[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [O] workflow, matlab+latex in org file
From: |
Scott Randby |
Subject: |
Re: [O] workflow, matlab+latex in org file |
Date: |
Fri, 10 Mar 2017 12:51:37 -0500 |
User-agent: |
Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101 Thunderbird/45.7.0 |
On 03/10/2017 11:08 AM, Uwe Brauer wrote:
>>>> "John" == John Kitchin <address@hidden> writes:
>
> Hi John,
>
> Quite some time ago you send me this code of yours. It somehow
> disappeared in my mail and only by now I tried it out, great, really
>
> Only one question
> I copied your code in a org file, executed the src sections and
> obtained:
>
>
> > #+begin_src matlab :results output latex
> > clear all;
> > syms e p R g w K K2;
> > phi=[(e + (e+p)*R^2)^((g-1)/2);((e+p)*R*sqrt(1+R^2))/(e+(e+p)*R^2)];
>
> > jac=jacobian(phi,[e,p]);
> > ltxjac=latex(jac);
> > disp(ltxjac)
> > #+end_src
>
> > #+RESULTS:
> > #+BEGIN_LaTeX
>
> > \left(\begin{array}{cc} {\left(\left(e + p\right)\, R^2 +
> > e\right)}^{\frac{g}{2} - \frac{3}{2}}\, \left(R^2 + 1\right)\,
> > \left(\frac{g}{2} - \frac{1}{2}\right) & R^2\, {\left(\left(e +
> > p\right)\, R^2 + e\right)}^{\frac{g}{2} - \frac{3}{2}}\,
> > \left(\frac{g}{2} - \frac{1}{2}\right)\\ \frac{R\, \sqrt{R^2 +
> > 1}}{\left(e + p\right)\, R^2 + e} - \frac{R\, {\left(R^2 +
> > 1\right)}^{\frac{3}{2}}\, \left(e + p\right)}{{\left(\left(e +
> > p\right)\, R^2 + e\right)}^2} & \frac{R\, \sqrt{R^2 + 1}}{\left(e +
> > p\right)\, R^2 + e} - \frac{R^3\, \sqrt{R^2 + 1}\, \left(e +
> > p\right)}{{\left(\left(e + p\right)\, R^2 + e\right)}^2}
> > \end{array}\right)
> > #+END_LaTeX
>
> How do I suppose to continue now? Because if I export this to a latex
> file the latex equations are not exported! I admit that I only use org
> files this way export them to latex and continue working.
You need to change "#+BEGIN_LaTeX" to "#+begin_export latex" and
"#+END_LaTeX" to "#+end_export" for Org 9.0 and above.
Scott Randby
>
> What do I miss?
>
> Thanks
>
> Uwe
>
> Your mail:
>
>> You might consider the alternative, no-frills approach below. I defined
>> a new execute function that strips the header and >> out of the output.
>> It won't support any kind of session or header variables, but if you
>> don't use those it might work for you.
>>
>> #+BEGIN_SRC emacs-lisp
>> (defun org-babel-execute:matlab (body params)
>> (interactive "P")
>> (let* ((current-file (buffer-file-name))
>> (code (org-element-property :value (org-element-context)))
>> (result-params (cdr (assoc :result-params params)))
>> m-file
>> md5-hash)
>>
>>
>> (with-temp-buffer
>> (insert code)
>> (setq md5-hash (md5 (buffer-string))
>> mbuffer (format "*m-%s*" md5-hash)
>> m-file (format "m-%s.m" md5-hash)))
>>
>> ;; create the file to run
>> (with-temp-file m-file
>> (insert code))
>>
>> (let ((results (shell-command-to-string
>> (concat
>> "/Applications/MATLAB_R2013a.app/bin/matlab "
>> "-nodesktop -nojvm -nosplash -nodisplay <"
>> m-file))))
>> (delete-file m-file)
>> (when results
>> ;; strip out >>
>> (setq results (replace-regexp-in-string ">> " "" results))
>> ;; remove first 10 lines that are the header.
>> (setq results (mapconcat 'identity
>> (nthcdr 10 (split-string results "\n"))
>> "\n")))
>> (org-babel-result-cond result-params
>> results))))
>> #+END_SRC
>>
>> #+begin_src matlab :results output latex
>> clear all;
>> syms e p R g w K K2;
>> phi=[(e + (e+p)*R^2)^((g-1)/2);((e+p)*R*sqrt(1+R^2))/(e+(e+p)*R^2)];
>>
>> jac=jacobian(phi,[e,p]);
>> ltxjac=latex(jac);
>> disp(ltxjac)
>> #+end_src
>>
>> #+RESULTS:
>> #+BEGIN_LaTeX
>>
>> \left(\begin{array}{cc} {\left(\left(e + p\right)\, R^2 +
>> e\right)}^{\frac{g}{2} - \frac{3}{2}}\, \left(R^2 + 1\right)\,
>> \left(\frac{g}{2} - \frac{1}{2}\right) & R^2\, {\left(\left(e +
>> p\right)\, R^2 + e\right)}^{\frac{g}{2} - \frac{3}{2}}\,
>> \left(\frac{g}{2} - \frac{1}{2}\right)\\ \frac{R\, \sqrt{R^2 +
>> 1}}{\left(e + p\right)\, R^2 + e} - \frac{R\, {\left(R^2 +
>> 1\right)}^{\frac{3}{2}}\, \left(e + p\right)}{{\left(\left(e +
>> p\right)\, R^2 + e\right)}^2} & \frac{R\, \sqrt{R^2 + 1}}{\left(e +
>> p\right)\, R^2 + e} - \frac{R^3\, \sqrt{R^2 + 1}\, \left(e +
>> p\right)}{{\left(\left(e + p\right)\, R^2 + e\right)}^2}
>> \end{array}\right)
>> #+END_LaTeX
>>
>>
>>
>> Uwe Brauer writes:
>>
>> [+]
>>>>>> "John" == John Kitchin <address@hidden> writes:
>>>
>>> > Here is an example using sympy. I think you will have to wrap the
>>> matlab
>>> > output in $$ yourself if that is what you want.
>>>
>>> Right. Using your example I obtain:
>>> ,----
>>> |
>>> |
>>> | < M A T L A B (R) >
>>> | Copyright 1984-2010 The MathWorks, Inc.
>>> | Version 7.10.0.499 (R2010a) 32-bit (glnx86)
>>> | February 5, 2010
>>> |
>>> |
>>> | To get started, type one of these: helpwin, helpdesk, or demo.
>>> | For product information, visit www.mathworks.com.
>>> |
>>> | >> >> >> >> >> >>
>>> | ltxjac =
>>> |
>>> | \left(\begin{array}{cc} {\left(\left(e + p\right)\, R^2 +
>>> | e\right)}^{\frac{g}{2} - \frac{3}{2}}\, \left(R^2 + 1\right)\,
>>> | \left(\frac{g}{2} - \frac{1}{2}\right) & R^2\, {\left(\left(e +
>>> | p\right)\, R^2 + e\right)}^{\frac{g}{2} - \frac{3}{2}}\,
>>> | \left(\frac{g}{2} - \frac{1}{2}\right)\\ \frac{R\, \sqrt{R^2 +
>>> | 1}}{\left(e + p\right)\, R^2 + e} - \frac{R\, {\left(R^2 +
>>> | 1\right)}^{\frac{3}{2}}\, \left(e + p\right)}{{\left(\left(e +
>>> | p\right)\, R^2 + e\right)}^2} & \frac{R\, \sqrt{R^2 + 1}}{\left(e
>>> | + p\right)\, R^2 + e} - \frac{R^3\, \sqrt{R^2 + 1}\, \left(e +
>>> | p\right)}{{\left(\left(e + p\right)\, R^2 + e\right)}^2}
>>> | \end{array}\right)
>>> |
>>> | >>
>>> `----
>>>
>>> That is not perfect but much better than the original solutions, thanks
>>>
>>> Uwe
>>
>>
>> --
>> Professor John Kitchin
>> Doherty Hall A207F
>> Department of Chemical Engineering
>> Carnegie Mellon University
>> Pittsburgh, PA 15213
>> 412-268-7803
>> @johnkitchin
>> http://kitchingroup.cheme.cmu.edu
>>
>
>