
Eidgenossische 
Technische Hochschule 
ZLlrich 

Niklaus Wirth 

September 1987 

lnstitut fUr lnformatik 
Fachgruppe 
Computer-Systeme 

From Modula 
to Oberon 
and 
The Programming 
language Oberon 

82 

Eidg. Techn. Hochschule Zuricn 
informatikbibtiothek 

ETH-Zentrum 
CH-8092 Zurich 



Author's address: 

Institut ffir lnformatik 
EfH-Zentrum 
CH-8092 Zurich I Switzerland 

c 1987 Institut ffir Informatik, EfH Zurich 



From Modula to Oberon 

N. Wirth 

Abstract 

The programming language Oberon is the result of a concentrated effort to increase 
the power of Modula-2 and simultaneously to reduce its complexity. Several 
features were eliminated, and a few were added in order to increase the expressive 
power and flexibility of the language. This paper describes and motivates the 
changes. The language is defined in a concise report. 

Introduction 

3 

The programming language Oberon evolved from a project whose goal was the design of 
a modern, flexible, and efficient operating system for a single-user workstation. A principal 
guideline was to concentrate on properties that are genuinely essential and - as a 
consequence - to omit ephemeral issues. It is the best way to keep a system in hand, to 
make it understandable, explicable, reliable, and efficiently implementable. 

Initially, it was planned to express the system in Modula-2 [1]. as that language supports 
the notion of modular design quite effectively, and because an operating system has to be 
designed in terms of separately compilable parts with conscientiously chosen interfaces. In 
fact, an operating system should be no more than a set of basic modules, and the design of 
an application must be considered as a goal-oriented extension of that basic set: 
Programming is always extending a given system. 

Whereas modern languages, such as Modula, support the notion of extensibility in the 
procedural realm, the notion is less well established in the domain of data types. Modula in 
particular does not allow the definition of new data types as extensions of other, 
programmer-defined types in an adequate manner. An additional feature was called for, 
thereby giving rise to an extension of Modula. 

The concept of the planned operating system also called for a highly dynamic, centralized 
storage management relying on the technique of garbage collection. Although Modula does 
not prevent the incorporation of a garbage collector in principle, its variant record feature 
constitutes a genuine obstacle. As the new facility for extending types would make the 
variant record feature superfluous, the removal of this stumbling block was a logical decision. 
This step, however, gave rise to a restriction (subset) of Modula. 

It soon became clear that the rule to concentrate on the essential and to eliminate the 
inessential should not only be applied to the design of the new system, but equally 
stringently to the language in which the system is formulated. The application of the 
principle thus led from Modula to a new language. The adjective new, however, has to be 
understood in proper context: Oberon evolved from Modula by very few additions and 
several subtractions. In relying on evolution rather than revolution we remain in the tradition 
of a long development that led from Algol to Pascal, then to Modula-2, and eventually to 
Oberon. The common trait of these languages are their procedural rather than functional 
model, and the strict typing of data. More fundamental even is perhaps the idea of 
abstraction: the language must be defined in terms of mathematical, abstract concepts 
without reference to any computing mechanism. Only if a language satisfies this criterion, 



4 

can it be called "higher-level". No syntactic coating whatsoever can earn a language this 
attribute alone. 

The definition of a language must be coherent and concise. This can only be achieved by a 
careful choice of the underlying abstractions and an appropriate structure combining them. 
The language manual must be reasonably short, avoiding the explanation of individual cases 
derivable from the general rules. The power of a formalism must not be measured by the 
length of its description. To the contrary, an overly lengthy definition is a sure symptom of 
inadequacy. In this respect, not complexity but simplicity must be the goal. 

lnspite of its brevity, a .description must be complete. Completeness is to be achieved 
within the framework of the chosen abstractions. Limitations imposed by particular 
implementations do not belong to a language definition proper. Examples of such 
restrictions are the maximum values of numbers, rounding and truncation errors in 
arithmetic, and actions taken when a program violates the stated rules. It should not be 
necessary to supplement a language definition with a voluminous standards document to 
cover "unforeseen" cases. 

But neither should a programming language be a mathematical theory only. It must be a 
practical tool. This imposes certain limits on the terseness of the formalism. Several features 
of Oberon are superfluous from a purely theoretical point of view. They are nevertheless 
retained for practical reasons, either for programmers' convenience or to allow for efficient 
code generation without the necessity of complex, "optimizing" pattern matching algorithms 
in compilers. Examples of such features are the presence of several forms of repetitive 
statements, and of standard procedures such as INC, DEC, and ODD. They complicate neither 
the language conceptually nor the compiler to any significant degree. 

These underlying premises must be kept in mind when comparing Oberon with other 
languages. Neither the language nor its defining document reach the ideal; but Oberon 
approximates these goals much better than its predecessors. 

A compiler for Oberon has been implemented for the NS32000 processor family and is 
embedded in the Oberon operating environment. The following data provide an estimate of 
the simplicity and efficiency of the implementation, and readers are encouraged to compare 
them with implementations of other languages. (Measurements with 10MHz NS 32032). 

length of source program length of compiled code time of self-compilation 
lines characters bytes sec 

Parser 1116 36719 9928 11.53 
Scanner 346 9863 3388 3.80 
Import/Export 514 18386 4668 525 
Code generator1963 65901 21636 21.02 

Total 3939 130869 39620 41.60 

Subsequently, we present a brief introduction to Oberon assuming familiarity with 
Modula (or Pascal), concentrating on the added features and listing the eliminated ones. In 
order to be able "to start with a clean table", the latter are taken first. 

. ... 
; 



features omitted from Modula 

Data types 

s 

Variant records are eliminated, because they constitute a genuine difficulty for the 
implementation of a reliable storage management system based on automatic garbage 
collection. The functionality of variant records is preserved by the introduction of extensible 
data types. 

Opaque types cater to the concept of abstract data type and information hiding. They are 
eliminated as such, because again the concept is covered by the new facility of extended 
record types. 

Enumeration types appear to be a simple enough feature to be uncontroversial. However, 
they defy extensibility over module boundaries. Either a facility to extend given enumeration 
types would have to be introduced, or they would have to be dropped. A reason in favour of 
the latter, radical solution was the observation that in a growing number of programs the 
indiscriminate use of enumerations had led to a pompous style that contributed not to 
program clarity but rather to verbosity. In connection with import and export, enumerations 
give rise to the exceptional rule that the import of a type identifier also causes the 
(automatic) import of all associated constant identifiers. This exceptional rule defies 
conceptual simplicity and causes unpleasant problems for the implementor. 

Subrange types were introduced in Pascal (and adopted in Modula) for two reasons: (1) 
to indicate that a variable accepts a limited range of values of the base type and to allow a 
compiler to generate appropriate guards for assignments, and (2) to allow a compiler to 
allocate the minimal storage space needed to store values of the indicated subrange. This 
appeared desirable in connection with packed records. Very few implementations have taken 
advantage of this space saving facility, because the additional compiler complexity is VePf 
considerable. Reason 1 alone, however, did not appear to provide sufficient justification to 
retain the st1brange facility in Oberon. 

With the absence of enumeration and subrange types, the general possibility to define set 
types based on given element types appeared as redundant. Instead, a single, basic type SET 
is introduced, whose values are sets of integers from o to an implementation-defined 
maximum. 

The basic type CARDINAL had been introduced in Modula-2 in order to allow address 
arithmetic with values from O to 2t16 on 16-bit computers. With the prevalence of 32-bit 
addresses in modern processors, the need for unsigned arithmetic has practically vanished, 
and therefore the type CARDINAL has been eliminated. With it, the bothersome 
incompatibilities of operands of types CARDINAL and INTEGER have disappeared. 

The notion of a definable index type of arrays has also been abandoned: All indices are by 
default integers. Furthermore, the lower bound is fixed to O; array declarations specify a 
number of elements (length) rather than a pair of bounds. This break with a long standing 
tradition since Algol 60 demonstrates the principle of eliminating the inessential most 
clearly. The specification of an arbitrary lower bound provides no expressive power at all, but 
it introduces a non-negligible amount of hidden, computational effort. (Only in the case of 
static declarations can it be delegated to the compiler). 



6 

Modules and import/export rules 

Experience with Modula over the last eight years has shown that local modules were rarely 
used. The additional complexity of the compiler required to handle them, and the additional 
complications in the visiblity rules of the language definition appear not to justify local 
modules. 

The qualification of an imported object's identifier x by the exporting module's name M, 
viz. M.x, can be circumvented in Modula by the use of the import clause FROM M IMPORT x. 
This facility has also been discarded. Experience in programming systems involving many 
modules has taught that the explicit qualification of each occurence of x is actually 
preferable. A simplification of the compiler is a welcome side-effect. 

The dual role of the main module in Modula is conceptually confusing. It constitutes a 
module in the sense of a package of data and procedures enclosed by a scope of visibility, 
and at the same time it constitutes a single procedure called main program. Within the 
Oberon system, the notion of a main program has vanished. Instead, the system allows the 
user to activate any (exported, parameterless) procedure (called a command). Hence, the 
language excludes modules without explicit definition part, and every module is defined in 
terms of a definition part and an implementation part (not definition module and 
implementation module). 

Statements 

The with statement has been discarded. Like in the case of imported identifiers, the explicit 
qualification of field identifiers is to be preferred. 

The elimination of the for statement constitutes a break with another long standing 
tradition. The baroque mechanism of Algol 60's for statement had been trimmed 
significantly in Pascal (and Modula). Its marginal value in practice has led to its absence in 
Oberon. 

low-level facilities 

Modula-2 makes access to machine-specific facilities possible through low-level 
constructs, such as the data types ADDRESS and WORD, absolute addressing of variables, 
and type casting functions. Most of them are packaged in a module called SYSTEM. These 
features were supposed to be rarely used and easily visible through the presence of SYSTEM 
in a module's import list. Experience has revealed, however, that a significant number of 
programmers import this module quite indiscriminately. A particularly seducing trap are 
Modula's type transfer functions. 

It appears preferrable to drop the pretense of portability of programs that import a 
"standard", yet system-specific module. Both, the module SYSTEM and the type transfer 
functions are therefore eliminated, and with them also the types ADDRESS and WORD. 
Individual implementations are free to provide system-dependent modules, but they do not 
belong to the general language definition. Their use then declares a program to be patently 
implementation-specific, and thereby non-portable. 

Concurrency 

The system Oberon does not require any language facilities for expressing concurrent 
processes. The pertinent, rudimentary features of Modula, in particular the coroutine, were 



7 

therefore not retained. This exclusion is merely a reflection of our actual needs within the 
concrete project, but not on the general relevance of concurrency in programming. 

Features introduced in Oberon 

Type extension 

The most important addition is the facility of extended record types. It permits the 
construction of new types on the basis of existing types, and establishes a certain degree of 
compatibility between the new and old types. Assuming a given type 

T =RECORD x, y: INTEGER END 

extensions may be defined which contain certain fields in addition to the exising ones. For 
example 

TO =RECORD (T) z: REAL END 
T1 =RECORD (T) w: LONGREAL END 

define types with fields x, y, z and x, y, w respectively. We define a type declared by 

T' =RECORD (T) <field definitions> END 

to be a (direct) extension of T, and conversely T to be the (direct) base type of T'. Extended 
types may be extended again, giving rise to the following definitions: 

A type T' is an extension of T, if T' = T or T' is a direct extension of an extension of T. 
Conversely, Tis a base type of T', if T = T' or Tis the direct base type of a base type of T'. We 
denote this relationship by T' ~ T. 

The rule of assignment compatibility states that values of an extended type are assignable 
to variables of their base types. For example, a record of type TO can be assigned to a 
variable of the base type T. This assignment involves the fields x and y only, and in fact 
constitutes a projection of the value onto the space spanned by the base type. 

It is important that an extended type may be declared in a module that imports the base 
type. In fact, this is probably the normal case. 

This concept of extensible data type gains importance when extended to pointers. It is 
appropriate to say that a pointer type P' bound to T' extends a pointer type P, if P is bound 
to a base type T of T', and to extend the assignment rule to cover this case. It is now possible 
to form data structures whose nodes are of different types, i.e. inhomogeneous data 
structures. The inhomogeneity is automatically (and most sensibly) bounded by the fact 
that the nodes are linked by pointers of a common base type. 

Typically, the pointer fields establishing the structure are contained in the base type T, and 
the procedures manipulating the structure are defined in the same (base) module as T. 
Individual extensions (variants) are defined in client modules together with procedures 
operating on nodes of the extended type. This scheme is in full accordance with the notion 
of system extensibility: new modules defining new extensions may be added to a system 
without requiring a change of the base modules, not even their recompilation. 

As access to an individual node via a pointer bound to a base type provides a projected 
view of the node data only, a facility to widen the view is necessary. It depends on the 



8 

possibility to determine the actual type of the referenced node. This is achieved by a type 
test, a Boolean expression of the form 

t IST' (or p ISP') 

If the test is affirmative, an assignment t' := t (t' of type T') or p' := p (p' of type P') should 
be possible. The static view of types, however, prohibits this. Note that both assignments 
violate the rule of assignment compatibility. The desired assignment is made possible by 
providing a type guard of the form 

t' := t(T') (p' := p(P')) 

and by the same token access to the field z of a TO (see previous examples) is made 
possible by a type guard in the designator t(TO).z. Here the guard asserts that t is 
(currently) of type TO. 

The declaration of extended record types, the type test, and the type guard are the only 
additional features introduced in this context. A more extensive discussion is provided in 
[2]. The concept is very similar to the class notion of Simula 67 [3], Smalltalk [4], and 
others. Differences lie in the fact that the class facility stipulates that all procedures 
applicable to objects of the class are defined together with the data definition. It is awkwar 
to be obliged to define a new class solely bacause a method (procedure) has been added or 
changed. In Oberon, procedure (method) types rather than methods are connected with 
objects in the program text. The binding of actual methods (specific procedures) to objects 
(instances) is delayed until the program is executed. In Smalltalk, the compatibility rules 
between a class and its subclasses are confined to pointers, thereby intertwining the 
concepts of access method and data type in an undesirable way. Here, the relationship 
between a type and its extensions is based on the established mathematical concept of 
projection. 

In Modula, it is possible to declare a pointer type within an implementation module, and 
to export it as an opaque type by listing the same identifier in the corresponding definition 
module. The net effect is that the type is exported whereby its associated binding remains 
hidden (invisible to clients). In Oberon, this facility is generalized in the following way: Let a 
record type be defined in a certain implementation part, for example 

Viewer= RECORD width, height: INTEGER; x, y: INTEGER END 

In the corresponding definition part, a partial definition of the same type may be specified, 
for example 

Viewer= RECORD width, height: INTEGER END 

with the effect that a partial view - a public projection - is visible to clients. In client modules 
as well as in the implementation part it is possible to define extensions of the base type 
(e.g. TextViewers or GraphViewers). 

Type inclusion 

Modern processors feature arithmetic operations on several number formats. It is 
desirable to have all these formats reflected in the language as basic types. Oberon features 
five of th em: 

LONG INT, INTEGER, SHORTINT (integer types) 
LONGREAL, REAL (real types) 



9 

With the proliferation of basic types, a relaxation of compatibility rules among them 
becomes almost mandatory. (Note that in Modula the arithmetic types INTEGER, 
CARDINAL, and REAL are incompatible). To this end, the notion of type inclusion is 
introduced: a type T includes a type T', if the values of type T' are also values of type T. 
Oberon postulates the following hierarchy: 

LONGREAL :> REAL :> LONGINT :> INTEGER :> SHORTINT 

The assignment rule is relaxed accordingly: A value of type T' can be assigned to a variable of 
type T, if T' is included in T (or if T' extends T), i.e. if T :> T' or T' => T. In this respect, we 
return to (and extend) the flexibility of Algol 60. For example, given variables 

i: INTEGER; k: LONGINT; x: REAL 

the assignments 

k := i; X := k; X := 1; k := k+i; X := X*10 + i 

are conforming to the rules, whereas the statements i := k; k := x are not acceptable. Finally, 
it is worth noting that the various arithmetic types represent a limited set of subrange types. 

The multi-dimensional open array and the closure statement (in symmetry to a module's 
initialization body) are the remaining facilities of Oberon not present in Modula. 

Summary 

The language Oberon has evolved from Modula-2 and incorporates the experiences of 
many years of programming in Modula. A significant number of features have been 
eliminated. They appear to have contributed more to language and compiler complexity than 
to genuine power and flexibility of expression. A small number of features have been added, 
the most significant one being the concept of type extension. 

The evolution of a new language that is smaller, yet more powerful than its ancestor is 
contrary to common practices and trends, but has inestimable advantages. Apart from 
simpler compilers, it results in a concise defining document [ 5), an indispensible 
prerequisite for any tool that must serve in the construction of sophisticated and reliable 
systems. 

Acknowlegement 

It is impossible to explicitly acknowledge all contributions of ideas that ultimately 
simmered down to what is now Oberon. Most came from the use or study of existing 
languages, such as Modula-2, Ada, Smalltalk, C++, and Cedar, which often taught us how not 
to do it. Of particular value was the contribution of Oberon's first user, J. Gutknecht. The 
author is grateful for his insistence on the elimination of deadwood and on basing the 
remaining features on a sound mathematical foundation. 

References 

1. N. Wirth. Programming in Modula-2. Springer-Verlag, 1982. 

2. N. Wirth. Type Extensions. ACM Trans. on Prog. Languages and Systems. (to appear) 

3. G. Birtwistle, et al. Simula Begin. Auerbach, 1973. 



10 

4. A. Goldberg, D. Robson. Sma/ltalk-80: The Language and its Implementation. 
Addison-Wesley, 1983. 

5. N. Wirth. The programming language Oberon. (companion paper) 



The Programming Language Oberon 
N.Wirth 

11 

Make it as simple as possible, but not simpler. 
A. Einstein 

1. Introduction 

Oberon is a general-purpose programming language that evolved from Modula-2. Its 
principal new feature is the concept of type extension. It permits the construction of new data 
types on the basis of existing ones and to relate them. 

This report is not intended as a programmer's tutorial. It is intentionally kept concise. Its 
function is to serve as a reference for programmers, implementors, and manual writers. What 
remains unsaid, is mostly left so intentionally. either because it is derivable from stated rules 
of the language, or because it would require to commit the definition when a general 
committment appears as unwise. The moral is: if a specific construct is not defined by the 
report either directly or derivably, then the programmer should refrain from incorporating it 
in programs. 

2.Syntax 

A language is an infinite set of sentences, namely the sentences well formed according to 
its syntax. In Oberon, these sentences are called compilation units. Each unit is a finite 
sequence of symbols from a finite vocabulary. The vocabulary of Oberon consists of 
identifiers, numbers, strings, operators, and delimiters. They are called lexical symbols and are 
composed of sequences of characters. (Note the distinction between symbols and 
characters.) 

To describe the syntax, an extended Backus-Naur Formalism called EBNF is used. Angular 
brackets [ and ] denote optionality of the enclosed sentential form, and curly brackets { and 
} denote its repetition (possibly o times). Syntactic entities (non-terminal symbols) are 
denoted by English words expressing their intuitive meaning. Symbols of the language 
vocabulary (terminal symbols) are strings enclosed in quote marks or words written in 
capital letters, so-called reserved words. Syntactic rules (productions) are marked by a$ sign 
at the left margin of the line. 

3. Vocabulary and representation 

The representation of symbols in terms of characters depends on the underlying character 
set. The ASCII set is used and the following lexical rules must be observed. Blanks must not 
occur within symbols (except in strings). Blanks and line breaks are ignored unless they are 
essential to separate two consecutive symbols. Symbols are identifiers, numbers, strings, 
operators, and delimiters. 

1. Identifiers are sequences of letters and digits. The first character must be a letter. 

$ ident = letter {letter I digit}. 

Examples: 
x scan Oberon GetSymbol firstletter 

2. Numbers are (unsigned) integers or real numbers. Integers are sequences of digits and 
may be followed by a suffix letter. The type is the minimal type to which the number belongs 



12 

(see 6.1.). If no suffix is specified, the representation is decimal. The suffix H indicates 
hexadecimal representation. The suffix X specifies that the constant is of type CHAR, the 
hexadecimal value being the character's ordinal number. 

A real number always contains a decimal point. Optionally it may also contain a decimal 
scale factor. The letter E (or D) is pronounced as "times ten to the power of". A real number 
is of type REAL, unless it has a scale factor containing the letter D; in this case it is of type 
LONG REAL. 

$ number = integer I real. 
$ integer = digit {digit} I digit {hexDigit} ("H" I "X"). 
6 real = digit {digit}"." {digit} [ScaleFactor]. 
6 ScaleFactor = ("E" I "D") ["+" I "-"] digit {digit}. 
6 hexDigit = digit I "A" I "B" I "C" I "D" I "E" I "F". 
6 digit = "O" I "1" I "2" I "3" I "4" I "5" I "6" I "7" I "8" I "9". 

Examples: 
1987 
100H = 256 
12.3 
4.567E8 = 456700000 
0.57712566D-6 = 0.00000057712566 

3. Character constants are either denoted by a single character enclosed in quote marks or by 
the ordinal number of the character in hexadecimal notation followed by the letter X. 

4. Strings are sequences of characters enclosed in quote marks. Both double quotes and 
single quotes (apostrophes) may be used as quote marks. However, the opening and closing 
marks must be the same character, and this character cannot occur within the string. A string 
must not extend over the end of a line. The number of characters in a string is called the 
length of the string. Strings can be assigned to and compared with arrays of characters (see 
9.1 and 82.4). 

$ string = ""' {character}'"" I ""{character}"". 

Examples: 
"OBERON" "Don't worry!" 'codeword "Barbarossa"' 

5. Operators and delimiters are the special characters, character pairs, or reserved words listed 
below. These reserved words consist exclusively of capital letters and cannot be used in the 
role of identifiers. 

+ .- ARRAY IMPLEMENTATION RETURN 
1' BEGIN IMPORT THEN 

* CASE IN TO 
I # CLOSE IS TYPE 

< CONST LOOP VAR 
& > DEFINITION MOD UNTIL 

<= DIV NIL WITH 
>= DO OF WHILE 

ELSE OR 
ELSIF POINTER 
END PROCEDURE 
EXIT RECORD 
IF REPEAT 

C:! 

•· 



•. t:! 

13 

6. Comments may be inserted between any two symbols in a program. They are arbitrary 
character sequences opened by the bracket ( * and closed by *). Comments do not affect the 
meaning of a program. 

4. Declarations and scope rules 

Every identifier occurring in a program must be introduced by a declaration, unless it is a 
predeclared identifier. Declarations also serve to specify certain permanent properties of an 
object, such as whether it is a constant, a type, a variable, or a procedure. 

The identifier is then used to refer to the associated object. This is possible in those parts 
of a program only which are within the scope of the declaration. The scope extends textually 
from the point of the declaration to the end of the block (procedure or module) to which 
the declaration belongs and hence to which the object is local. The scope rule is augmented 
by the following amendments: 

1. A type T1 can be used in a declaration of a pointer type T (see 6.7) which textually 
precedes the declaration of T1, if both T and T1 are declared in the same block. 

2. Field identifiers of a record declaration (see 6.3) are valid in field designators only. 

An identifier may be qualified. In this case it is prefixed by another identifier which 
designates the module (see Ch. 11) from which the identifier is imported. The prefix and the 
identifier are separated by a period. 

$ qualident = [ident "."] ident. 

The following identifiers are predefined; their meaning is defined in the indicated sections: 

ABS 
ADR 
ASH 
BOOLEAN 
BYTE 
CAP 
CHAR 
CHR 
DEC 
ENTIER 
EXCL 
FALSE 
HALT 
INC 
INCL 
INTEGER 
LEN 

(10.2) 
(10.2) 
(10.2) 
(6.1) 
(6.1) 
(10.2) 
(6.1) 
(10.2) 
(10.2) 
(10.2) 
(10.2) 
(6.1) 
(10.2) 
(10.2) 
(10.2) 
(6.1) 
(10.2) 

5. Constant declarations 

LONG (10.2) 
LONGINT (6.1) 
LONGREAL (6.1) 
LSH (10.2) 
MAX (10.2) 
MIN (10.2) 
NEW (6.4) 
ODD (10.2) 
ORD (10.2) 
REAL (6.1) 
ROT (10.2) 
SET (6.1) 
SHORT (10.2) 
SHORTINT (6.1) 
SIZE (10.2) 
TRUE (6.1) 

A constant declaration associates an identifier with a constant value, i.e. it can be 
evaluated by a mere textual scan without actually executing the program. Its operands are 
constants. (see Ch. 8). 

$ ConstantDeclaration = ident "=" ConstExpression. 
$ ConstExpression = expression. 



14 

Examples of constant declarations are 

N 100 
limit 2*N -1 
all {O .. WordSize-1} 

6. Type declarations 

A data type determines the set of values which variables of that type may assume and the 
operators that are applicable, and it associates an identifier with the type. In the case of 
structured types, it also defines the structure of variables of this type. There are two different 
structures, namely arrays and records, with different component selectors. 

$ TypeDeclaration = ident "=" type. 
$ type = qualident I ArrayType I RecordType I PointerType I ProcedureType. 

Examples: 
Table 

Tree 

Node 

ARRAY N OF REAL 

POINTER TO Node 

RECORD key: INTEGER 
left, right: Tree 

END 

CenterNode = RECORD (Node) 

Function 

.>.1. Basic types 

name: ARRAY 32 OF CHAR; 
subnode: List 

END 

PROCEDURE (REAL): REAL 

The following basic types are denoted by predeclared identifiers. The associated operators 
are defined in 8.2, and the predeclared function procedures in 10.2. The values of a given basic 
type are the following: 

1. BOOLEAN the truth values TRUE or FALSE. 
2. CHAR the characters of the ASCII set. 
3. SHORTINT the integers between MIN(SHORTINT) and MAX(SHORTINT). 
4. INTEGER the integers between MIN(INTEGER) and MAX(INTEGER). 
5. LONGINT the integers between MIN(LONGINT) and MAX(LONGINT). 
6. REAL real numbers between MIN(REAL) and MAX(REA!). 
7. LONGREALreal numbers between MIN(LONGREAL) and MAX(LONGREAL). 
8. SET the sets of integers between O and MAX (SET). 
9. BYTE this type includes CHAR and SHORTINT. 

Types 3 to 5 are integer types, 6 and 7 are real types, and together they are called numeric 
types. They form a hierarchy; the larger type includes (the values of) the smaller type: 

LONGREAL ::::> REAL ::::> LONGINT ::::> INTEGER ::::> SHORTINT 

6.2. Array types 

An array is a structure consisting of a fixed number of elements which are all of the same 
type, called the element type. The number of elements of an array is called its length. The 
elements of the array are designated by indices, which are integers between O and the length 
minus 1. 



$ 
$ 

ArrayType = ARRAY length{"," length} OF type. 
length = ConstExpression. 

A declaration of the form 

ARRAY NO, N1, ... , Nk OFT 

is understood as an abbreviation of the declaration 

ARRAY NO OF 
ARRAY N1 OF 

ARRAY Nk OFT 

Examples of array types: 

ARRAY N OF INTEGER 
ARRAY 10, 20 OF REAL 

6.3. Record types 

15 

A record type is a structure consisting of a fixed number of elements of possibly different 
types. The record type declaration specifies for each element, called field, its type and an 
identifier which denotes the field. The scope of these field identifiers is the record definition 
itself, but they are also visible within field designators (see 8.1) refering to elements of 
record variables. 

$ RecordType = RECORD["(" BaseType ")"] FieldListSequence END. 
$ BaseType = qualident. 
$ Field ListSequence = Field List { ";" Field List}. 
$ Fieldlist = [ldentlist ":"type]. 
$ ldentlist = ident {"," ident}. 

Record types are extensible, i.e. a record type can be defined as an extension of another 
record type. In the examples above, CenterNode (directly) extends Node, which is the (direct) 
base type of CenterNode. More specifically, CenterNode extends Node with the fields name 
and subnode. 

Definition: A type TO extends a type T, if it equals T, or if it directly extends an extension of T. 
Conversely, a type Tis a base type of TO, if it equals TO, or if it is the direct base type of a base 
type of TO. 

Examples of record types: 

RECORD day, month, year: INTEGER 
END 

RECORD 
name, firstname: ARRAY 32 OF CHAR; 
age: INTEGER; 
salary: REAL 

END 

6.4. Pointer types 

Variables of a pointer type P assume as values pointers to variables of some record type T. 
These variables are dynamically allocated by explicit execution of a statement. The pointer 
type P is said to be bound to T. 



16 

$ PointerType = POINTER TO type. 

If p is a variable of type P = POINTER TO T, then a call of the predeclared procedure 
NEW(p) has the following effect (see 10.2): A variable of type Tis allocated in free storage, 
and a pointer to it is assigned to p. This pointer p is of type P; the referenced variable p-t is of 
type T. Every pointer variable may assume the value NIL, which points to no variable at all. 

6.5. Procedure types 

Variables of a procedure type T have a procedure as value. If a procedure P is assigned to a 
procedure variable of type T, the (types of the) formal parameters of P must be the same as 
those indicated in the formal type list of T. The same holds for the result type in the case of a 
function procedure. 

Restriction: P must not be declared local to another procedure, and neither can it be a predeclared 
procedure. 

$ ProcedureType = PROCEDURE [FormalTypelist]. 
$ FormalTypelist = "(" [[VAR] FormalType {"," [VAR] FormalType} 1 ")" [":"qualident]. 

7. Variable declarations 

Variable declarations serve to introduce variables and associate them with a unique 
identifier and a fixed data type. Variables whose identifiers appear in the same list all obtain 
the same type. 

$ VariableDeclaration = ldentlist ":" type. 

Examples of variable declarations (refer to examples in Ch. 6): 

i,j: INTEGER 
x: REAL 
p, q: BOOLEAN 
s: SET 
F: Function 
a: ARRAY 100 OF REAL 
w: ARRAY 16 OF 

RECORD ch: CHAR; 
count: INTEGER 

END 
t: Tree 

8. Expressions 

Expressions are constructs denoting rules of computation for obtaining values of variables 
and constants, and for generating new values by the application of operators and function 
procedures. Expressions consist of operands and operators. Parentheses may be used to 
express specific associations of operators and operands. 

8.1. Operands 

With the exception of literal constants, i.e. numbers, character strings, and sets (see Ch. 
5), operands are denoted by designators. A designator consists of an identifier referring to the 
constant, variable, or procedure to be designated. This identifier may possibly be qualified by 



17 

module identifiers (see Ch. 4 and 11 ), and it may be followed by selectors, if the designated 
object is an element of a structure. 

If A designates an array, then A [ E] denotes that element of A whose index is the current 
value of the expression E. The type of E must be an integer type. A designator of the form 
A [ E1, E2, ... , En] stands for A [ E1] [ E2] ... [En 1. If p designates a pointer variable, pt 

denotes the variable which is referenced by p. If r designates a record, then r.f denotes the 
field f of r, and if p designates a pointer, p.f denotes the field f of the record pt, i.e. the dot 
implies dereferencing and p.f stands for pt.f. 

The typeguard v(T) asserts that vis of type T (see Ch. 6). It is applicable, if v refers to a 
variable indirectly and if the declared type of v includes the actual record type T of the 
referenced variable. Indirect reference is implied, if v is a pointer, or if v is a variable 
parameter. 

$ designator = qualident {"." ident I "[" Explist "]" I "(" qualident ")" I "t" }. 
$ Explist = expression {","expression}. 

If the designated object is a variable, then the designator refers to the variable's current 
value. If the object is a procedure, a designator without parameter list refers to that 
procedure. If it is followed by a (possibly empty) parameter list, the designator implies an 
activation of the procedure and stands for the value resulting from its execution. The (types 
of these) actual parameters must correspond to the formal parameters as specified in the 
procedure's declaration (see Ch.10). 

Examples of designators (see examples in Ch. 7): 

i (INTEGER) 
a[i] (REAL) 
w[3].ch (CHAR) 
t.key (INTEGER) 
t.left.right (TreePtr) 
t( CenterNode) .subnode ( UstPtr) 

8.2. Operators 

The syntax of expressions distinguishes between four classes of operators with different 
precedences (binding strenghts). The operator - has the highest precedence, followed by 
multiplication operators, addition operators, and relations. Operators of the same precedence 
associate from left to right. For example, x-y-z stands for (x-y)-z. 

$ expression = SimpleExpression [relation SimpleExpression]. 
$ relation = "=" I "ff:" I "<" I "<='' I ">" I ">=" I IN I 15. 
$ SimpleExpression = ["+"I"-"] term {AddOperator term}. 
$ AddOperator = "+" I "-" I OR. 
$ term = factor {MulOperator factor}. 
$ MulOperator = "*" I "/" I DIV I MOD I "&". 
$ factor = number I string I NIL I set I designator [ActualParameters] 
$ " (" expression ")" I "-" factor. 
$ set = "{"[element{"," element}]"}". 
$ element = expression [ " .. " expression]. 
$ Actual Parameters = " (" [Exp list] ")" . 

The available operators are listed in the following tables. In some instances, several 
different operations are designated by the same operator symbol. In these cases, the actual 
operation is identified by the type of the operands. Further operations are available through 
standard functions (see 10.2.). 



18 

8.2.1. Logical operators 
symbol result 

OR logical disjunction 
& logical conjunction 

negation 

These operators apply to BOOLEAN operands and yield a BOOLEAN result. 

p OR q stands for "if p then TRUE, otherwise q" 
p & q stands for "if p then q, otherwise FALSE" 
- p stands for "not p" 

8.2.2. Arithmetic operators 
symbol result 

+ sum 
difference 

* product 
I quotient 

DIV integer quotient 
MOD modulus 

The operators +, -, *• and I apply to operands of arithmetic types. The type of the result 
is that operand's type which includes the other operand's type, except for division (/),where 
the result is the real type which includes both operand types. When used as operators with a 
single operand, - denotes sign inversion and + denotes the identity operation. 

The operators DIV and MOD apply to integer operands only. The operators DIV and MOD 
are related by the following formulas defined for y > 0: 

x = (x DIV y) * y + (x MOD y) 0 ~ (x MOD y) < y 

8.2.3. Set operators 
symbol result 

+ union 
difference 

* intersection 
I symmetric set difference 

The monadic minus sign denotes the complement of x, i.e. -x denotes the set of integers 
between O and MAX(SET) which are not in x. 

x - y x * (-y) 
x I y = (x-y) + (y-x) 

8.2.4. Relations 
symbol relation 

equal 
# unequal 
< less 
<= less or equal 
> greater 
>= greater or equal 
IN set membership 
IS type test 



19 

Relations are Boolean. The ordering relations apply to the numeric types, CHAR, and 
character arrays (strings). The relations = and # also apply to sets, pointers, and procedure 
types. 

x IN s stands for "xis an element of s". x must be of an integer type, ands of type SET. 

v IS T stands for "v is of type T" and is called a type test. It is applicable, if v refers to a 
variable indirectly and the declared type of v includes the actual record type T of the 
referenced variable. Assuming, for instance, that T includes T1 and that v is a designator 
declared of type T, then the test "v IS T1" determines whether the actually designated variable 
is (not only a T, but also) a T1. 

Examples of expressions (refer to examples in Ch. 7): 

1987 (INTEGER) 
i DIV 3 (INTEGER) 
-p OR q (BOOLEAN) 
(i+j) * (i-j) (INTEGER) 
s - {8, 9, 13} (SET) 
i + x (REAL) 
a[i+j] * a[i-j] (REAL) 
(O<=i) & (i<100) (BOOLEAN) 
t.key = 0 (BOOLEAN) 
k IN {i .. j-1} (BOOLEAN) 
v IS CenterNode (BOOLEAN) 

9. Statements 

Statements denote actions. There are elementary and structured statements. Elementary 
statements are not composed of any parts that are themselves statements. They are the 
assignment, the procedure call, and the return and exit statements. Structured statements are 
composed of parts that are themselves statements. They are used to express sequencing and 

. conditional, selective, and repetitive execution. A statement may also be empty, in which case 
it denotes no action. The empty statement is included in order to relax punctuation rules in 
statement sequences. 

$ statement = [assignment I ProcedureCall I 
$ lfStatement I CaseStatement I WhileStatement I RepeatStatement I 
$ LoopStatement I WithStatement I EXI~ I RETURN [expression] ]. 

9.1. Assignments 

The assignment serves to replace the current value of a variable by a new value specified 
by an expression. The assignment operator is written as ":="and pronounced as becomes. 

$ assignment = designator":=" expression. 

The type of the expression must be included by, or it must extend the type of the variable. 
The following exceptions hold: 

1. The constant NIL can be assigned to variables of any pointer type. 

2. Strings can be assigned to any variable whose type is an array of characters, provided the 
length of the string is less than that of the array. If a string s of length n is assigned to an 
array a, the result is a[i] = s[i] for i = O ... n-1, and a[n] =OX. 

3. Values designated as public parts cannot be assigned (see Ch.11 ). 



?'" 

20 

Examples of assignments (see examples in Ch. 7): 

i := 0 
p := i = j 
x := i + 1 
j := log2 (i+j) 
F := log2 
s := {2, 3, 5, 7, 11, 13} 
a[i] := (x+y) * (x-y) 
t.key := i 
w[i+1 ].ch :="A" 

9.2. Procedure calls 

A procedure call serves to activate a procedure. The procedure call may contain a list of 
actual parameters which are substituted in place of their corresponding formal parameters 
defined in the procedure declaration (see Ch. 10). The correspondence is established by the 
positions of the parameters in the lists of actual and formal parameters respectively. There 
exist two kinds of parameters: variable and value parameters. 

In the case of variable parameters, the actual parameter must be a designator denoting a 
variable. If it designates an element of a structured variable, the selector is evaluated when 
the formal/actual parameter substitution takes place, i.e. before the execution of the 
procedure. If the parameter is a value parameter, the corresponding actual parameter must be 
an expression. This expression is evaluated prior to the procedure activation, and the 
resulting value is assigned to the formal parameter which now constitutes a local variable. 
The types of corresponding actual and formal parameters must be identical in the case of 
variable parameters and comply with the rule of assignment in the case of value parameters 
(see 9.1.). Exception are specified in 10.1. 

$ ProcedureCall = designator [Actual Parameters]. 

Examples of procedure calls: 

Readlnt(i) (see Ch.10) 
Writelnt(j*2+1, 6) 
INC(a [i]) 

9.3. Statement sequences 

Statement sequences denote the sequence of actions specified by the component 
statements which are separated by semicolons. 

$ StatementSequence = statement{";" statement}. 

9.4. If statements 

$ lfStatement = 
$ 
$ 
$ 

IF expression THEN StatementSequence 
{ELSIF expression THEN StatementSequence} 
[ELSE StatementSequence] 
END. 

If statements specify the conditional execution of guarded statements. The Boolean 
expression preceding a statement is called its guard. The guards are evaluated in sequence of 
occurrence, until one evaluates to TRUE, whereafter its associated statement sequence is 
executed. If no guard is satisfied, the statement sequence following the symbol ELSE is 
executed, if there is one. 



Example: 

IF (ch >="A") & (ch<= "Z") THEN Readldentifier 
ELSIF (ch>= "0") & (ch<= "9") THEN ReadNumber 
ELSIF ch="" THEN ReadString("") 
ELSIF ch='"" THEN ReadString(""') 
ELSE SpecialCharacter 
END 

9.5. Case statements 

21 

Case statements specify the selection and execution of a statement sequence according to 
the value of an expression. First the case expression is evaluated, then the statement 
sequence is executed whose case label list contains the obtained value. The type of the case 
expression must be an integer type or CHAR, and all labels must be of that type. Case labels 
are constants, and no value must occur more than once. If the value of the expression does 
not occur as a label of any case, the statement sequence following the symbol ELSE is 
selected, if there is one. Otherwise it is considered as an error. 

$ CaseStatement = CASE expression OF case 
$ {"I" case} 
$ [ELSE StatementSequence] 
$ END. 

$ case = [CaseLabellist ":" StatementSequence]. 
Case Labels { "," Case Labels}. 
ConstExpression [ " .. " ConstExpression 1. 

$ CaseLabelList 
$ CaseLabels = 

Example: 

CASE ch OF 
"A" .. "Z": Readldentifier 

I "O" .. "9": ReadNumber 
I ""' : ReadString 
I "" : ReadString 

ELSE Special Character 
END 

Note: Case statements are used when the case labels form a (nearly) contiguous set of values. 

9.6. While statements 

While statements specify the repeated execution of guarded statements (see 9.4.). The 
guards are evaluated in sequence of occurrence, until one evaluates to TRUE, whereafter its 
associated statement sequence is executed. Then this process is repeated. The repetition 
stops when all guards yield the value FALSE. 

$ WhileStatement =WHILE expression DO StatementSequence 
$ {ELSIF expression DO StatementSequence} 
$ END. 

Examples: 

WHILEj > 0 DO 
j := j DIV 2; i := i+1 

END 

WHILEj < i DO i := i-j 
ELSIF i <j DOj :=j-i 
END 



~,,~ 

22 

WHILE (t #NIL) & (t.key # i) DO 
t := t.left 

END 

9.7. Repeat Statements 

A repeat statement specifies the repeated execution of a statement sequence until a 
condition is satisfied. The statement sequence is executed at least once. 

$ RepeatStatement =REPEAT StatementSequence UNTIL expression. 

9.8. loop statements 

A loop statement specifies the repeated execution of a statement sequence. It is 
terminated by the execution of any exit statement within that sequence. 

$ LoopStatement = LOOP StatementSequence END. 

Example: 

LOOP 
IF t1 =NIL THEN EXIT END; 
IF x < t1.key THEN t2 := t1.left; p :=TRUE 
ELSI F x > t1 .key TH EN t2 := t1 .right; p := FALSE 
ELSE EXIT 
END; 
t1 := t2 

END 

While and repeat statements can be expressed by loop statements containing a single exit 
statement. Their use is recommended as they characterize the most frequently occurring 
situations where termination depends either on a single condition at either the beginning or 
end of the repeated statement sequence. The loop statement is useful to express cases with 
several termination conditions and points. Exit statements are contextually, although not 
syntactically bound to the loop statement which contains them (see 9.9.). 

9.9. Return and exit statements 

A return statement consists of the symbol RETURN, possibly followed by an expression. It 
indicates the termination of a procedure, and the expression specifies the result of a function 
procedure. Its type must be identical to the result type specified in the procedure heading 
(see Ch.10). 

Function procedures require the presence of a return statement indicating the result value. 
There may be several, although only one will be executed. In proper procedures, a return 
statement is implied by the end of the procedure body. An explicit return statement therefore 
appears as an additional, probably exceptional termination point. 

An exit statement consists of the symbol EXIT, and it specifies termination of the 
enclosing loop statement and continuation with the statement following that loop statement 
(see9.8). 

9.10. With statements 

If a pointer variable or a variable parameter with record structure is of a base type T, it 
may be designated in the heading of a with clause together with a type TO included in T. Then 
this variable is treated within the with statement as if it had been declared of type TO. The 



23 

with statement assumes a role similar to the type guard, extending the guard over an entire 
statement sequence. It may be regarded as a regional type guard. 

$ WithStatement = WITH qualident ":" qualident DO StatementSequence END. 

Example: 
WITH v: CenterNode DO name:= v.name; L := v.subnode END 

1 O. Procedure declarations 

Procedure declarations consist of a procedure heading and a block which is said to be the 
procedure body. The heading specifies the procedure identifier, the formal parameters, and the 
result type (if any). The block contains declarations and statements. The procedure identifier 
is repeated at the end of the procedure declaration. 

There are two kinds of procedures, namely proper procedures and function procedures. The 
latter are activated by a function design~ltor as a constituent of an expression, and yield a 
result that is an operand in the expression. Proper procedures are activated by a procedure 
call. The function procedure is distinguished in the declaration by indication of the type of its 
result following the parameter list. Its body must contain a RETURN statement which defines 
the result of the function procedure. 

All constants, variables, types, and procedures declared within the block that constitutes 
the procedure body are local to the procedure. The values of local variables are undefined 
upon entry to the procedure. Since procedures may be declared as local objects too, 
procedure declarations may be nested. Every object is said to be declared at a certain level of 
nesting. If it is declared local to a procedure at level k, it has itself level k+1. Objects declared 
not within another procedure are defined to be at level 0. 

In addition to its formal parameters and local objects, also the objects declared in the 
environment of the procedure are known and accessible in the procedure (with the exception 
of those objects that have the same name as an object declared locally). 

The use of the procedure identifier in a call within its declaration implies recursive 
activation of the procedure. 

$ ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident. 
$ ProcedureHeading = PROCEDURE ["*"] ident [Formal Parameters]. 
$ ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END. 
$ ForwardDeclaration = PROCEDURE "1'" ident [FormalParameters]. 
$ DeclarationSequence = [CONST {ConstantDeclaration ";"}] 
$ [TYPE {TypeDeclaration ";"}] [VAR {YariableDeclaration ";"}] 
$ {ProcedureDeclaration ";" I ForwardDeclaration ";"}. 

A jOJward declaration serves to allow forward references to a procedure that appears later 
in the text in full. The actual declaration - which specifies the body - must indicate the same 
parameters and result type (if any) as the forward declaration, and it must be within the 
same scope. An asterisk following the symbol PROCEDURE is a hint to the compiler and 
specifies that the procedure is to be usable as parameter and assignable to variables of a 
compatible procedure type. 

10.1. Formal parameters 

Formal parameters are identifiers which denote actual parameters specified in the 
procedure call. The correspondence between formal and actual parameters is established 
when the procedure is called. There are two kinds of parameters, namely value and variable 
parameters. The kind is indicated in the formal parameter list. Value parameters stand for 
local variables to which the result of the evaluation of the corresponding actual parameter is 



24 

assigned as initial value. Variable parameters correspond to actual parameters that are 
variables, and they stand for these variables. Variable parameters are indicated by the symbol 
VAR, value parameters by the absence of the symbol VAR. 

Formal parameters are local to the procedure, i.e. their scope is the program text which 
constitutes the procedure declaration. 

$ FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" qualident]. 
$ FPSection = [VAR] ldentlist ":" FormalType. 
$ FormalType = {ARRAY OF} qualident. 

The type of each formal parameter is specified in the parameter list. For variable 
parameters, it must be a base type of the type of the corresponding actual parameter. For 
value parameters, the rule of assignment holds (see 9.1 ), except if the parameter is an open 
array: If a parameter's type is specified as 

ARRAY OFT 

the parameter is said to be an open array parameter. Its type can be considered as the base 
type of all arrays with the same element type. The formal array can be accessed elementwise 
only, or it may occur as actual parameter corresponding to a formal parameter which is also 
an open array. 

In the case of a variable parameter with formal type BYTE, the corresponding actual 
parameter may be of type CHAR or SHORTINT. If the formal type is ARRAY OF BYTE, any 
actual parameter type is permitted. 

A function procedure without parameters has an empty parameter list. It must be called 
by a function designator whose actual parameter list is empty too. 

Restrictions: If a formal parameter specifies a procedure type, then the corresponding actual 
parameter must be either a procedure declared at level 0 or a variable (or parameter) of that 
procedure type. It cannot be a predefined procedure. 

The result type of a procedure can be neither a record nor an array. 

Examples of procedure declarations: 

PROCEDURE Readlnt(VAR x: INTEGER); 
VAR i : INTEGER; ch: CHAR; 

BEGIN i := O; Read(ch); 
WHILE ("O" <=ch) & (ch<= "9") DO 

i := 10*i + (ORD(ch)-ORD("O") ); Read(ch) 
END; 
x := i 

END Readlnt 

PROCEDURE Writelnt(x, n: INTEGER); (* 0 <= x < 101'5 *) 
VAR i: INTEGER; 

buf: ARRAY 5 OF INTEGER; 
BEGIN i := 0; 

REPEAT buf[i] := x MOD 10; x := x DIV 10; INC(i) UNTIL x = O; 
WHILE n > i DO Write(""); DEC(n) END; 
REPEAT DEC(i); Write(CHR(buf[i] + ORD("O"))) UNTIL i = 0 

END Writelnt 

PROCEDURE log2(x: INTEGER): INTEGER; 
VAR y: INTEGER; (*assume x>O*) 

BEGIN y := O; 
WHILE x > 1 DO x := x DIV 2; INC(y) END; 



RETURN y 
END log2 

10.2. Predefined procedures 

25 

The following table lists the predefined procedures. Some are generic procedures, i.e. they 
apply to several types of operands. v stands for a variable, x and n for expressions, and T for 
a type. 

Function procedures: 

Name Argument type Result type Function 

ABS(x) numeric type type of x absolute value 

ODD(x) integer type BOOLEAN x MOD 2=1 

CAP(x) CHAR CHAR corresponding capital letter 

ASH(x, n) x, n: integer type type of x arithmetic shift 

LSH (x, n) x: SET n: integer type SET logical shift 

ROT(x, n) x: SET; n: integer type SET rotation 

LEN(v, n) open array INTEGER the length of v in dimension n 

ADR(v) any LONG INT address of variable v 

SIZE(T) any INTEGER number of bytes required by T 

MAX(T) T = basic type T maximum value of type T 

MIN(T) T = basic type T minimum value of type T 

ASH(x, n) = x *2n 
LSH(x,n) = {i:O<=i<N:(i-n)INs} whereN=MAX(SET)+1 
ROT(x,n) = {i:O<=i<N:(i-n)MODNINs} 

Type conversion procedures: 

Name Argument type 

ORD(x) CHAR, BYTE 

CHR(x) integer type, BYTE 

SHORT(x) LONG INT 
INTEGER 
LONG REAL 

LONG(x) SHORTINT 
INTEGER 
REAL 

ENTIER(x) real type 

Note that ENTIER(i/j) = i DIV j 

Proper procedures: 

Name 

INC(v) 

DEC(v) 

Argument types 

integer type 

integer type 

Result type 

INTEGER 

CHAR 

INTEGER 
SHORTINT 
REAL 

INTEGER 
LONG INT 
LONG REAL 

LONG INT 

Function 

v := v+1 

v := v-1 

Function 

ordinal number of x 

character with ordinal number x 

identity 

identity 

largest integer not greater than x 



26 

INCL(v, x) 

EXCL(v, x) 

NEW(v) 

HALT(x) 

v: SET; x: integer type v := v + {x} 

v: SET; x: integer type v := v - {x} 

pointer type 

integer constant 

allocate vt 

terminate program execution 

In HALT(x), xis a parameter whose interpretation is left to the underlying system implementation. 

11.Modules 
A module constitutes a collection of declarations of constants, types, variables, and 

procedures, and a sequence of statements for the purpose of initializing the variables. A 
module consists of two textually separate parts, the definition parl and the implementation 
part. Both parts are accepted by compilers as compilation units. 

The definition part specifies the names and properties of objects that are relevant to 
clients, i.e. to other modules which import the module to make use of its facilities. 

The implementation part contains local objects and statements that need not be visible in 
client modules and remain hidden. Typically, the definition part contains constant and type 
declarations, and specifications of procedure headings. The corresponding implementation 
part contains the complete procedure declarations, and possibly further declarations of 
objects that remain invisible outside the module. 

Definition and implementation parts exist in pairs. Both may contain an import list of 
modules to be referenced. All objects declared in the definition part are available in the 
corresponding implementation part. Imports are module identifiers. The form "M : MO" 
serves to associate with the identifier M a module with external name MO. 

$ DefinitionPart = DEFINITION ident ";" [lmportlist] DefinitionSequence END ident ".". 
$ lmportlist = IMPORT import{"," import} ";" . 
$ import = ident [":" ident]. 
$ DefinitionSequence = [CONST {ConstantDeclaration ";"}] 
$ [TYPE {TypeDedaration ";"}] [VAR {VariableDeclaration ";"}] 
$ {ProcedureHeading ";" }. 
$ lmplementationPart = IMPLEMENTATION ident ";" [lmportlist] DeclarationSequence 
$ [BEGIN StatementSequence] [CLOSE StatementSequence] END ident ".". 
$ CompilationUnit = DefinitionPart I lmplementationPart. 

The statement sequence following the symbol BEGIN is executed when the module is 
loaded, i.e. it serves as an initialization command. The statement sequence following the 
symbol CLOSE is executed when the module is discharged from a system, i.e. made 
unavailable. 

A record type declared in a definition part may be extended in the corresponding 
definition part by an extended re-declaration. The former is then called the public part of the 
whole. Only the fields defined in the public part are visible to client modules; the other ones 
remain hidden from clients. The visible fields must be declared preceding the hidden ones, 
and occur with the same identifiers and types and in the same sequence in both definition 
and implementation parts. 

Example: in definition part: 

TYPE Viewer = RECORD width, height: INTEGER END 



27 

in implementation part: 

TYPE Viewer = RECORD width, height, x, y: INTEGER; 
next: ViewerPtr; obj: ObjPtr 

END 

Eidg. Techn. Hochschule Zurich 
lnformatikbibliothek 

ETH-Zentrum 
CH-8092 Zurich 


