Using Automake in the Groff project

Contents

1. Owerview, the initial uild 1..
L1, RArsthuild . ..o e 1...
1.2. Automale inthe autotools IcesSS oo i 2.
1.3. Modification of autotoolsfiles. i 3.

2. Building a program. e 3...
2.1. Apogramanditssowefiles. 3.
2.2. Linking gainstalibary 4..
2.3. Preprocessor flgso 5..
2.4, Cleaning e 5...
2.5, DEPENAENCIES. . . . ot 5...
2.6, SCIIPIS . . it G...

3. Non-recursie male schema. i i e 7..
3.1. 1stpossibility: makrecursion e 7 .
3.2. Non-ecusive mak used by the @ff project., 7

4. Installing data.t e 8...
4.1, ASIMpPle CasSe.t e 8...
4.2. Dealingwithgneated files. i 10. .

5. Extending Automaks rules. e 10..
5.1. Localcleanrules 11 ..
5.2. Localinstall/uninstall rulesand hooks 11.

Using Automake in the Groff project

by
Bertrand Garrigues

©Free Softvare Fundation 2014

Using Automake in the Groff project

by
Bertrand Garrigues

This is a quick werview of hav to use ‘automa¥ in the grof project, and is intended to
help the deelopers and contriliors to find their \ay when thg have to male some changes
to the sources files or to the data that are installed. If you need more details on ‘aytomak
here are some reading suggestions:
» the Automak Manual:
http://www.gnu.og/software/automag&/manual/automakhtml.
* A book by John Calcote, with good practiceamples:
http://fsmsh.com/2753
» This site, by Digo Petteno, with good practicalamples too:
https://autotools.io/indehtml

1. Overview, the initial build

1.1. First huild

Groff integrates the ‘gnulib’ and uses its ‘bootstrap’ script. When compiling from the git
repository you should first imoke this script:

$./bootstrap

This will:
» Clone the gnulib repository as a git submodule in 'gnulib’, add the needed gnulib sources
files in ‘lib', add the needed gnulib m4 macros in ‘gnulib_m4'.
* Invoke autoreconf that will call all the ‘GNU autotools' (‘aclocal’, ‘autoheader’, ‘autoconf’,
‘automale’) in the right order for creating the folling files:
— INSTALL (a symlink to gnulib's INSALL file)
— Makefile.in
— aclocal.m4
— automd4te.cache/
— build-aux/ (that contains all the helper scripts)

-1-

http://www.gnu.org/software/automake/manual/automake.html.
http://fsmsh.com/2753
https://autotools.io/index.html

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

— configure
— src/include/config.hin

Note that aclocal.m4 is generated and thefgndf macros are included via the acinclude.m4
file.

At this point you can woke the ‘configure’ script and call ‘makto kuild the grof
project. You can do it in the source tree:

$./configure
$ make

You can alsotild groff in an out of sourceuild tree, which is cleaner:

$ mkdir build
$ cd build

$../configure
$ make

Note that parallel tnld is also supported and nekan be woked with the -j option, which
will greatly speed up theuldd.

1.2. Automake in the autotools pocess

Automale's main job is to generate a Mdie.in file (this file is maintained manually on

projects using only autoconf). The main file processed by ‘autnsathe Malfile.am file,

which esentually generates a Melle. The (simplified) process is:

* ‘aclocal' generates the ‘aclocal.m4' file from ‘configure.ac' and thedefared macros in
‘acinclude.m4',

* ‘autoheader' generates config.h.in.

* ‘autoconf' generates the ‘configure' script from ‘aclocal.m4' and ‘configure.ac'

» ‘automale’ generates Maifile.in from Malefile.am and the ‘configure.ac’ file. It also gen-
erates some helper scripts, on thefgpodject the are located indald-aux.

* ‘configure’ generates ‘config.status’

* ‘config.status' generates the Msite and config.h.

Finally, ‘autoreconf' is the program that can be used to call thessusg tools in the correct

order

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

Automale defines a set of specianables that are used to generagous luild rules
in the final Malefile. Note hwever that if Automak's pre-defined rules are not enough, you
still have the possibility to add handwritten standard ‘edakles in a Makfile.am: these
rules will be copied @rbatim in the Maéfile.in and then in the final Makle.

1.3. Modification of autotools files

Previously, when grof used ‘autoconf' only and not ‘autonekyou had to woke manually

the autotools, depending on what you modifieat. &le, to change the file ‘aclocal.m4’,
you had to run the shell command ‘aclocal -I| m4'; to recreate the files ‘configure’ amd ‘Mak
file', you had to use the command 'autoreconf - m4'.

Now, as grof uses ‘automa, you don't need to run ‘autoreconf'. If you maome
changes in Madfile.am or configure.ac, all the files that need to be updated wilgbaeae
ated when youxecute ‘mak’.

2. Building a program

2.1. A program and its souce files

Generally speaking, when using ‘autor@ajou will have to write a Makfile.am file and use
the \ariable bin_ PROGRAMS to declare a program that shoulduik land then list the
sources of this program in anable that starts with the name of your program and ends with
_SOURCES . In the grioproject we hae only 1 top-lgel Makefile.am that includes geral

.am files.

Take for exkample the bild of grolbp, in src/déces/grolbp/grolbp.am. The file starts
with:
bin_PROGRAMS += grolbp

This says that a program named ‘grolbp' is added to the list of the programs that should be
built. Note that bin_ PROGRAMS is initialized to an empty string in the topildake-

file.am, which includes grolbp.am.aMill see later wir we don't write directly

bin_PROGRAMS = grolbp in a Mak efile.am in the grolbp directary

3

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

Then, we list the sources of grolbpdikhis:

grolbp_SOURCES =\
src/devices/grolbp/lbp.cpp \
src/devices/grolbp/lbp.h \
src/devices/grolbp/charset.h

As you added ‘grolbp’ to bin_ PROGRAMS you need to define the sources of grolbp in the
variable grolbp_ SOURCES . If you write in another file bin_ PROGRAMS += foo, you
will list the sources of ‘foo' in foo SOURCES .

With these tw statements, the resulting generated dfisk will contain @erything that
is needed touild, clean, install and uninstall the ‘grolbp’ binary wheroking the adequate
make command. Also, the source files listed in grolbp_ SOURCES will automatically be
included in the distribtion tarball. That is wh the headers are also listed in
grolbp_ SOURCES: it is not necessary to add them in order to correatijdbgrolbp’, ut
this way the headers will be disttited.

Note that:

» The path to the files are relaito the top-leel directory

» The binaries are generated in the togeldwuild directory

» The .o files are generated in the directory where the source files are locatethecase
of an out-of-sourceuld tree, in a directory that is the replication of the source tree direc-
tory. For example if you lilt groff in a ‘build’ directory Ibp.o (object file from src/deces/
grolbp/lbp.cpp) will be located inudd/src/devices/grolbp/lbp.o.

We will also see later the reasons, this is due to the non-nexunaie design.

2.2. Linking against a library

To list which libraries grolbp needs to linkagst, we just write:

grolbp_LDADD = $(LIBM) \
libdriver.a \
libgroff.a \
lib/libgnu.a

Again, we use theariable grolbp_LDADD because we added a program named ‘grolbp'.

-4-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

This will also automatically setulld dependencies between ‘grolbp' and the libraries it
needs: ‘libdrvera’ and ‘libgrof.a’, that are carenience libraries Wwlt within the grof
project, will be compiled before grolbp.

2.3. Preprocessor flags

Preprocessor flags that are common to all the binaries are listed inatlables
AM_CPPFLAGS in the topvel Makefile.am. If a ‘foo' binary needs specific preprocessor
flags, use foo CPPFLAGS, fon@ample, in src/daces/xditviav/xditview.am, etra flags are
needed to bild gxditview and are added kkthis:

gxditview CPPFLAGS = $(AM_CPPFLAGS) $(X_CFLAGS) -Dlint \
-I$(top_builddir)/src/devices/xditview

The use of specific CPPFIGS changes the name of the generated objects: the .0 object
files are prefigd with the name of the progranarFexample, the .o file corresponding to src/
devices/xditviev/device.c will be src/deices/xditviev/gxditview-device.o.

2.4. Cleaning

You don't need to write rules to clean the programs listed in bin_ PROGRAMS, ‘aatomak
will write them for you. Havever, some programs might y& generated sources that should
be cleaned. In this case, yowblanainly tw special ariables to list etra files that should

be cleaned:

» MOSTLYCLEANFILES for files that should be cleaned by ‘enatostlyclean’

» CLEANFILES for files that should be cleaned by ‘nea&lean’

There is also the possibility to write custom rules, we will see that later

2.5. Dependencies

We have already seen that when linkingaawst a cowenience librarythe dependencies are
already created by ‘automalk Havever, some dependencies still need to be manually added,
for example when a source file includes a generated hdadéis case, the easiesayis to

add a plain-mak dependenc For example, src/rdfgroff/groff.cpp includes defs.h, which is

a generated headé&¥e just add in src/régroff/groff.am:

5

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

src/roff/groff/groff. 5(OBJEXT): defs.h

2.6. Scripts

A part from bin PROGRAMS, there is another similar specmiiatle for scripts:
bin_SCRIPTS . The scripts listed in this ariable will automatically bewlt (of course you
have to praide your custom rule touild the script), installed and uninstalled whewoking
'‘malke’, 'male install' and ‘'mak uninstall’. The main dérence is that unlig the programs
listed in bin_ PROGRAMS, the scripts will not be cleaned bguwlefThe are not distribted
by default either In the grof project, bin_SCRIPTS are cleaned because thare added to
MOSTLYCLEANFILES in the top+el Makefile.am.

A simple example are the gropdf and pdfmom scripts in skees/gropdf/gropdf.am:

bin_SCRIPTS += gropdf pdfmom
[...]
gropdf: $(gropdf_dir)/gropdf.pl $(SH_DEPS_SED_SCRIPT)
rm -f $@
sed -f $(SH_DEPS_SED_SCRIPT)\
-e "s|[@]VERSION[@]|$(VERSION)|" \
-e "s|[@]PERL[@]|$(PERL)|" \
-e "s|[@]GROFF_FONT_DIR[@]|$(fontpath)|" \
-e "s|[@]RT_SEP[@]|$(RT_SEP)|" $(gropdf_dir)/gropdf.pl >$@
chmod +x $@

pdfmom: $(gropdf_dir)/pdfmom.pl $(SH_DEPS_SED_SCRIPT)
rm -f $@
sed -f $(SH_DEPS_SED_SCRIPT)\
-e "s|[@]VERSION[@]|$(VERSION)|" \
-e "s|[@]PERL[@]|$(PERL)|" $(gropdf_dir)/pdfmom.pl >$@
chmod +x $@

Note that in thisxample the '@' symbol is protected by square latadio preent the substi-
tution of the variable by ‘automai.

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

3. Non-recursive make schema

There are tw possibilities to ajanize the Mag&file.am of a lage project, using a recusi or
a non-recursie ‘male’.

3.1. 1st possibility: male recursion

A top level Makefile.am includes other Makle.am, using the SUBDIRS direat, and the

Makefile.am of each sub-directory lists the programs that shoulditielbwe had chosen
this type of oganization, we wuld hare a Malefile.am in src/daces/grolbp and in each
directory that contain sources toild a program (tbl, egn, trbétc ...). Vi would write in the

top-level Makefile.am:

SUBDIRS = src/devices/grolbp \
... (and all the dir that build a program or a script)

and in src/deices/grolbp, we wuld have a file Malefile.am that contains:

bin_ PROGRAMS = grolbp
grolbp_SOURCES = Ibp.cpp lbp.h charset.h

Only ‘grolbp’ is afected to the ariable bin_ PROGRAMS . It auld be the same in, say
src/rof/troff: you would have a Malefile.am with bin_PROGRAMS = troff . W e would
have 1 generated Makile per Malefile.am file: in the bild tree you will hae the top-leel
Makefile, grolbp's Makfile in src/deices/grolbp, trdfs Makefile in src/rof/troff, and so on.
When calling ‘mak' to huild everything, mak will be recursiely called in all the directories
that hae a Malefile. Thus, the paths are logically relatito the directory that contains the
Makefile.am.

This approach has the disatitage of making dependencies harder toesobach
Makefile does not kne the tagets of the other Makfiles. It also neskthe hild slover.

3.2. Non-recursive make used by the Goff project

The second possibilifythat was chosen on groproject, is to use a non-recwsi male
schema. It is described in paragraph 7.3 of the Autemaknual (“An Alternatie Approach

-7-

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

to Subdirectories”), based on the feliag parper from Peter Miller: Recwsi Male
Considered Harmfulttp://milleremu.id.au/pmiller/books/rmch/

The idea is to ha a single Ma#file that contains all the rules. That isymve hae
only a single Magfile.am in the top-kel directory which includes all the .am files that
define rules to wld the \arious programs. The inclusion is done with the include direc-
tive, not SUBDIRS . Using 'include’ is Bkcopying the content of the included file into the
top-level Makefile.am, and will not generate other Méle. We first say in this top-lel
Makefile.am:

bin_PROGAMS =

and then all the .am files that define a program tauiie(b.g. src/deices/grolbp/grolbp.am,
src/rof/troff/troff.am, and so on)werload this ariable, so that at the end, all the programs
that should bedunlt are listed in this bin_ PROGRAMSnwable. This is the reason whll the
paths in the a&rious .am files are relaé to the top-ieel directory: at the end we will tia
only one Malefile in the top-leel directory of the bild tree.

As the resulting single Maile knavs all the tagets, the dependencies are easier to
manage. Thewld is also &ster particularly when compiling a single file: neaks called
once only and the file will be instantly rgl, while on a recurse male system, mak will
have to be inoked in all the sub-directories.

Note also that in order to makgnulib' work with this non-recurse schema, the ‘non-
recursve-gnulib-prefix-hack' configuration should be selected in bootstrap.conf.

4. Installing data

Variables that end with _DATA are speciafiables used to list files that should be installed
in a particular location. The prefix of thanables should refer to anotheryorisly defined
variable that ends with a ‘dir' did. This varibale that ends with ‘dir' defines where the files
should be installed.

4.1. A simple case

For example, in font/deX100/desX100.am, we can see this:

http://miller.emu.id.au/pmiller/books/rmch/

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

if WITHOUT_X11

devX100fontdir = $(fontdir)/devX100
devX100font_DATA = $(DEVX100FONTS)
endif

EXTRA_DIST += $(DEVX100FONTS)

DEVX100FONTS is just a list font files, defined at thgibeng of deX100.am. fontdir

is where all the font directories are installed, it is defined in the t@pMakefile.am. The
conditional if 'WITHOUT_X11 is used to prevent the installation of these files if X11 is
not available.

We first define where weamts to install the deX100 fonts with:

devX100fontdir = $(fontdir)/devX100

Because we declared aanable ending with ‘dir, we are all@d to define
devX100font_DATA (you remo ve the ‘dir' sufix and add _DATA). Note that wildcards
are not supported in the specialiable that end with DATA

With these tw lines, ‘male install’ will install the files listed in DEVX100FONTS and
‘make uninstall' will uninstall them. devX100fontdir will be automatically created if
missing during the installation processi Imot remeed during the uninstall. The complete
fontdir isremo ved by a custom uninstall rule (uninstall_ddafs in Makefile.am).

Because the files listed in devX100font DATA are not distritied by dedult, we
explicitely added them to the EXTRA_DISBrable, which lists all the files that should be
distributed and that are not &k into account by the deflt automak rules.

EXTRA_DIST += $(DEVX100FONTS)

Another possibility wuld hare being to add a ‘dist' prefix to the devX100font DATA
variable, in this case the use of EXTRA_DIST is uselesse(# of course if

WITHOUT _X11 is true, in this case we don't install the filas Wwe still hae to distrilute
them):

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

if WITHOUT_X11

devX100fontdir = $(fontdir)/devX100
dist_devX100font DATA = $(DEVX100FONTS)
else

EXTRA_DIST += $(DEVX100FONTS)

endif

4.2. Dealing with generated files

In the preious xample, all the font files that must be installed were already present in the
source tree. But in some cases, you need to generate the files you intend to install. In this
case, the files should be installaed hot distriluted. A simple &y to deal with this is to add

a ‘nodist’ prefix to your xxx_DATA ariable.

For example in font/deps/derps.am, we hae a list of font files already present in the
source tree, defined by DEVPSFONTFILES, and another list of font files that are generated,
listed in the ariable DEVPSFONTFILES _GENERATED . yhshould all by installed in a
‘devps' directory under the fontdiThus the follaving three lines, where we use the ‘dist’ and
‘nodist’ prefes:

devpsfontdir = $(fontdir)/devps
dist_devpsfont_DATA = $(DEVPSFONTFILES)
nodist_devpsfont_DATA = $(DEVPSFONTFILES _GENERATED)

The generated files are not cleaned byudlefthus we add:

MOSTLYCLEANFILES += $(DEVPSFONTFILES_GENERATED)

5. Extending Automake's rules

- 10_

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

5.1. Local clean rules

In most of the cases, the files that need to be cleaned are automatically determined by
‘automale’, or were added to the MOSTCLEANFILES or CLEANFILEBables. Havever,

you might need to define a specific rule to clean some files that were not addgdist an
Automale defines a set of gets to &tend the clean tgets with your wn rules: clean-local,
mostlyclean-local, distclean-local or maintainerclean-local. Aamgple of such »dension

exists in font/depdf/devpdf.am: because some fonts are naplieitely listed in a
xxx_DATA variable lut generated by a custom rule, we define xragule to &tend the
‘mostlyclean’ taget:

mostlyclean-local: mostlyclean_devpdf extra
mostlyclean_devpdf_extra:
@echo Cleaning font/devpdf
rm -rf $(top_builddir)/font/devpdf/enc \
$(top_builddir)/font/devpdf/map;
if test -d $(top_builddir)/font/devpdf; then \
for fin $(GROFF_FONT_FILES); do \
rm -f $(top_builddir)/font/devpdf/$$f; \
done; \
fi

5.2. Local install/uninstall rules and hooks

Similarly to the clean rules, there argtemsions to install and uninstall rules. Yheome

with two flavous, local rules and hooks.

» There are 2 rules toxeend install commands: ‘instalkec-local’ for binaries and ‘install-
data-local’ for data.

* There is 1 uninstall local rule: ‘uninstall-local'.

There are noa@rantee on the order otecution of these local rules. Amample of local rule

is the installation of GXditvie.ad and GXditvier-colorad files in src/deces/xditviev/

xditview.am: if theses files are already installed, the old files are firatisaAlso, the final

file that is installed is stripped from its .adfsufThus the usage of a custom rules rather

than the definition of a xxx_DATAariable:

Custom installation of GXditview.ad and GXditview-color.ad

11

Bertrand Garrigues USING AUTOMAKE IN THE GROFF PROJECT

install-data-local: install_xditview
uninstall-local: uninstall_xditview

[...]
install_xditview: $(xditview_srcdir)/GXditview.ad
-test -d $(DESTDIR)$(appresdir) \
|| $(mkinstalldirs) $(DESTDIR)$(appresdir)
if test -f $(DESTDIR)$(appresdir)/GXditview; then \
mv $(DESTDIR)$(appresdir)/GXditview \
$(DESTDIR)$(appresdir)/GXditview.old; \
fi
[...]
$(INSTALL_DATA) $(xditview_srcdir)/GXditview.ad \
$(DESTDIR)$(appresdir)/GXditview

Hooks, on the other hand, arargnteed to bexecuted after all the standardgets hae
been gecuted.
* There are 2 install hooks: ‘instalk&c-hook' and ‘install-data-hook'.
* There is 1 uninstall hook: ‘unintall-hook’

An example of hook is the ‘uninstall_gidifrs' rule in the top-leel Makefile.am. This
hook is used to remve all the directories specific to grahtroduced by the installation
process. Olously it could not be a locakeension of ‘uninstall' because the order xé@u-
tion is not guaranteed.

directories specific to groff
uninstall-hook: uninstall_groffdirs
uninstall_groffdirs:
if test -d $(DESTDIR)$(datasubdir); then \
rm -rf $(DESTDIR)$(fontdir); \
rm -rf $(DESTDIR)$(oldfontdir); \
rmdir $(DESTDIR)$(datasubdir); \
fi
[...]

12

	Cover: Using Automake in the Groff project
	Contents
	Title Page: Using Automake in the Groff project
	Using Automake in the Groff project
	1. Overview, the initial build
	1.1. First build
	1.2. Automake in the autotools process
	1.3. Modification of autotools files

	2. Building a program
	2.1. A program and its source files
	2.2. Linking against a library
	2.3. Preprocessor flags
	2.4. Cleaning
	2.5. Dependencies
	2.6. Scripts

	3. Non-recursive make schema
	3.1. 1st possibility: make recursion
	3.2. Non-recursive make used by the Groff project

	4. Installing data
	4.1. A simple case
	4.2. Dealing with generated files

	5. Extending Automake's rules
	5.1. Local clean rules
	5.2. Local install/uninstall rules and hooks

