-local, distclean-local or maintainerclean-local. An example of such extension
exists in font/devpdf/devpdf.am: because some fonts are not explicitely listed in a
xxx_DATA variable but generated by a custom rule, we define an extra rule to extend the
‘mostlyclean' target:

mostlyclean-local: mostlyclean_devpdf_extra
mostlyclean_devpdf_extra:

@echo Cleaning font/devpdf
rm -rf $(top_builddir)/font/devpdf/enc \

$(top_builddir)/font/devpdf/map;
if test -d $(top_builddir)/font/devpdf; then \

for f in $(GROFF_FONT_FILES); do \
rm -f $(top_builddir)/font/devpdf/$$f; \

done; \
fi

5.2. Local install/uninstall rules and hooks

Similarly to the clean rules, there are extensions to install and uninstall rules. They come
with two flavous, local rules and hooks.
• There are 2 rules to extend install commands: ‘install-exec-local' for binaries and ‘install-

data-local' for data.
• There is 1 uninstall local rule: ‘uninstall-local'.
There are no garantee on the order of execution of these local rules. An example of local rule
is the installation of GXditview.ad and GXditview-color.ad files in src/devices/xditview/
xditview.am: if theses files are already installed, the old files are first saved. Also, the final
file that is installed is stripped from its .ad suffix. Thus the usage of a custom rules rather
than the definition of a xxx_DATA variable:

Custom installation of GXditview.ad and GXditview-color.ad

-11-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

install-data-local: install_xditview
uninstall-local: uninstall_xditview

[...]
install_xditview: $(xditview_srcdir)/GXditview.ad

-test -d $(DESTDIR)$(appresdir) \
|| $(mkinstalldirs) $(DESTDIR)$(appresdir)

if test -f $(DESTDIR)$(appresdir)/GXditview; then \
mv $(DESTDIR)$(appresdir)/GXditview \

$(DESTDIR)$(appresdir)/GXditview.old; \
fi
[...]
$(INSTALL_DATA) $(xditview_srcdir)/GXditview.ad \

$(DESTDIR)$(appresdir)/GXditview

Hooks, on the other hand, are garanteed to be executed after all the standard targets have
been executed.
• There are 2 install hooks: ‘install-exec-hook' and ‘install-data-hook'.
• There is 1 uninstall hook: ‘unintall-hook'

An example of hook is the ‘uninstall_groffdirs' rule in the top-level Makefile.am. This
hook is used to remove all the directories specific to groff introduced by the installation
process. Obviously it could not be a local extension of ‘uninstall' because the order of execu-
tion is not guaranteed.

directories specific to groff
uninstall-hook: uninstall_groffdirs
uninstall_groffdirs:

if test -d $(DESTDIR)$(datasubdir); then \
rm -rf $(DESTDIR)$(fontdir); \
rm -rf $(DESTDIR)$(oldfontdir); \
rmdir $(DESTDIR)$(datasubdir); \

fi
[...]

-12-

	Cover: Using Automake in the Groff project
	Contents
	Title Page: Using Automake in the Groff project
	Using Automake in the Groff project
	1. Overview, the initial build
	1.1. First build
	1.2. Automake in the autotools process
	1.3. Modification of autotools files

	2. Building a program
	2.1. A program and its source files
	2.2. Linking against a library
	2.3. Preprocessor flags
	2.4. Cleaning
	2.5. Dependencies
	2.6. Scripts

	3. Non-recursive make schema
	3.1. 1st possibility: make recursion
	3.2. Non-recursive make used by the Groff project

	4. Installing data
	4.1. A simple case
	4.2. Dealing with generated files

	5. Extending Automake's rules
	5.1. Local clean rules
	5.2. Local install/uninstall rules and hooks

