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Abstract 

A Fast and Compact Compiler for Modula-2 

N. Wirth 

In the past decades, languages of ever growing complexity have emerged, and with them 
compiler that are increasingly bulky, slow, and often generate code that is much less than 
optimal. One of the new languages is Modula-2. It offers many advanced features (in fact 
most of Ada's), but through its regular structure permits the design of a relatively compact 
and fast compiler. We present the structure of this compiler that is specified by less than 
5000 lines of program and recompiles itself in less than 2 minutes. It is based on 
straight-forward methods of parsing, searching, and code generation. 
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Introduction 

The first compiler for the language Modula-2 [1, 2] became operational in 1979. It had 
been developped at ETH Zurich on a PDP-11 computer with a 56K byte store and emerged 
through a succession of bootstrapping steps starting with a compiler for the much simpler, 
experimental language Modula [3]. The small size of the store required the use of a 
multipass scheme with its unavoidable overhead due to the heavy use of disk store and of 
generating and reparsing the output data of each pass. 

The compiler was thereafter ported to the Lilith computer, which then was equipped 
with a 256K byte store. At several other places work proceeded on either the design of new, 
but similarly structured compilers, or on porting the EI'H 4-pass compiler onto commercially 
widespread systems. It then appeared to me that with the emergence of increasingly 
powerful microprocessors combined with relatively large stores, most of these compilers 
would neither take advantage of the powerful hardware nor of the relative simplicity of the 
language. I decided to construct a new compiler afresh. It is the subject of this paper and 
has the following highlights: 

- The compiler is based on the single-pass strategy. As a result it is fast. The gain in speed 
compared to the previous compiler ranges from 4 to 8, depending on the compiled 
program. 

- The compiler refrains from the use of any overly sophisticated algorithm or technique 
and relies on well-known principles. It is compact, consisting of five modules with a total 
size of less than 5000 lines of source text or 30'000 bytes of object code. These figures 
are in marked contrast to those of most high-level language compilers. 

- Instead of using special routines or post-passes for code optimization, care is taken to 
generate reasonably effective code in the first place. The characteristics of speed, 
compactness, and code quality are multiplicative factors of the time required for 
recompilation, i.e. the time the compiler takes to compile itself. Recompilation time is a 
good indicator for a compiler's design quality. The new compiler requires less than 2 
minutes to recompile itself on Lilith ( comparable in power to a VAX 750). 

- Modula-2 is an engineering language; hence, the facility of separate compilation of 
modules is quintessential. The compiler must provide and use information to guarantee 
type consistency checks also across module boundaries, and it must do so without undue 
overhead. A new scheme was devised which precompiles declarations into densly coded 
symbol files [4]. 

- The partitioning of the compiler into modules was chosen such that references to the 
target computer's architecture are concentrated in a few modules. When retargeting the 
compiler, essentially a single module has to be designed afresh, whereas the other 
modules undergo minor adjustments only. 
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The single-pass strategy inherently imposes the restriction on source programs that 
objects (constants, variables, procedures, etc.) must be declared textually before they are 
referenced. This is, however, mostly just a minor inconvenience. In order to accommodate 
also the cases where the restriction is a genuine impediment, namely when procedures are 
mutually recursive, the compiler accepts a so-called forward declaration, in which a 
procedure's heading including the result type and parameters is specified. (This is analogous 
to a procedure declaration in a definition module; hence this facility is implemented by use 
of an already existing mechanism). 

The Overall Structure 

The multipass compiler's structure closely mirrors the typical tasks of a compilation 
process; each major task is accomplished by a separate program, a pass, that scans the 
preceding pass' output sequentially. All passes access a common data base, namely the 
so-called symbol table representing declared objects. This data structure remains in main 
store at all times. Fig. 1 shows that the number of files invloved is considerable, and it 
explains the high percentage of compilation time spent on reading and writing on backing 
store. Also, the effort spent on serializing information and on subsequently parsing it is not 
negligible. Error diagnostics are collected from each pass and ultimately merged with the 
source text by an additional lister pass. 

The structure of the single-pass compiler mirrors the compilation tasks by its module 
structure rather than by a sequence of execution steps (see Fig. 2). The savings gained by 
eliminating the serialization and reparsing operations are reflected by the total size of the 
compiler. The sum of the lengths of the modules is considerably less than the sum of the 
lengths of the passes. The tasks of type consistency checking and of code generation are 
merged into a single module. This is because for both operations practically the same 
information has to be either retrieved from the symbol table or computed afresh. By tying 
type checking and code generation together, repeated access can be avoided. 

The compiler refrains from generating a program listing, i.e. a copy of the source text 
with inserted line numbers and/or program counter values. This again reduces the number 
of files involved. For the benefit of the symbolic debugger, information relating positions in 
the object code to positions in the source text is inserted in the so-called reference file. This 
file primarily represents the symbol table in serialized form. It enables the debugger to 
translate the state of the computer back into the state of the computation expressed in terms 
of the source language. The positioning information enables the debugger to highlight the 
offending statement (see Figs. 3, 4). 

Further savings in compiler size and complexity were made possible by using the same 
format for symbol files (generated when compiling a definition module, read when 
compiling an importing module) and for reference files (generated when compiling a 
program module, read by the debugger). By using the same routines, the generation of 
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symbol files becomes practically for free. The technique of serializing the symbol table 
information is described in detail in [4], and the interface to the module generating and 
reading symbol and reference files is shown below. 

DEFINITION MODULE RefFiles; 
FROM DataDefs IMPORT ObjPtr; 
FROM FileSystem IMPORT File; 

VAR ModNo: CARDINAL; ( •current module number•) 
ModList: ObjPtr; ( •list of loaded modules•) 
RefFile: File; 

PROCEDURE InitRef; 
PROCEDURE InRef (VAR filename: ARRAY OF CHAR; VAR mod: ObjPtr); 

( •insert objects from named symbol file into symbol table; assign module 
object to mod•) 

PROCEDURE OpenRef; ( •create new symbol/reference file•) 
PROCEDURE CloseRef(adr: INTEGER; pno: CARDINAL); 

PROCEDURE OutUnit(unit: ObjPtr); 
( •output local objects of unit, i.e. module or procedure•) 

PROCEDURE OutPos(sourcepos, pc: CARDINAL); 
END RefFiles. 

The Parser 

The parser acts as the main program from which routines residing in other modules are 
called when a certain language construct has been recognized. The parsing scheme 
employed here is the straight-forward technique of top-down analysis using recursive 
procedures (recursive descent). This scheme, although less powerful than more modem and 
more sophisticated bottom-up strategies, is applicable thanks to the simple and systematic 
LL(l) syntax of Modula-2. A primary advantage is that the entire parsing process and its 
interaction with code generation is explicitly visible in the source text; no use is made of 
encoded information precompiled by a parser generator. 

The scanner forms a separate module. It reads a sequence of characters and yields a 
sequence ofModula-2 symbols, i.e. of identifiers, numbers, and special symbols. It converts 
numbers into the target computer's binary representation, and to this small degree is 
machine dependent. It also maintains a table of strings representing identifiers which, in all 
other parts of the compiler, appear as indices to this table. The scanner also distinguishes 
between identifiers and keywords (such as IF, END) by looking up each encountered 
potential identifier in a keyword table. This is necessary because keywords are not lexically 
distinguishable from identifiers. The scanner interface is the following: 

DEFINITION MODULE Scanner; 

FROM FileSystem IMPORT File; 

CONST ldBufLeng = 8000; 



TYPE Symbol = (null, 
times, slash, div, rem, mod, and, 
plus, minus, or, 
eql, neq, lss, leq, gtr, geq, in, 
arrow, period, comma, colon, ellipsis, rparen, rbrak, rbrace, 
of, then, do, to, by, 
lparen, lbrak, lbrace, not, becomes, number, string, ident, 
semicolon, bar, end, else, elsif, until, 
if, while, repeat, loop, with, exit, return, case, for, 
array, pointer, record, set, 
begin, code, const, type, var, forward, procedure, module, 
definition, implementation, export, qualified, from, import, eof); 

( •sym, id, numtyp, intval, dbl val, real val are implicit results of GetSym•) 
VAR sym: Symbol; 

numtyp: CARDINAL; •valid ifsym = number•) 
id: CARDINAL; !*Valid if sym = ident•) 

intval: CARDINAL; •valid if sym = number and numtyp = l•) 
dblval: LONGINT; •valid if sym = number and numtyp = 2•) 
real val: REAL: •valid if sym = number and numtyp = 4•) 
scanerr: BOOLEAN; 
source: File; 
IdBuf: ARRAY [O •• IdBufLeng-1] OF CHAR; ( •identifier ,buffer•) 

PROCEDURE InitScanner; 
PROCEDURE Diff(i, j: CARDINAL): INTEGER; 

( •alphabetic order ofldBuf[i] and IdBufli]*) 
PROCEDURE Enter(id: ARRAY OF CHAR): CARDINAL; 
PROCEDURE Keepld; ( •called from declarations*) 
PROCEDURE GetSym; 
PROCEDUREMark(n: CARDINAL); (•mark error position•) 
PROCEDURE CloseScanner; 

END Scanner. 

The Symbol Table Generator 
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The symbol table is the data structure obtained from processing declarations. It thus 
reflects the context-sensitive aspects of the language. A good symbol table organization 
does not only use storage economically, but makes frequently needed information quickly 
accessible. In this compiler, the data are contained in a linked structure with essentially 
three types of nodes (records). The primary type is called Object and represents a declared, 
named object In view of the requirement of fast retrieval, objects are inserted in ordered 
binary trees with the object's identifier as key. Each open scope is represented by its own 
tree. The roots are headers linked together in the sequence of their opening. Any search 
proceeds top-down through this link and through the individual trees. Fig. 5 displays the 
data structure after processing the following declarations: 

MODULE Main; 
VAR i, s: INTEGER; f, g: REAL; 

a, t: ARRAY [O .. 99] OF REAL; 
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PROCEDURE p(x, y: REAL): 
VAR k: CARDINAL; ... 

The nodes of the data structure are variant records. The tag field class discriminates 
between constants, variables, types, procedures, etc. Common to all variants is, apart from 
the name, the object's type. This reflects the premise of a strongly-typed language that all 
objects be of a certain type which embodies the object's invariant characteristics. Another 
common property is whether an object is imported or exported (field impexp). Imports are 
achieved by inserting a copy of the imported object record in the importing scope. An export 
from an inner, nested scope is considered as an import in the outer scope. The following 
type declarations specify the record structure in detail. 

ObjClass = 

ObjPtr = 
StrPtr = 
ParPtr = 
PDPtr = 

Object= 
RECORD 

(Header, Const, Typ, Var, Field, Proc, Module): 

POINTER TO Object; 
POINTER TO Structure; 
POINTER TO Parameter; 
POINTER TO PDesc; 

name: CARDINAL: (•index to name buffer•) 
typ: StrPtr; 
left, right: ObjPtr; 
impexp: BITSET; 
CASE class: Obj Class OF 
Header: kind: Obj Class; ( •Proc, Module or Typ•) 

Const: 
Typ: 
Var: 

Field: 
Proc: 

heap: ObjPtr I 
conval: ConstValue: nextConst: ObjPtr I 
mod: ObJPtr I 
varpar: BOOLEAN; 
vmod, vlev: CARDINAL; vadr: INTEGER I 
offset: INTEGER I 
pd: PDPtr; 
firstParam: ParPtr; 
flrstLocal: ObjPtr; 
pmod: CARDINAL I 

Module: key: KeyPtr; 
flrstObj: ObjPtr; 
modno: CARDINAL 

END 
END; 

PDesc = RECORD ( •Object extension for procedures•) 
num, lev: CARDINAL; adr, size: INTEGER 

END 
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The type of an object is represented by a record type called Structure, which again appears in 
several variants. The discriminator is a field called form which distinguished between 
standard, enumeration, array, record, set, and other types. Common to all forms is the 
attribute size indicating the amount of storage needed for variables of this type. 

StrForm = (Undef, Bool, Char, Card, Int, Double, Real, String, 
Enum, Range, Pointer, Set, Array, Record, ProcTyp, Opaque); 

Structure= 
RECORD 

strobj: ObjPtr; ( •object (type) naming structure•) 
size: INTEGER; 
CASE form: StrForm OF 
Undef, Bool, Char, Int, Card, Double, Real, String: I 
Enum: firstConst: ObjPtr; NofConst: CARDINAL I 
Range: RBaseTyp: StrPtr; 

min, max: INTEGER I 
Pointer: PBaseTyp: StrPtr I 
Set: 
Array: 

SBaseTyp: StrPtr I 
ElemTyp, IndexTyp: StrPtr; 
dyn: BOOLEAN I 

Record: firstFld: ObjPtr I 
ProcTyp: firstPar: ParPtr; 

resTyp: StrPtr I 
Opaque: 

END 
El'-l"D 

As types can be nested (e.g. an array type specifies an index and an element type, and a 
record type specifies the types of its fields), the resulting data structure is usually recursive. 
The data structures resulting from the following simple declarations are shown in Figs. 6 
and 7. 

Example 1: 

CONST N = 100; 
VAR i, j: CARDINAL; 

lt, V: ARRAY [O •• N-1] OF CARDINAL 

Example 2: 

TYPE Color = (red, blue, green); 
TreePtr = POINTER TO TreeNode; 
TreeNode = RECORD key: INTEGER; kind: Color; 

left, right: TreePtr 
END 



8 

The third type of node that occurs in the symbol table besides objects and structures 
represents parameters. Procedure parameters actually play a double role, and this 
circumstance is mirrored by their double representation. On the one hand, parameter 
specifications must be accessible when compiling a procedure call. Here the parameters' 
sequence and their types are relevant, and this information belongs, strictly speaking, to the 
type specification of the called procedure. On the other hand, the formal parameter 
specifications must be accessible when compiling the procedure body. Here the parameters' 
names, types, and addresses are relevant. Parameters assume the same role as local 
variables, and the fact that their names are to be searched suggests that they be included in 
the search tree as local objects. Hence, parameters are indeed represented twice, once as 
records of type Object, once as records of type Parameter. (The field name is used 
temporarily only when processing the formal parameter list; the formal parameter names 
are irrelevant when compiling procedure calls). 

Parameter = RECORD name: CARDINAL; varpar: BOOLEAN; 
typ: StrPtr; next: ParPtr 

END: 

The structure resulting from the following example is shown in Fig. 8. 

Example 3: 

PROCEDUREP(k: INTEGER; VAR m: INTEGER); 
VAR i, j: INTEGER; 

BEGIN ... 
ENDP 

Elements of the data structure are allocated dynamically. This, however, does not imply 
that an automatic storage allocator is necessary, nor even that it would be advantageous. The 
fact that scopes associated with procedures are properly nested suggests the sequential 
allocation of records in an area operated as a stack. Upon closing a procedure's scope the 
allocation point is simply reset to its position when the scope was opened (ResetHeap ). 
Notably, this does not apply to scopes associated with modules or records, because their 
local objects must be accessible also after the declaration was processed, either through 
qualified identifiers or record selectors. 

An additional benefit of the double representation of procedure parameters now 
becomes apparent: their representation as local objects is discarded when the procedure 
body has been completed, whereas the Parameter records remain allocated and attached to 
the procedure object. This implies that the latter are generated before opening the local 
scope. 

This simple scheme of resetting an allocation pointer (the same is done for the identifier 
buffer) provides an economical and efficient solution to storage management and contrasts 
favourably with systems relying heavily on so-called garbage collection. Scavenging is 
indeed superfluous, if one takes care not to produce garbage in the first place. The 



definition part of the module which constructs the symbol table is listed below. 

DEFINITION MODULE TableHandler; 
FROM DataDefs IMPORT ObjPtr, ObjClass, StrPtr, StrForm, ParPtr, PDPtr; 

VAR topScope, Scope: ObjPtr; (•header of scope located by Find•) 

PROCEDURE FindlnScope(id: CARDINAL; root: ObjPtr): ObjPtr; 
PROCEDURE Find(id: CARDINAL): ObjPtr; 

PROCEDURE NewObj(id: CARDINAL; class: ObjClass): ObjPtr; 
PROCEDURENewStr(form: StrForm): StrPtr; 
PROCEDURE NewPar(ident: CARDINAL; isvar: BOOLEAN; last: ParPtr): ParPtr; 
PROCEDURE Newlmp(scope, obj: ObjPtr); 

PROCEDURE NewScope(kind: ObjClass); 
P~OCEDURE CloseScope; 

PROCEDURE CheckUDP(obj, node: ObjPtr); 
( •check for pointer types that are still undefined at end of declaration part•) 

PROCEDURE MarkHeap; 
PROCEDURE ReleaseHeap; 
PROCEDURE InitTableHandler; 

END TableHandler. 

Code Generation . 
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The quality of generated code is a crucial characteristic of a compiler. If the architecture 
of the target computer is suitably designed, generating good code should be relatively 
straightforward. But unfortunately the widely used processors have their shortcomings in 
this respect. A compiler designer must therefore compromise between code quality and 
compiler simplicity. The simpler the compiler, the faster it can be expected to be loaded and 
to execute and, of course, the smaller is the effort needed for its construction. The more 
complex the compiler, the better should be the quality of generated code and therefore the 
speed of execution. A characteristic figure for benchmarking compilers is the time T sc 
needed for self-compilation, because in a rough approximation it reflects the product of 
compiler complexity (size) and efficiency (density) of generated code, and therefore is 
independent on the point of compromise the designer chose regarding compilation versus 
execution speed. 

For the present compile:r:, we chose a reasonably simple and systematic strategy which 
permits to generate good, although not optimal code without the need for specific 
optimization passes. No effort is made towards code improvements that might as well be 
obtained by improving the source program. The employed code generation scheme is well 
known and explained as follows: 

Each syntactic rule denotes a language construct; its meaning is defined by an associated 
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evaluation rule. In a purely context-free language the result (i.e. the meaning of the 
construct) depends on the values of the constituents (of the right part) only. In declarative 
programming languages, their restricted context sensitivity is represented by the symbol 
table that was generated when processing declarations, and which therefore must be 
inspected when referencing declared objects. If we disregard, for the sake of clarity, this 
restricted and well understood dependence on context, we may postulate that every syntactic 
rule of the form 

P1: So +- S1 S2 ... Sn 

is accompanied by an evaluation function F1 of the form 

and a code sequence 

A(S) denotes a set of attributes associated with the symbol S. For example, the attributes of 
a constant are its type and its value, and the attributes of a variable are its type and its 
storage address. The attributes are defined by a type called Item with a variant discriminator 
called mode. 

TYPE ItemMode = 
(conMd, typMd, varMd, fldMd, procMd, stkMd, adrMd, inxMd); 

TYPEitem = 
RECORD typ: StrPtr; 
CASE mode: ItemMode OF 
conMd: val: ConstValue I 
typMd: I 
varMd: adr: INTEGER; level: CARDINAL I 
fldMd: offset: INTEGER I 
procMd: proc: ObjPtr I 
stkMd, adrMd, inxMd: 
END 

END 

This systematic and quite general scheme of code generation, intimately coupled with the 
syntactic analysis, was described in [5]. It has been adopted here with the difference that the 
functions F and the code sequences Qare distributed as program statements throughout the 
recursive descent procedures representing syntax analysis. Recursive descent parsing 
appears as particularly convenient in this connection: the resulting attribute A(So) is 
represented as parameter of the corresponding parsing procedure. This is shown by the 
following simplified example for expressions. 

expression = term { add op term}. 



11 

The corresponding function Fis embodied by statements computing the attribute values 
of the result x, and the corresponding Q is embodied by the procedures load and GenOp 
which append elements to the generated code sequence. If both operands happen to be 
constants, the compiler computes their sum (first insuring that no arithmetic overflow will 
occur); otherwise code is issued to load the operands (onto a stack or into registers) followed 
by the addition operator. Evidently, this scheme easily allows to evaluate constant 
expressions at compile time, to represent multiplications and divisions by powers of 2 by 
shift operations, and similar code optimizations. 

PROCEDURE expression(V AR x: Item); 
VARy: Item; 

BEGIN term(x); 
WHILE sym = addop DO 

GetNextSym; term(y); 
IF (x.mode = conMd) & (y.mode = conMd) THEN 

x.val: = x.val + y.val 
ELSE 

load(x); load(y); GenOp(addop) 
END 

END 
END expression 

The construction of an explicit tree structure representing the parsed part of the text is 
carefully avoided. This contrasts with most modem and more sophisticated techniques of 
compilation which crucially depend on the presence of such a tree for finding matches of 
applicable code sequences and for selecting the best candidate [6]. The careful avoidance of 
matching techniques is one reason for the compactness and speed of this compiler. 
Adherence to a systematic underlying principle is as important for code generation as it is 
for syntax analysis. Even so, code generation is a field where details and particulars 
dominate. They are dictated by the architecture of the target architecture, and hence shall 
not be discussed here. 

Compilers are inherently non-portable programs, because at least the code generators are 
genuinely machine-specific. A special effort has therefore been undertaken to separate the 
parts which depend on the language rather than the target (scanner, parser, table generator) 
from those parts that reflect the machine architecture (code generator). The module 
structure of Modula has been an indispensible asset in this respect. Nevertheless, we have 
chosen not to be dogmatic about a totally clean separation. If the compiler is retargeted, 
most modules undergo at least a very slight adaptation (e.g. change of constants), whereas 
only the code generator is mostly, but not totally redesigned. The compactness of the 
compiler is a most welcome benefit in such a project. 



12 

Conclusions 

The author believes that a compiler should be a reasonably compact and fast system, and 
that a programming language should be designed to make such compilers feasible. The 
compiler described here proved that this postulate is realistic and that there is no 
justification for tolerating bulky and slow compilers. The consequences of having a fast 
compiler available are considerable: 

- The need for so-called incremental compilation vanishes. This is fortunate, because 
incremental compilers for structured, strongly typed languages are particularly 
complicated. It appears that the module is an appropriate unit for separate {Incremental) 
compilation. 

- It becomes much easier to retarget a compiler and to custom-tailor it to a machine's 
architecture, if the compiler is compact and fast. 

- Any program, and a compiler in particular, must be trustworthy. The absence of errors 
can be achieved only if the designer has a full and clear understanding of the entire 
program and of the invariants governing the individual parts. The bulkier a program, the 
smaller Is the chance for total comprehension. 

This latter point is beyond doubt the most essential, and it should be a constant reminder 
to avoid unnecessary complexity and sophistication. The limits of programmed systems 
used to be set by the computers' memory size and processing speed. This is no longer so; 
now the limits are determined by the intellectual limitations of the human designer. 

This project demonstrates that a compact, efficient, and intellectually manageable 
compiler is possible even for a language as advanced as Modula-2, and that it can be 
constructed with very limited manpower. We issue the performance figures of this compiler 
as a benchmark for future compilers for Modula and other high-level languages, and also as 
a challenge for their designers and promoters. 
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IVITH strt DO 
CASE form OF 

Range : IF RBaseTypt .ref • 0 THEN OutExt(RBaseTyp) END 
I Set : IF SBaseTypt ,ref • 0 THEN OutExt(SBaseTyp) END 
I ProcTyp : par :• firstPar; 

WHILE par I NIL DO 
IF par't,typt,ref • 0 THEN OutExt(part,typ) END; 
par :• par't,next 

END; 
IF (resTyp I notyp) & (resTypt.ref • 0) THEN OutExt(resTyp) END 

I Array : IF ElemTypt. ref • 0 THEN OutExt(ElemTyp) END; 
IF NOT dyn THEN OutExt(IndexTyp) END 

I Record : il!llll!lludDil!II 
I Enum, Pointer, Opaque : 
END; 
IF (strobj I NIL) & (strobjt ,modt .modno I 0) THEN 

IF ref • 0 THEN OutStr(str) END; 
'it'rite\ilord(RefFi le, OBJ+type); 
\ilrite'ford(RefFi le, ref); 'it'riteWord(RefFile, strobj t .modt .modno); 
'it'riteid(strobj t .name); 
IF form • Enum THEN obj :• firstConst; 

'+1-!ILE obj I NIL DO 
'it'ri teWord(RefF il e, OBJ+const); 
'it'rite'llord(RefFile, ref); 

1!.11 ... ,. 
[ OutExt in M3RN [ OutExt. strt 

Out□bj in M3RN Type • Structure (RECORD) 
OutDbjs in M3RN strobj . CA94 ObjPtr 
OutUnit in M3RN size 1 INTEGER 
ProcedureDeclar in M3PN ref 0 CARDINAL 
Block in M3PN form Undef StrForm, 
Comp 11 at ion Un it in M3PN fi rstConst NIL ObjPtr 
Initialization of M3PN NofConst 65535 CARDINAL 
Procedure 39 in Program RBaseTyp NIL StrPtr 

min -1 INTEGER 
max 16384 INTEGER 
BndAdr 6 INTEGER 

] PBaseTyp NIL StrPtr 
u,o, I. 

21 Processes 84B2 [ M3RN 
22 DefaultFont BF78 Type • MODULE 
23 KeyboardDriver 9B14 ModNo 1 CARDINAL 
24 M3PN 1FB64 Modlist . CB09 ObjPtr 
25 M3DN 1FB1C RefFile . 34 Fi le 
26 M2S 1D9AC CurStr 32 CARDINAL 
27 M3TN 1D8B0 f . 34 Fi le 
28 M3RN 1DB4E err (undef) BOOLEAN 
29 M3CN 199BE FldTree . CB97 ObjPtr 
30 M3EN 1993B Tmplist . CBA6 ObjPtr 
31 M3HN 1990A Lastlmp . CBA6 ObjPtr 
32 Text\ilindows 196EB LastMod . CB09 ObjPtr 

] 33 Windows 19630 Parlist . CBA2 ParPtr 

Fig. 3. Debug output: range error in case 



[ 

] .. 

] 

IF sym • forward THEN 
EL~~tSym; proct.pdt.extern :- TRUE; INC(nofextproc) 

proct.pdt.adr :• pc; GenEnter(Ll); par :- proct.firstParam; 
't'HILE par I NIL DO 

IF (part.typt.form • Array) & part.typt.dyn & -part.varpar THEN 
ENgo~yDynArray(part .name, part, typt .ElemTypt .si z.e) 

par :- part.next 
END ; 
GenSFJ(L0); adr :• 0; Block(proc, FALSE, adr, L0); 
IF proc,. typ • notyp THEN GenReturn(proc) ELSE GenTrap(2) ENO ; 
Fixup'lt'ith(Ll, -adr), Wliilii:lill:ij 

END ; 
DEC(curLev); CloseScope; Rel easeHeap 

ELSIF sym • code THEN 
GetSym; DEC(pno); 
IF (sym • nunber) & (intval >- 32) & (intval <• 255) & 

(proc-t. typ • notyp) THEN 
proct.class :• Code; (•I I•) proct.cnun :• intval 

ELSE err( 43) 
END ; 
GetSym 

END .. I. 

OutExt in M3RN [ ProcedureDec 1 a ration 
OutObj in M3RN Type • PROCEDURE 
OutObjs in M3RN proc . 
OutUnit in M3RN i 

:~~~~dureDeclar j~ :~~~ , l0 
L1 

CompilationUnit in M3PN adr 
In1tia11z.ation of M3PN res . 
Procedure 39 in Program par 

] 

I. 

21 Processes 8482 [ M3TN. topScopet 
22 Defaul tFont 8F78 Type • Object (RECORD) 
23 KeyboardDri ver 9814 name 
24 M3PN 1F864 typ 
25 M3DN 1FB1C left . 
26 M2S 109AC right . 
27 M3TN 10880 impexp 

C7EA ObjPtr 
2024 CARDINAL 

19 CARDINAL 
16 CARDINAL 
0 INTEGER 

ECD6 ObjPtr 
NIL ParPtr 

B CARDINAL 
NIL StrPtr 

CBBC ObjPtr 
C7C6 ObjPtr 
5479 8ITSET 

2B M3RN 1084E class Header ObjClass 
29 M3CN 199BE kind Pree ObjClass 
30 M3EN 19938 heap . 650F ObjPtr 
31 M3HN 1990A conva 1 . B ConstValue 
32 Text'lt'indows 196EB nextConst NIL ObjPtr 
33 Windows 19630 mod . 0005 DbjPtr 

Fig. 4. Debug output: call of OutUnit 
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Compilation of Data Structures: 
An New Approach to Efficient Modula-2 Symbol Files 

J. Gutknecht 
Institut filr Informatik, EfH Ziirich 

Abstract 
Modular programming languages have introduced a new class of compilation units. In 

Modula-2. they are called definition modules. A definition module may specify the interface 
to a logically connected program part or it may define a global data structure. In most cases, 
it serves both purposes simultaneously. 

The product of compilation of a definition module is a sequential file, the so-called 
symbol file. It consistently describes all data objects and their structures that are defined or 
referenced by the module. 

Hereafter, we shall present a general method to map a module's data structure onto a 
linear file and we shall apply it to the creation of genuine and generalized symbol files. 
Generalized symbol files serve as a basis for a program debugger that enables a programmer 
to debug Modula-2 programs on an appropriate abstraction level. 

This method has been worked out in the course of a recent project with the goal of a fast 
Modula-2 one pass compiler family [6]. In contrast to previous approaches that can be 
characterized as being based on a reconstructing parse process, our method emphasizes the 
data objects themselves as elementary units. Thus, it leads to particularly efficient symbol 
files both in terms of processing speed and oflength. 
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Introduction 

In computer science, the notion of compilation is conventionally associated with the 
translation of a sequence P of program statements, being formulated in a certain 
programming language, into elementary machine instruction codes c(P). However, the 
development of programming languages, in particular their metamorphosis from pure 
programming notations to systems engineering tools has implied a generalized conception of 
compilation. 

In fact, modem and modular programming languages [l, 2, 3, 4) have introduced a new 
class of compilation units. In the case ofModula-2 [3), they are called def[nition modules. They 
can appear In two logically different basic forms or in any combination thereof. 

A definition module of the first kind merely defines the interface to a certain program 
part. More precisely, it specifies a program part from a functional, but static point of view. 
Each procedure is represented by its heading, i.e. by its name and formal parameter list. The 
actual algorithms required to meet the specifications and the appropriate local data structure 
are elaborated in the corresponding implementation module. 

The second form of appearance of definition modules can be summarized as declaration 
of global data structures. No specific implementation module is assigned to a definition 
module of this type (Actually, the corresponding implementation module is empty). 

The significance of definition modules is tightly connected with the import mechanism 
Modules of any kind can import objects which are declared within a definition module. We 
shall say that the latter exports these objects. 

Let M be a compilation unit that imports objects from a definition module D. Then, at 
the time of compilation of M, D must be available to the compiler in a suitable form s(D) 
that is called the symbolflle ofD. Obviously, we can regard the translation from D to s(D) as 
a compilation of D. 

We shall now work out three basic requirements on symbol files. Let N be a further 
module that belongs to the same program and that also Imports from D. Then, it must be 
guaranteed that the compilations of M and N, although done at different times, refer to the 
same version of D. Hence our first requirement: s(D) must include a key that uniquely 
characterizes a particular version ofD. 

Second, the processing of imports from D during the compilations ofM and N should be 
as efficient as possible. This requirement is of particular importance, if D itself imports 
objects from further definition modules. In fact, s(D) should subsume all information about 
objects that are defined in D or are directly or indirectly imported by D. 

Consider, for example, the collection of modules as presented in Appendix Bl. This 
example illustrates our explanations and underlies all figures of the current text. Fig. la 
shows the corresponding module constellation. Its compilation leads to the symbol file 
configuration as displayed in Fig. lb. Notice that all resulting symbol files are autonomous 
and on the same "level". Thus, the compilation has levelled off the modular hierarchy. 
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Further notice that the symbol file of F is not explicitly involved in the compilation of 
implementation module M. 

Let us resume the analogy of the translations from P to c(P) and from D to s(D). Of 
course, both translations must keep semantics invariant. However, while the final product 
c(P) usually depends on the compiler and on a specific machine, such dependencies are not 
desired with s(D). In fact, in modem programming systems, symbol files normall constitute 
the interface to the operating system. 

As a consequence, and this is our third requirement, the data contained on a symbol file 
for each object should describe exactly the intrinsic properties of the object. 

In the following sections we shall introduce a symbol file format and its implementation 
that complies with our requirements. It is strictly data object oriented. Although the very idea 
of compilation suggests techniques that represent the relevant data entities in a 
systematically and efficiently coded form, this aspect has been neglected in previous 
approaches. 

As a matter of fact, most of the earlier methods can be characterized as being based on a 
syntax driven reconstruction process. In most cases, the syntax is a compressed form of the 
original language syntax (for example [5]). These techniques necessitate reconstructing of 
suitable logical data units by a parse process and are therefore not only in contradiction with 
our second requirement, but lead also to unnecessary large symbol files. Compared to [5], 
our compiler generates symbol files that are in average 30 % shorter. Notice that doing 
without compilation of definition modules at all (for example [l]) can be viewed as an 
extreme variant of this method. 

Abstracting from the specific context in which our method is applied, we can regard it as 
a method to compile a data structure into a sequential file. As such, it may obviously serve 
different purposes. A particularly attractive application concerns program debugging. 

It is a legitimate request that a program P can be debugged on the same level of 
abstraction as it had previously been created. This request implies that the debugger has 
access to the data structure of P. An elegant solution is to create a generalized symbol file S(P) 
at the compilation of P's implementation. 

The specifications for generalized symbol files essentially coincide with those for genuine 
symbol files. Therefore, we can in fact use the same technique for their creation. However, 
an important novel aspect is the hierarchy of nested procedures and submodules that is 
typical for implementation modules. 

Section 1. Structure of Symbol Files 

In its most general form, a definition module specifies a data structure and a collection of 
operations. More precisely, it defines a set of objects together with their structures. There 
exist five kinds of Modula-2 objects: types, constants. variables, procedures and modules. 
The classification of structures is much more difficult. In fact, there is an infinite number of 
essentially different structures. However, each of them is constructed according to universal 
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rules. A structure is either elementary or based on further structures. 

The class of elementary structures comprises all standard structures, for example 
BOOLEAN, CHAR, INTEGER, WORD, ADDRESS, BITSET, PROC, but also 
enumerations. On the other hand, subranges, pointers, sets, arrays, procedure-types and 
records are non-elementary structures. The two last-named are compound structures. Their 
components are parameters and fields respectively. 

Objects and structures are recorded on the symbol file in the form of blocks. Roughly 
speaking, each object, component and structural unit is. described by one block. A so-called 
reference number is assigned to every structural unit. This is the ordinal number of the 
structural unit within the sequence of all structures on the symbol file. Standard structures 
are implicitly connected with the first few numbers. They need not be recorded on the 
symbol file. Both objects and structural units can refer to further structural units by their 
reference number. 

We have previously postulated that a symbol file should be self-consistent, i.e. it should 
include the complete description of all objects that are imported from other definition 
modules. Thus, in general, objects on a symbol file stem from different modules. 

Each involved module is represented by its module anchor. This is a block containing the 
module's name and a key. The key specifies a particular version of the module. A sequence 
number is assigned to each module anchor. Object-blocks, typically type-blocks, point to a 
specific module via this number. 

A file-type word initiates the symbol file and a tag-block terminates the list of described 
objects. The tag-block characterizes the list as describing the objects of a main module. Thus, 
for the time being, we get the following syntactical structure: 

SymFile = FileType MainSection. 
MainSection = ObjListMainTag. 
ObjList = {ModAnchor I Structure I Component I Object}. 

Genuine symbol files give a concise and self-consistent description of the corresponding 
definition modules. Their counterparts are generalized symbol files. They describe the 
data-structures of implementation modules. While the existence of genuine symbol files is of 
paramount importance for separate compilation, generalized symbol files are indispensable 
as a base for program debugging on an appropriate abstraction level. 

With generalized symbol files, a new complication arises: the concept of nested scopes. In 
fact, an implementation module typically appears as a hierarchy of nested submodules and 
procedures. Accordingly, a generalized symbol file consists normally of different sections, 
where each section describes one modular or procedural unit: 

SymFile = FileType {Section} MainSection. 
Section = ObjList (ModTag I ProcTag). 
MainSection = ObjList Main Tag. 

Each ModTag contains the identification number of the respective submodule and each 
ProcTag contains a procedure number. Notice that the above syntax indicates that the set of 
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sections is arranged on the generalized symbol file as a linear sequence. As a matter of fact, 
the compilation process itself implicitely linearizes the nested structure (see Section 3). 

The previous genuine symbol files appearing as a special case of generalized symbol files, 
we shall henceforth leave out the qualification, if a statement applies to both kinds. 

Let us now look more closely at the objects, components and structures recorded on 
symbol flies: 

Structure = Enum I Range I Pointer I Set I ProcTyp I FuncTyp I Array I DynArray I 
Record I Opaque. 

Component = ParRef I Par I Field. 
Object = VarRef I Var I Constant I String I Type I Procedure I Function I Module I 
Code. 

The object-:kind VarRef needs further explication. We notice that formal parameters play 
a kind of double role. On the one hand, they serve to specify a procedure's structure and on 
the other hand they represent variables. Consistently, each formal parameter appears twice 
on the generalized symbol file: as a variable in the connected scope and as a component of a 
procedure (structure). 

A Var variable and a Par component are created in the case of a value-parameter, a 
VarRef variable and a ParRef component in the case of a var-parameter. 

Section 2. Loading Symbol Files 

In the previous section we discussed the structure of symbol files from a purely 
syntactical point of view. Now, we shall formulate additional postulates that govern the 

. sequence of blocks on the symbol file and thus guarantee a simple and efficient processing 
of existing symbol files both in terms of time and of memory space. 

As we have seen, genuine symbol files are processed by the compiler and generalized 
symbol files by the debugger. Although the methods used by the two programs to process 
symbol files are conceptually similar, we shall subsequently concentrate on the compiler, i.e. 
on genuine symbol files. 

The symbol file loader is activated by the main part of the compiler whenever an import 
statement demands loading of a symbol file. Its global data base is a module list (see Fig. 2), 
i.e. a dynamic phain of module descriptor records. Each time a module anchor is read from a 
symbol file, the module list is searched for that module. If no appropriate entry is present, 
the symbol file loader extends the module list by the new module and assigns a module 
number (the next in natural order) to it. Otherwise, it compares the old key with that of the 
anchor. Disagreement of the two keys signals a version mismatch. 

Each module descriptor is connected with an object tree [6], i.e. a dynamic and 
alphabetically ordered binary tree structure of object descriptors. Upon reading an object 
block, the symbol file loader creates an object descriptor record and links it to the 
appropriate tree. Analogously, it creates a structure record for each structure block. 
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These records become constituents of the compiler's symbol table. F.stabllshing correct 
linkages between the various descriptor records is a crucial activity of the symbol file loader. 
We shall introduce the following postulates to simplify this task. 

Postulate 1. If an object refers to a module-anchor, the descripton of the anchor preceeds 
the descripton of the object. 

Postulate 2. If an object, a component or a structural unit refers to a further structural 
unit, the descripton of the latter preceeds the descripton of the former. 

Postulate 3. Compound structures are represented by the sequence of their components, 
followed by the object descriptor or structure descriptor. 

Postulate 4. If a structure is defined by a type-object, the descriptor of this object 
immediately follows the description of the structure. 

As a further simplification we decide that symbol files are always loaded as a whole. 
Hence, although an import statement may refer to objects selectively, the symbol file loader 
loads the complete set of objects (and structures) that are stored on the appropriate symbol 
file. 

However, the symbol file loader should avoid multiple loading of an object or structure. 
In fact, remember that operating system modules typically export large record types that are 
imported by several modules of a specific program. Multiple loading of such structures 
would imply a substantial waste of memory space and worse, if not detected, could lead to 
incorrect incompatibilities at type checking. 

Therefore, if an object is read from a symbol file that is already present in the symbol 
table, the symbol file loader releases the memory space used by the new instance and its 
structure description. Each object and structure is represented by its very first loaded 
instance that we shall call primary instance. 

As an example, assume that in the scenario of Fig. 1 the implementation module of Mis 
being compiled and that its own symbol file s(M) has already been loaded. Then, if an 
"import from D" statement demands loading of s(D), the symbol file loader detects that 
object Dl is already present in the symbol table and thus avoids allocating memory for the 
same object and its structure a second time. 

To facilitate memory management, we shall formulate an additional postulate: 

Postulate 5. The stream of a structure description must not be broken by the description 
of a different structure or of an object 

Considering that space for object descriptors and structure records is continuously 
allocated in a heap, it is obvious that this postulate guarantees for· correctness of the 
foUowing surprisingly simple algorithm: if an object (and its structure) is to be kept, update 
the heap pointer to the current top, otherwise leave it in its previous state, i.e. pointing to 
the previous object 

We can now describe the symbol file loader in more detail. Two tables constitute the 
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main part of its local data structure: a module table and a structure table (see Fig. 2). They are 
indexed by reference numbers and serve as translation tables from reference numbers to 
descriptor records. 

The symbol file loader processes symbol files sequentially. It maps each block into a 
descriptor record. In the case of a module anchor or a structure block the loader connects 
this block's reference number with its descriptor record by initializing the corresponding 
pointer entry in the translation table. Remember that successive structure blocks (and 
module blocks respectively) correspond to successive translation table entries. 

If a structure, component or object refers to a module or to a further structure via a 
reference number, Postulates 1 and 2 assert that the referenced item has previously been 
loaded. Hence, the appropriate linkage in the symbol table can be established via the 
corresponding translation table entry. 

Suppose now that the symbol file loader processes a type-object that has already been 
loaded with an earlier symbol file. Then, as we mentioned above, the new instance will be 
discarded. However, it is connected with a structure that might be referenced later. In 
concordance with the type compatibility specifications, the corresponding entry in the 
translation table is initialized to point to the structure descriptor of the very first loaded 
instance of this type. Notice that Postulate 4 asserts that no references to the structure of the 
second instance can be made before detecting the double-existence of the structure. 

For each sequence of component blocks, the symbol file loader builds up an appropriate 
data structure. On their occurrence, components are inserted into a parameter chain (in the 
case of procedure parameters) or into a field tree (in the case of record fields). This 
component data structure is getting coupled with the actual object or structure as soon as the 
associated block is encountered on the symbol file. Postulate 3 guarantees correctness of this 
method. 

To summarize this section, we may say that compiling the import list of a compilation 
unit amounts on loading all involved symbol files and thus creating the external part of the 
symbol table. Two translation tables are used to map reference numbers into record 
pointers, one for modules and one for structures. Entries in these tables always point to the 
primary instance of the corresponding item. 

Sequence-postulates were introduced that make the loading process as simple and 
efficient as possible. Obviously, these are postulates on the symbol file generator. 

Section 3. Generating Symbol Files 

As we have seen, a genuine or a generalized symbol file is generated at each compilation. 
In opposition to Section 2, we shall deal in this Section mainly with generalized s"mbol files. 

Having processed all import lists of a compilation unit, the roam part of • ,e compiler 
makes an initial call to the symbol file generator. Its first action is opening the symbol file 
and generating an anchor block for each module in the global module list (see Fig. 2). Thus, 
Postulate 1 is satisfied. 
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Whenever the main part of the compiler has compiled a modular or a procedural unit, it 
subsequently calls the symbol file generator to generate a section describing the data 
structure of that unit. It follows that all sections of inner procedures preceed (in the 
sequence of their declarations) the section of an outer procedure. Notice that each 
submodule and procedure appears twice on the symbol file: first as a unit and second as an 
object of an outer unit. See Appendix B3 as an example. 

The generating of a unit-section is controlled by the appropriate object tree in the 
compiler's symbol table. The symbol file generator works off this tree, object by object. 
According to Postulate 2, it completes the description of an object's structure before it 
generates the actual object descriptor. 

Upon completing a structure's description, the symbol file generator assigns a reference 
number to the structure (the next one in natural order) and stores this number in the symbol 
table record associated with the structure. When the same structure is later referenced again, 
the reference number entry indicates that this structure has already been handled, i.e. 
written to the symbol file. 

Suppose now that a structure is introduced via a type. Then, to satisfy Postulate 4, it must 
be guaranteed that the corresponding type-object is the first within the set of objects 
referring to that structure. Therefore, the symbol file generator works off the object tree in 
two passes: constants and types are processed in the first pass while variables, procedures, 
and modules are handled in the second. Both passes are preorder traversals. This prevents 
from constructing degenerate trees when later loading the symbol file. 

Let us now investigate in more detail the algorithm to generate a structure description. It 
turns out to be recursive. In fact, if a structure refers to further structures (e.g. an array 
referring to index type and element structure, or a record with field-structures), it follows 
from Postulate 2 that their description must preceed the description of the basic structure. 

Two circumstances slightly complicate the algorithm. The first difficulty arises from 
recursive pointer-structuresand the second concerns externally'declared structures. 

Let us assume the following declarations: 

TYPE P = POINTER TO R; 
R = RECORD 

p:P; ... 
END; 

Without precaution, our recursive algorithm would obviously enter an infinite loop when 
trying to generate the structure description of P. To circumvent this situation, the symbol file 
generator splits up the description of a pointer structure into two parts: a handle and a 
linkage. 

More precisely, if the symbol file generator encounters a pointer structure, it generates a 
pointer handle block and creates at the same time an anonymous synthetic object representing 
the pointer's base type. Thereby, the handling of the base structure is postponed. It is 
resumed (at the latest) when the synthetic object is processed. Then, instead of an object 
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descriptor block, a so-called linkage block is generated. It connects the pointer handle with 
the corresponding base structure. Notice that the handling of one synthetical object may 
lead to the creation of another. 

Further notice, as a fine point, that at time of loading a symbol file, a linkage request can 
be obsolete. This is the case, if the pointer structure referred to by the linkage block is not 
the primary instance .and has therefore been discarded. Consider, for example, the 
compilation of implementation module M. At the time of loading symbol file D, pointer Dl 
is already in from M's own symbol file. However, by inspecting the (primary) instance of the 
pointer structure referred to by the translation table, the loader can easily recognize if a 
linkage has already been established. 

We have earlier explained that the symbol file generator proceeds by scannin the object 
trees of (internal) units. Therefore, imported objects are not directly n:ached. If,} )wever, an 
externally defined type is used to declare a structure, it must be detected by foe structure 
handling algorithm and recorded on the symbol file. 

Remember that Postulate 5 does not pennit an object block to break the stream of a 
structure description. Hence, before the description of a given structure can be generated, 
externally defined types that are connected with this structure must be tracked down and 
handled in a preliminary pass. Notice that the handling of an external enumeration type must 
implicitly include the handling of each of its values. 

So far, we have concentrated on mapping data structures to the generalized symbol file. 
Considering, however, that it should provide a debugger with information about all aspects 
of a module, it must include connections between the program counter and source 
statements. To that aim, the main compiler regularly calls the symbol file generator to write 
so-called source position blocks onto the symbol file. 

We conclude by summarizing this Section. After processing the import list, the main 
compiler invokes the symbol file generator for the first time. Later calls occur whenever a 
modular or procedural unit has been completed. At each such call, the symbol file generator 
works off the object tree that is connected with that unit. Thereby, it respects certain 
sequence postulates that simplify a future loading of the symbol file. 

Generally speaking, the symbol file generator makes extensive use of the recursive 
method to map a module's data structure into post-fix notation Appendix B2 may serve as a 
comprehensible example illustrating the foregoing. 
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Appendix A: Format of Symbol Files 

Symbol files are word files. Their syntactical structure is as follows. 

SymFile =FileType {Section} MalnSection. 
FileType =333B. 
Section =ObjList (ModTag I ProcTag). 
MainSection = ObjList Main Tag. 

ObjList ={PC-Block I ModAnchor I Linkage I Structure I Component I Objecl 

Structure =Enum I Range I Pointer I Set I ProcTyp I FuncTyp I Array I DynAm.J I 
Record I Opaque. 

Component=ParRef I Par I Field. 
Object = VarRef I Var I Constant I String I Type I Procedure I Function I Module I Code. 

PC-Block =000000B sourcepos. 

= 167777B sourcepos. 

ModAnchor=l70000B keyl key2 key3 name. 
ModTag =170001BModNo. 
ProcTag =170002B ProcNo. 
Main Tag = 170003B adr pno. 
Linkage =170004B StrRefBaseRef. 

Enum = 171000B size NoConst. 
Range = 171001B size BaseRef min max. 
Pointer = 171002B size. 
Set = 171003B size BaseRef. 
ProcTyp = 171004B size. 
FuncTyp = 171005B size ResRef. 
Array = 171006B size ElemRef lndxRef. 
DynArray =171007B size ElemRef. 
Record = 171010B size. 
Opaque ·=171011B slze. 

ParRef 
Par 
Field 

=172000B StrRef. 
=172001B StrRef. 
= 172002B StrRef offset name. 

VarRef =173000B StrReflevel address name. 
Var =173001B StrReflevel address name. 
Constant =173002B StrRefModRefvalue name. 
String =173003B StrRefstring name. 
Type =173004B StrRefModRefname. 
Procedure = 173005B ProcNo level address size name. 
Function = 173006B ResRef ProcNo level address size name. 
Module = 173007B ModNo name. 
Code = 173010B cnum name. 

value =word word. 
name =string. 
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34 

string = len char { char char}. 
len, char =OC I lC I .. I 377C. 

All symbols whose structure is not explicitly indicated are words. 

Predefined reference numbers for standard structures: 

1 UNDEFINED 2BOOLEAN 3 CHAR 4 INTEGER 
5 CARDINAL 6 LONGINT 7 REAL 8 LONGREAL 
9 STRING 10 WORD 11 ADDRESS 12 BITSEf 
13 PROCEDURE14 .. 31 reserved for future standard structures 

The reference number of the first non-standard structure is 32. 



Appendix B: An Example 

Bl: Module Hierarchy 

DEFINITION MODULE O; 
CONST 01 = 1024; 
TYPE02; 

03 = RECORD x,y,w,h: CARDINAL END; 
04 = PROCEDURE(02); 

PROCEDURE 05iVAR vwr: 02; blk: 03; act: 04); 
PROCEDURE 06 vwr: 02); 
PROCEDURE 07 x, y: CARDINAL): 02; 

ENDO. 

DEFINITION MODULE F; 
FROM O IMPORT 03; 
TYPE Fl = [0 .. 31]; 
F2 = (f, g); 
F3 = (h, k, l); 
F4 = POINTER TO F5; 
FS = RECORD 

nxt: F4; x, y: CARDINAL 
END; 

F6 = RECORD 
pat: Fl; x, y: CARDINAL; 
t: F3; p: F4 

END; 
PROCEDURE F7(flg: F6: mod: F2: blk: 03); 

ENDF. 

DEFINITION MODULE E; 
FROM F IMPORT F2; 
FROM O IMPORT 03; 
TYPEEl = [0 .. 7]; 

E2 = F2; 
E3 = RECORD 

fnt: El; pos, len, x, y: CARDINAL 
END; 

VAR E4: SET OF El; 
ES: ARRAY [0 .. 4095] OF CHAR; 
E6: [0 .. 4095]; 

PROCEDURE E7(mod: E2; txt: E3; blk: 03); 
ENDE. 

DEFINITION MODULE D; 
FROM E IMPORT E3; 
FROM F IMPORT F6; 
TYPE Dl = POINTER TO D2; 

D2 = RECORD nxt: Dl; 
CASE t: BOOLEAN OF 
TRUE: bet: E31 FALSE: fig: F6 

END 
END; 

PROCEDURE D3(obj: D2; x, y: CARDINAL): Dl; 
ENDD. 

DEFINITION MODULE M; 

35 



FROM D IMPORT Dl; 
FROM G IMPORT 02, 03; 
TYPEMl = ["A" .. "Z"]; 
VARM2: ARRAY Ml OF RECORD 

obj: Dl; vwr: 02; blk: 03 
END; 

ENDM. 

IMPLEMENTATION MODULEM; 
FROM D IMPORT D2; 
FROM E IMPORT E2, E3, ES, E6, E7; 
FROM O IMPORT 01, 02, 03, 05; 
VAR v: 02; b: 03; t: D2; 

MODULET; 
IMPORT E3, ES, E6; 
EXPORTC; 
VAR pos: CARDINAL; 

PROCEDURE C(str: ARRAY OF CHAR; VAR txt: E3); 
VAR lim: CARDINAL; 

PROCEDUREP(VAR x, y: CARDINAL); 
VAR eol: BOOLEAN; 

BEGIN eol : = FALSE 
ENDP; 

BEGIN lim : = HIOH(str) 
ENDC; 

BEGIN pos : = E6 
ENDT; 

PROCEDURE R(vwr: 02); 
BEGIN E7(f, t.txt, b) 
ENDR; 

BEGIN 
WITHbDO 
X := 0; y := 0; w := 01-1; h := 01-1 

END; 
05(v, b, R); C("exarnple", t.txt) 

ENDM. 

36 
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B2: Symbol File corresponding to Definition Module E 

0 ModAnchorkeyl 43746 key2126 key3 57300 nameE 
1 ModAnchorkeyl 43746 key2126 key3 52580 nameF 
2 ModAnchorkeyl 43746 key2126 key3 48160 nameG 
32 Range size 1 BaseRef 5 min 0 max7 

Type StrRef32 ModRef 0 name El 
33 Enum size 1 NoConst2 

Type StrRef33 ModRef 1 name F2 
Constant StrRef 33 ModRef 1 value 1 nameg 
Constant StrRef 33 ModRef 1 value 0 namef 
Type StrRef33 ModRef 0 name E2 
Field StrRef32 offset 0 namefnt 
Field StrRef5 offset 3 namex 
Field StrRef5 offset4 namey 
Field StrRef 5 offset 1 namepos 
Field StrRef5 offset2 namelen 

34 Record size5 
Type StrRef34 ModRef 0 name E3 

35 Set size 1 BaseRef32 
Var StrRef35 level 0 address 3 nameE4 

36 Range size 1 BaseRef 5 min 0 max4095 
37 Array size 2048 ElemRef 3 IndxRef 36 

Var StrRef37 level0 address4 nameE5 
38 Range size 1 BaseRef 5 min 0 max4095 

Var StrRef38 levelO address 5 nameE6 
Field StrRef5 offset 0 namex 
Field StrRef5 offset 2 namew 
Field StrRef5 offset 3 nameh 
Field StrRef5 offset 1 name y 

39 Record size4 
Type StrRef39 ModRef2 name 03 
Par StrRef33 
Par StrRef 34 
Par StrRef 39 

> Procedure ProcNo 1 level0 address 0 size 0 name fil 
ModTag ModNo0 
Reffag adr6 pno 1 

B3: Generalized Symbol File corresponding to Implementation Module M 

0 ModAnchorkeyl 43746 key2127 key3 7520 nameM 
1 ModAnchorkeyl 43746 key2127 key3 2360 nameD 
2 ModAnchorkeyl 43746 key2126 key3 57300 nameE 
3 ModAnchorkeyl 43746 key2126 key3 52580 nameF 
4 ModAnchorkeyl 43746 key2126 key3 48160 nameG 

pc 000020 pos 368 
pc 000022 pos 387 
VarRef StrRef5 level 2 address 4 namex 
VarRef StrRef5 level 2 address 5 namey 
Var StrRef2 level2 address 6 name eol 
ProcTag ProcNo 3 
pc 000041 pos 404 
pc 000043 pos 425 

32 DynArray size 2 ElemRef3 
Var StrRef32 level 1 address 4 name str 
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Var StrRef5 level 1 address 7 namelim 
ParRef StrRef5 
ParRef StrRef5 
Procedure ProcNo 3 level 1 address 11 size 2030 nameP 

33 Range size 1 BaseRef 5 min 0 max? 
Type StrRef33 ModRef2 name El 
Field StrRef33 offset0 namefht 
Field StrRef5 offset 3 namex 
Field StrRef5 offset4 namey 
Field StrRef5 offsetl namepos 
Field StrRef5 offset2 namelen 

34 Record sizes 
Type StrRef34 ModRef 2 name E3 
VarRef StrRef34 level 1 address 6 nametxt 
ProcTag ProcNo2 
pc 000044 pos 440 
pc 000050 pos 452 
Par StrRef32 
ParRef StrRef34 
Procedure ProcNo 2 level0 address 11 size 15 nameC 
Var StrRef5 level0 address 7 namepos 
ModTag ModNol 
pc 000055 pos 490 

35 
pc 000065 pos 509 
Opaque size 1 
Type StrRef35 ModRef 4 name 02 
Var StrRef35 level 1 address4 namevwr 
ProcTag ProcNo4 
pc 000122 pos 536 
pc 000125 pos 544 
pc 000130 pos 552 
pc 000137 pos 563 
pc 000146 pos 583 
pc 000157 pos 595 
pc 000166 pos 617 

36 Range size 1 BaseRef 3 min 65 max90 
Type StrRef36 ModRef 0 name Ml 
Field StrRef5 offset 0 namex 
Field StrRef5 offset2 namew 
Field StrRef5 offset 3 nameh 
Field StrRef5 offset 1 namey 

37 Record size4 
Type StrRef37 ModRef 4 name 03 
Var StrRef37 level0 address 5 nameb 
Module ModNol nameT 
Par StrRef35 
Procedure ProcNo 4 level0 address 41 size4 nameR 
Var StrRef35 level0 address4 namev 

38 Pointer size l 
Type StrRef38 ModRef 1 name Dl 

39 Range size 1 BaseRef 5 min 0 max31 
Type StrRef39 ModRef 3 name Fl 

40 Enum size 1 NoConst3 
Type StrRef40 ModRef 3 name F3 
Constant StrRef 40 ModRef 3 value 2 name! 
Constant StrRef 40 ModRef 3 value 1 namek 
Constant StrRef 40 ModRef 3 value 0 nameh 
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41 Pointer size 1 
Type StrRef41 ModRef 3 name F4 
Field StrRef39 offset 0 name pat 
Field StrRef5 offset 1 namex 
Field StrRef40 offset 3 namet 
Field StrRef41 offset 4 namep 
Field StrRef5 offset 2 namey 

42 Record size 5 
Type StrRef42 ModRef 3 name F6 
Field StrRef38 offset 0 namenxt 
Field StrRef2 offset 1 namet 
Field StrRef42 offset 2 name fig 
Field StrRef34 offset 2 name txt 

43 Record size7 
Type StrRef43 ModRefl name D2 
Var StrRef43 levelO address 6 namet 
Field StrRef38 offsetO name obj 
Field StrRef37 offset 2 name blk 
Field StrRef35 offset 1 namevwr 

44 Record size 6 
45 Array size 156 ElemRef 44IndxRef 36 

Var StrRef45 levelO address 3 nameM2 
Linkage StrRef43 BaseRef38 
Field StrRef41 offset 0 name nxt 
Field' StrRef5 offset 1 namex 
Field StrRef5 offset 2 namey 

46 Record size 3 
Type StrRef 46 ModRef 3 name F5 
Linkage StrRef 46 BaseRef41 
ModTag ModNoO 
ReITag adr9 pno4 
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