dazuko-help
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Dazuko-help] http://dazuko.dnsalias.org/files/patch-dazuko-opensuse


From: Bernd Adda
Subject: Re: [Dazuko-help] http://dazuko.dnsalias.org/files/patch-dazuko-opensuse-11.diff.gz
Date: Thu, 12 Feb 2009 17:09:02 +0100
User-agent: Mozilla/5.0 (X11; U; Linux i686; de-AT; rv:1.8.1.17) Gecko/20080829 SeaMonkey/1.1.12

John Ogness schrieb:
> On 2009-02-12, Bernd Adda <address@hidden> wrote:
>> Please can I get this patch for opensuse-11.1 Kernel 2.6.27.7-9?
>>
>> The patch for 11.0 makes errors (hooks ?) in the securities of the
>> kernel 11.1
> 
> Can you post the "include/linux/security.h" file from your kernel? If
> I have that, I can see if I can quickly make a new patch.
> 
> John Ogness
> 

hi John Ogness

here I send the */include/linux/security.h and my script
"patch -p1 < patch-dazuko-opensuse-11.diff"
in Kernel-Source-2.6.27.7-9" with the errors.
Hoping it can help
many thanks
Bernd
 
patch -p1 < patch-dazuko-opensuse-11.diff                                       
                             

patching file security/dazuko/dazuko_call.h
patching file security/dazuko/dazuko_core.c
patching file security/dazuko/dazuko_core.h
patching file security/dazuko/dazuko_events.h
patching file security/dazuko/dazuko_linux26.c
patching file security/dazuko/dazuko_linux26.h
patching file security/dazuko/dazuko_platform.h
patching file security/dazuko/dazuko_transport.c
patching file security/dazuko/dazuko_transport.h
patching file security/dazuko/dazuko_version.h
patching file security/dazuko/hooks.c
patching file security/dazuko/Kconfig
patching file security/dazuko/Makefile
patching file security/Kconfig
Hunk #1 succeeded at 121 with fuzz 2 (offset -4 lines).
patching file security/Makefile
Hunk #1 succeeded at 5 with fuzz 2.
Hunk #2 FAILED at 18.
1 out of 2 hunks FAILED -- saving rejects to file security/Makefile.rej
 
/*
 * Linux Security plug
 *
 * Copyright (C) 2001 WireX Communications, Inc <address@hidden>
 * Copyright (C) 2001 Greg Kroah-Hartman <address@hidden>
 * Copyright (C) 2001 Networks Associates Technology, Inc <address@hidden>
 * Copyright (C) 2001 James Morris <address@hidden>
 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
 *
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 2 of the License, or
 *      (at your option) any later version.
 *
 *      Due to this file being licensed under the GPL there is controversy over
 *      whether this permits you to write a module that #includes this file
 *      without placing your module under the GPL.  Please consult a lawyer for
 *      advice before doing this.
 *
 */

#ifndef __LINUX_SECURITY_H
#define __LINUX_SECURITY_H

#include <linux/fs.h>
#include <linux/binfmts.h>
#include <linux/signal.h>
#include <linux/resource.h>
#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/msg.h>
#include <linux/sched.h>
#include <linux/key.h>
#include <linux/xfrm.h>
#include <net/flow.h>

/* Maximum number of letters for an LSM name string */
#define SECURITY_NAME_MAX       10

struct ctl_table;
struct audit_krule;

/*
 * These functions are in security/capability.c and are used
 * as the default capabilities functions
 */
extern int cap_capable(struct task_struct *tsk, int cap);
extern int cap_settime(struct timespec *ts, struct timezone *tz);
extern int cap_ptrace_may_access(struct task_struct *child, unsigned int mode);
extern int cap_ptrace_traceme(struct task_struct *parent);
extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, 
kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern int cap_capset_check(struct task_struct *target, kernel_cap_t 
*effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern void cap_capset_set(struct task_struct *target, kernel_cap_t *effective, 
kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern int cap_bprm_set_security(struct linux_binprm *bprm);
extern void cap_bprm_apply_creds(struct linux_binprm *bprm, int unsafe);
extern int cap_bprm_secureexec(struct linux_binprm *bprm);
extern int cap_inode_setxattr(struct dentry *dentry, struct vfsmount *mnt,
                              const char *name, const void *value, size_t size,
                              int flags, struct file *file);
extern int cap_inode_removexattr(struct dentry *dentry, struct vfsmount *mnt,
                                 const char *name, struct file *file);
extern int cap_inode_need_killpriv(struct dentry *dentry);
extern int cap_inode_killpriv(struct dentry *dentry);
extern int cap_task_post_setuid(uid_t old_ruid, uid_t old_euid, uid_t old_suid, 
int flags);
extern void cap_task_reparent_to_init(struct task_struct *p);
extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
                          unsigned long arg4, unsigned long arg5, long *rc_p);
extern int cap_task_setscheduler(struct task_struct *p, int policy, struct 
sched_param *lp);
extern int cap_task_setioprio(struct task_struct *p, int ioprio);
extern int cap_task_setnice(struct task_struct *p, int nice);
extern int cap_syslog(int type);
extern int cap_vm_enough_memory(struct mm_struct *mm, long pages);

struct msghdr;
struct sk_buff;
struct sock;
struct sockaddr;
struct socket;
struct flowi;
struct dst_entry;
struct xfrm_selector;
struct xfrm_policy;
struct xfrm_state;
struct xfrm_user_sec_ctx;
struct seq_file;

extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
extern int cap_netlink_recv(struct sk_buff *skb, int cap);

extern unsigned long mmap_min_addr;
/*
 * Values used in the task_security_ops calls
 */
/* setuid or setgid, id0 == uid or gid */
#define LSM_SETID_ID    1

/* setreuid or setregid, id0 == real, id1 == eff */
#define LSM_SETID_RE    2

/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
#define LSM_SETID_RES   4

/* setfsuid or setfsgid, id0 == fsuid or fsgid */
#define LSM_SETID_FS    8

/* forward declares to avoid warnings */
struct sched_param;
struct request_sock;

/* bprm_apply_creds unsafe reasons */
#define LSM_UNSAFE_SHARE        1
#define LSM_UNSAFE_PTRACE       2
#define LSM_UNSAFE_PTRACE_CAP   4

#ifdef CONFIG_SECURITY

struct security_mnt_opts {
        char **mnt_opts;
        int *mnt_opts_flags;
        int num_mnt_opts;
};

static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
{
        opts->mnt_opts = NULL;
        opts->mnt_opts_flags = NULL;
        opts->num_mnt_opts = 0;
}

static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
{
        int i;
        if (opts->mnt_opts)
                for (i = 0; i < opts->num_mnt_opts; i++)
                        kfree(opts->mnt_opts[i]);
        kfree(opts->mnt_opts);
        opts->mnt_opts = NULL;
        kfree(opts->mnt_opts_flags);
        opts->mnt_opts_flags = NULL;
        opts->num_mnt_opts = 0;
}

/**
 * struct security_operations - main security structure
 *
 * Security module identifier.
 *
 * @name:
 *      A string that acts as a unique identifeir for the LSM with max number
 *      of characters = SECURITY_NAME_MAX.
 *
 * Security hooks for program execution operations.
 *
 * @bprm_alloc_security:
 *      Allocate and attach a security structure to the @bprm->security field.
 *      The security field is initialized to NULL when the bprm structure is
 *      allocated.
 *      @bprm contains the linux_binprm structure to be modified.
 *      Return 0 if operation was successful.
 * @bprm_free_security:
 *      @bprm contains the linux_binprm structure to be modified.
 *      Deallocate and clear the @bprm->security field.
 * @bprm_apply_creds:
 *      Compute and set the security attributes of a process being transformed
 *      by an execve operation based on the old attributes (current->security)
 *      and the information saved in @bprm->security by the set_security hook.
 *      Since this hook function (and its caller) are void, this hook can not
 *      return an error.  However, it can leave the security attributes of the
 *      process unchanged if an access failure occurs at this point.
 *      bprm_apply_creds is called under task_lock.  @unsafe indicates various
 *      reasons why it may be unsafe to change security state.
 *      @bprm contains the linux_binprm structure.
 * @bprm_post_apply_creds:
 *      Runs after bprm_apply_creds with the task_lock dropped, so that
 *      functions which cannot be called safely under the task_lock can
 *      be used.  This hook is a good place to perform state changes on
 *      the process such as closing open file descriptors to which access
 *      is no longer granted if the attributes were changed.
 *      Note that a security module might need to save state between
 *      bprm_apply_creds and bprm_post_apply_creds to store the decision
 *      on whether the process may proceed.
 *      @bprm contains the linux_binprm structure.
 * @bprm_set_security:
 *      Save security information in the bprm->security field, typically based
 *      on information about the bprm->file, for later use by the apply_creds
 *      hook.  This hook may also optionally check permissions (e.g. for
 *      transitions between security domains).
 *      This hook may be called multiple times during a single execve, e.g. for
 *      interpreters.  The hook can tell whether it has already been called by
 *      checking to see if @bprm->security is non-NULL.  If so, then the hook
 *      may decide either to retain the security information saved earlier or
 *      to replace it.
 *      @bprm contains the linux_binprm structure.
 *      Return 0 if the hook is successful and permission is granted.
 * @bprm_check_security:
 *      This hook mediates the point when a search for a binary handler will
 *      begin.  It allows a check the @bprm->security value which is set in
 *      the preceding set_security call.  The primary difference from
 *      set_security is that the argv list and envp list are reliably
 *      available in @bprm.  This hook may be called multiple times
 *      during a single execve; and in each pass set_security is called
 *      first.
 *      @bprm contains the linux_binprm structure.
 *      Return 0 if the hook is successful and permission is granted.
 * @bprm_secureexec:
 *      Return a boolean value (0 or 1) indicating whether a "secure exec"
 *      is required.  The flag is passed in the auxiliary table
 *      on the initial stack to the ELF interpreter to indicate whether libc
 *      should enable secure mode.
 *      @bprm contains the linux_binprm structure.
 *
 * Security hooks for filesystem operations.
 *
 * @sb_alloc_security:
 *      Allocate and attach a security structure to the sb->s_security field.
 *      The s_security field is initialized to NULL when the structure is
 *      allocated.
 *      @sb contains the super_block structure to be modified.
 *      Return 0 if operation was successful.
 * @sb_free_security:
 *      Deallocate and clear the sb->s_security field.
 *      @sb contains the super_block structure to be modified.
 * @sb_statfs:
 *      Check permission before obtaining filesystem statistics for the @mnt
 *      mountpoint.
 *      @dentry is a handle on the superblock for the filesystem.
 *      Return 0 if permission is granted.
 * @sb_mount:
 *      Check permission before an object specified by @dev_name is mounted on
 *      the mount point named by @nd.  For an ordinary mount, @dev_name
 *      identifies a device if the file system type requires a device.  For a
 *      remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
 *      loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
 *      pathname of the object being mounted.
 *      @dev_name contains the name for object being mounted.
 *      @path contains the path for mount point object.
 *      @type contains the filesystem type.
 *      @flags contains the mount flags.
 *      @data contains the filesystem-specific data.
 *      Return 0 if permission is granted.
 * @sb_copy_data:
 *      Allow mount option data to be copied prior to parsing by the filesystem,
 *      so that the security module can extract security-specific mount
 *      options cleanly (a filesystem may modify the data e.g. with strsep()).
 *      This also allows the original mount data to be stripped of security-
 *      specific options to avoid having to make filesystems aware of them.
 *      @type the type of filesystem being mounted.
 *      @orig the original mount data copied from userspace.
 *      @copy copied data which will be passed to the security module.
 *      Returns 0 if the copy was successful.
 * @sb_check_sb:
 *      Check permission before the device with superblock @mnt->sb is mounted
 *      on the mount point named by @nd.
 *      @mnt contains the vfsmount for device being mounted.
 *      @path contains the path for the mount point.
 *      Return 0 if permission is granted.
 * @sb_umount:
 *      Check permission before the @mnt file system is unmounted.
 *      @mnt contains the mounted file system.
 *      @flags contains the unmount flags, e.g. MNT_FORCE.
 *      Return 0 if permission is granted.
 * @sb_umount_close:
 *      Close any files in the @mnt mounted filesystem that are held open by
 *      the security module.  This hook is called during an umount operation
 *      prior to checking whether the filesystem is still busy.
 *      @mnt contains the mounted filesystem.
 * @sb_umount_busy:
 *      Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
 *      any files that were closed by umount_close.  This hook is called during
 *      an umount operation if the umount fails after a call to the
 *      umount_close hook.
 *      @mnt contains the mounted filesystem.
 * @sb_post_remount:
 *      Update the security module's state when a filesystem is remounted.
 *      This hook is only called if the remount was successful.
 *      @mnt contains the mounted file system.
 *      @flags contains the new filesystem flags.
 *      @data contains the filesystem-specific data.
 * @sb_post_addmount:
 *      Update the security module's state when a filesystem is mounted.
 *      This hook is called any time a mount is successfully grafetd to
 *      the tree.
 *      @mnt contains the mounted filesystem.
 *      @mountpoint contains the path for the mount point.
 * @sb_pivotroot:
 *      Check permission before pivoting the root filesystem.
 *      @old_path contains the path for the new location of the current root 
(put_old).
 *      @new_path contains the path for the new root (new_root).
 *      Return 0 if permission is granted.
 * @sb_post_pivotroot:
 *      Update module state after a successful pivot.
 *      @old_path contains the path for the old root.
 *      @new_path contains the path for the new root.
 * @sb_set_mnt_opts:
 *      Set the security relevant mount options used for a superblock
 *      @sb the superblock to set security mount options for
 *      @opts binary data structure containing all lsm mount data
 * @sb_clone_mnt_opts:
 *      Copy all security options from a given superblock to another
 *      @oldsb old superblock which contain information to clone
 *      @newsb new superblock which needs filled in
 * @sb_parse_opts_str:
 *      Parse a string of security data filling in the opts structure
 *      @options string containing all mount options known by the LSM
 *      @opts binary data structure usable by the LSM
 *
 * Security hooks for inode operations.
 *
 * @inode_alloc_security:
 *      Allocate and attach a security structure to @inode->i_security.  The
 *      i_security field is initialized to NULL when the inode structure is
 *      allocated.
 *      @inode contains the inode structure.
 *      Return 0 if operation was successful.
 * @inode_free_security:
 *      @inode contains the inode structure.
 *      Deallocate the inode security structure and set @inode->i_security to
 *      NULL.
 * @inode_init_security:
 *      Obtain the security attribute name suffix and value to set on a newly
 *      created inode and set up the incore security field for the new inode.
 *      This hook is called by the fs code as part of the inode creation
 *      transaction and provides for atomic labeling of the inode, unlike
 *      the post_create/mkdir/... hooks called by the VFS.  The hook function
 *      is expected to allocate the name and value via kmalloc, with the caller
 *      being responsible for calling kfree after using them.
 *      If the security module does not use security attributes or does
 *      not wish to put a security attribute on this particular inode,
 *      then it should return -EOPNOTSUPP to skip this processing.
 *      @inode contains the inode structure of the newly created inode.
 *      @dir contains the inode structure of the parent directory.
 *      @name will be set to the allocated name suffix (e.g. selinux).
 *      @value will be set to the allocated attribute value.
 *      @len will be set to the length of the value.
 *      Returns 0 if @name and @value have been successfully set,
 *              -EOPNOTSUPP if no security attribute is needed, or
 *              -ENOMEM on memory allocation failure.
 * @inode_create:
 *      Check permission to create a regular file.
 *      @dir contains inode structure of the parent of the new file.
 *      @dentry contains the dentry structure for the file to be created.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      @mode contains the file mode of the file to be created.
 *      Return 0 if permission is granted.
 * @inode_link:
 *      Check permission before creating a new hard link to a file.
 *      @old_dentry contains the dentry structure for an existing link to the 
file.
 *      @old_mnt is the vfsmount corresponding to @old_dentry (may be NULL).
 *      @dir contains the inode structure of the parent directory of the new 
link.
 *      @new_dentry contains the dentry structure for the new link.
 *      @new_mnt is the vfsmount corresponding to @new_dentry (may be NULL).
 *      Return 0 if permission is granted.
 * @inode_unlink:
 *      Check the permission to remove a hard link to a file.
 *      @dir contains the inode structure of parent directory of the file.
 *      @dentry contains the dentry structure for file to be unlinked.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      Return 0 if permission is granted.
 * @inode_symlink:
 *      Check the permission to create a symbolic link to a file.
 *      @dir contains the inode structure of parent directory of the symbolic 
link.
 *      @dentry contains the dentry structure of the symbolic link.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      @old_name contains the pathname of file.
 *      Return 0 if permission is granted.
 * @inode_mkdir:
 *      Check permissions to create a new directory in the existing directory
 *      associated with inode strcture @dir.
 *      @dir containst the inode structure of parent of the directory to be 
created.
 *      @dentry contains the dentry structure of new directory.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      @mode contains the mode of new directory.
 *      Return 0 if permission is granted.
 * @inode_rmdir:
 *      Check the permission to remove a directory.
 *      @dir contains the inode structure of parent of the directory to be 
removed.
 *      @dentry contains the dentry structure of directory to be removed.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      Return 0 if permission is granted.
 * @inode_mknod:
 *      Check permissions when creating a special file (or a socket or a fifo
 *      file created via the mknod system call).  Note that if mknod operation
 *      is being done for a regular file, then the create hook will be called
 *      and not this hook.
 *      @dir contains the inode structure of parent of the new file.
 *      @dentry contains the dentry structure of the new file.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      @mode contains the mode of the new file.
 *      @dev contains the device number.
 *      Return 0 if permission is granted.
 * @inode_rename:
 *      Check for permission to rename a file or directory.
 *      @old_dir contains the inode structure for parent of the old link.
 *      @old_dentry contains the dentry structure of the old link.
 *      @old_mnt is the vfsmount corresponding to @old_dentry (may be NULL).
 *      @new_dir contains the inode structure for parent of the new link.
 *      @new_dentry contains the dentry structure of the new link.
 *      @new_mnt is the vfsmount corresponding to @new_dentry (may be NULL).
 *      Return 0 if permission is granted.
 * @inode_readlink:
 *      Check the permission to read the symbolic link.
 *      @dentry contains the dentry structure for the file link.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      Return 0 if permission is granted.
 * @inode_follow_link:
 *      Check permission to follow a symbolic link when looking up a pathname.
 *      @dentry contains the dentry structure for the link.
 *      @nd contains the nameidata structure for the parent directory.
 *      Return 0 if permission is granted.
 * @inode_permission:
 *      Check permission before accessing an inode.  This hook is called by the
 *      existing Linux permission function, so a security module can use it to
 *      provide additional checking for existing Linux permission checks.
 *      Notice that this hook is called when a file is opened (as well as many
 *      other operations), whereas the file_security_ops permission hook is
 *      called when the actual read/write operations are performed.
 *      @inode contains the inode structure to check.
 *      @mask contains the permission mask.
 *      @nd contains the nameidata (may be NULL).
 *      Return 0 if permission is granted.
 * @inode_setattr:
 *      Check permission before setting file attributes.  Note that the kernel
 *      call to notify_change is performed from several locations, whenever
 *      file attributes change (such as when a file is truncated, chown/chmod
 *      operations, transferring disk quotas, etc).
 *      @dentry contains the dentry structure for the file.
 *      @mnt is the vfsmount corresponding to @dentry (may be NULL).
 *      @attr is the iattr structure containing the new file attributes.
 *      Return 0 if permission is granted.
 * @inode_getattr:
 *      Check permission before obtaining file attributes.
 *      @mnt is the vfsmount where the dentry was looked up
 *      @dentry contains the dentry structure for the file.
 *      Return 0 if permission is granted.
 * @inode_delete:
 *      @inode contains the inode structure for deleted inode.
 *      This hook is called when a deleted inode is released (i.e. an inode
 *      with no hard links has its use count drop to zero).  A security module
 *      can use this hook to release any persistent label associated with the
 *      inode.
 * @inode_setxattr:
 *      Check permission before setting the extended attributes
 *      @value identified by @name for @dentry and @mnt.
 *      Return 0 if permission is granted.
 * @inode_post_setxattr:
 *      Update inode security field after successful setxattr operation.
 *      @value identified by @name for @dentry and @mnt.
 * @inode_getxattr:
 *      Check permission before obtaining the extended attributes
 *      identified by @name for @dentry and @mnt.
 *      Return 0 if permission is granted.
 * @inode_listxattr:
 *      Check permission before obtaining the list of extended attribute
 *      names for @dentry and @mnt.
 *      Return 0 if permission is granted.
 * @inode_removexattr:
 *      Check permission before removing the extended attribute
 *      identified by @name for @dentry.
 *      Return 0 if permission is granted.
 * @inode_getsecurity:
 *      Retrieve a copy of the extended attribute representation of the
 *      security label associated with @name for @inode via @buffer.  Note that
 *      @name is the remainder of the attribute name after the security prefix
 *      has been removed. @alloc is used to specify of the call should return a
 *      value via the buffer or just the value length Return size of buffer on
 *      success.
 * @inode_setsecurity:
 *      Set the security label associated with @name for @inode from the
 *      extended attribute value @value.  @size indicates the size of the
 *      @value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
 *      Note that @name is the remainder of the attribute name after the
 *      security. prefix has been removed.
 *      Return 0 on success.
 * @inode_listsecurity:
 *      Copy the extended attribute names for the security labels
 *      associated with @inode into @buffer.  The maximum size of @buffer
 *      is specified by @buffer_size.  @buffer may be NULL to request
 *      the size of the buffer required.
 *      Returns number of bytes used/required on success.
 * @inode_need_killpriv:
 *      Called when an inode has been changed.
 *      @dentry is the dentry being changed.
 *      Return <0 on error to abort the inode change operation.
 *      Return 0 if inode_killpriv does not need to be called.
 *      Return >0 if inode_killpriv does need to be called.
 * @inode_killpriv:
 *      The setuid bit is being removed.  Remove similar security labels.
 *      Called with the dentry->d_inode->i_mutex held.
 *      @dentry is the dentry being changed.
 *      Return 0 on success.  If error is returned, then the operation
 *      causing setuid bit removal is failed.
 * @inode_getsecid:
 *      Get the secid associated with the node.
 *      @inode contains a pointer to the inode.
 *      @secid contains a pointer to the location where result will be saved.
 *      In case of failure, @secid will be set to zero.
 *
 * Security hooks for file operations
 *
 * @file_permission:
 *      Check file permissions before accessing an open file.  This hook is
 *      called by various operations that read or write files.  A security
 *      module can use this hook to perform additional checking on these
 *      operations, e.g.  to revalidate permissions on use to support privilege
 *      bracketing or policy changes.  Notice that this hook is used when the
 *      actual read/write operations are performed, whereas the
 *      inode_security_ops hook is called when a file is opened (as well as
 *      many other operations).
 *      Caveat:  Although this hook can be used to revalidate permissions for
 *      various system call operations that read or write files, it does not
 *      address the revalidation of permissions for memory-mapped files.
 *      Security modules must handle this separately if they need such
 *      revalidation.
 *      @file contains the file structure being accessed.
 *      @mask contains the requested permissions.
 *      Return 0 if permission is granted.
 * @file_alloc_security:
 *      Allocate and attach a security structure to the file->f_security field.
 *      The security field is initialized to NULL when the structure is first
 *      created.
 *      @file contains the file structure to secure.
 *      Return 0 if the hook is successful and permission is granted.
 * @file_free_security:
 *      Deallocate and free any security structures stored in file->f_security.
 *      @file contains the file structure being modified.
 * @file_ioctl:
 *      @file contains the file structure.
 *      @cmd contains the operation to perform.
 *      @arg contains the operational arguments.
 *      Check permission for an ioctl operation on @file.  Note that @arg can
 *      sometimes represents a user space pointer; in other cases, it may be a
 *      simple integer value.  When @arg represents a user space pointer, it
 *      should never be used by the security module.
 *      Return 0 if permission is granted.
 * @file_mmap :
 *      Check permissions for a mmap operation.  The @file may be NULL, e.g.
 *      if mapping anonymous memory.
 *      @file contains the file structure for file to map (may be NULL).
 *      @reqprot contains the protection requested by the application.
 *      @prot contains the protection that will be applied by the kernel.
 *      @flags contains the operational flags.
 *      Return 0 if permission is granted.
 * @file_mprotect:
 *      Check permissions before changing memory access permissions.
 *      @vma contains the memory region to modify.
 *      @reqprot contains the protection requested by the application.
 *      @prot contains the protection that will be applied by the kernel.
 *      Return 0 if permission is granted.
 * @file_lock:
 *      Check permission before performing file locking operations.
 *      Note: this hook mediates both flock and fcntl style locks.
 *      @file contains the file structure.
 *      @cmd contains the posix-translated lock operation to perform
 *      (e.g. F_RDLCK, F_WRLCK).
 *      Return 0 if permission is granted.
 * @file_fcntl:
 *      Check permission before allowing the file operation specified by @cmd
 *      from being performed on the file @file.  Note that @arg can sometimes
 *      represents a user space pointer; in other cases, it may be a simple
 *      integer value.  When @arg represents a user space pointer, it should
 *      never be used by the security module.
 *      @file contains the file structure.
 *      @cmd contains the operation to be performed.
 *      @arg contains the operational arguments.
 *      Return 0 if permission is granted.
 * @file_set_fowner:
 *      Save owner security information (typically from current->security) in
 *      file->f_security for later use by the send_sigiotask hook.
 *      @file contains the file structure to update.
 *      Return 0 on success.
 * @file_send_sigiotask:
 *      Check permission for the file owner @fown to send SIGIO or SIGURG to the
 *      process @tsk.  Note that this hook is sometimes called from interrupt.
 *      Note that the fown_struct, @fown, is never outside the context of a
 *      struct file, so the file structure (and associated security information)
 *      can always be obtained:
 *              container_of(fown, struct file, f_owner)
 *      @tsk contains the structure of task receiving signal.
 *      @fown contains the file owner information.
 *      @sig is the signal that will be sent.  When 0, kernel sends SIGIO.
 *      Return 0 if permission is granted.
 * @file_receive:
 *      This hook allows security modules to control the ability of a process
 *      to receive an open file descriptor via socket IPC.
 *      @file contains the file structure being received.
 *      Return 0 if permission is granted.
 *
 * Security hook for dentry
 *
 * @dentry_open
 *      Save open-time permission checking state for later use upon
 *      file_permission, and recheck access if anything has changed
 *      since inode_permission.
 *
 * Security hook for path
 *
 * @path_permission:
 *      Check permission before accessing a path.  This hook is called by the
 *      existing Linux permission function, so a security module can use it to
 *      provide additional checking for existing Linux permission checks.
 *      Notice that this hook is called when a file is opened (as well as many
 *      other operations), whereas the file_security_ops permission hook is
 *      called when the actual read/write operations are performed. This
 *      hook is optional and if absent, inode_permission will be substituted.
 *      @path contains the path structure to check.
 *      @mask contains the permission mask.
 *      Return 0 if permission is granted.

 * Security hooks for task operations.
 *
 * @task_create:
 *      Check permission before creating a child process.  See the clone(2)
 *      manual page for definitions of the @clone_flags.
 *      @clone_flags contains the flags indicating what should be shared.
 *      Return 0 if permission is granted.
 * @task_alloc_security:
 *      @p contains the task_struct for child process.
 *      Allocate and attach a security structure to the p->security field. The
 *      security field is initialized to NULL when the task structure is
 *      allocated.
 *      Return 0 if operation was successful.
 * @task_free_security:
 *      @p contains the task_struct for process.
 *      Deallocate and clear the p->security field.
 * @task_setuid:
 *      Check permission before setting one or more of the user identity
 *      attributes of the current process.  The @flags parameter indicates
 *      which of the set*uid system calls invoked this hook and how to
 *      interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
 *      definitions at the beginning of this file for the @flags values and
 *      their meanings.
 *      @id0 contains a uid.
 *      @id1 contains a uid.
 *      @id2 contains a uid.
 *      @flags contains one of the LSM_SETID_* values.
 *      Return 0 if permission is granted.
 * @task_post_setuid:
 *      Update the module's state after setting one or more of the user
 *      identity attributes of the current process.  The @flags parameter
 *      indicates which of the set*uid system calls invoked this hook.  If
 *      @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
 *      parameters are not used.
 *      @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
 *      @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
 *      @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
 *      @flags contains one of the LSM_SETID_* values.
 *      Return 0 on success.
 * @task_setgid:
 *      Check permission before setting one or more of the group identity
 *      attributes of the current process.  The @flags parameter indicates
 *      which of the set*gid system calls invoked this hook and how to
 *      interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
 *      definitions at the beginning of this file for the @flags values and
 *      their meanings.
 *      @id0 contains a gid.
 *      @id1 contains a gid.
 *      @id2 contains a gid.
 *      @flags contains one of the LSM_SETID_* values.
 *      Return 0 if permission is granted.
 * @task_setpgid:
 *      Check permission before setting the process group identifier of the
 *      process @p to @pgid.
 *      @p contains the task_struct for process being modified.
 *      @pgid contains the new pgid.
 *      Return 0 if permission is granted.
 * @task_getpgid:
 *      Check permission before getting the process group identifier of the
 *      process @p.
 *      @p contains the task_struct for the process.
 *      Return 0 if permission is granted.
 * @task_getsid:
 *      Check permission before getting the session identifier of the process
 *      @p.
 *      @p contains the task_struct for the process.
 *      Return 0 if permission is granted.
 * @task_getsecid:
 *      Retrieve the security identifier of the process @p.
 *      @p contains the task_struct for the process and place is into @secid.
 *      In case of failure, @secid will be set to zero.
 *
 * @task_setgroups:
 *      Check permission before setting the supplementary group set of the
 *      current process.
 *      @group_info contains the new group information.
 *      Return 0 if permission is granted.
 * @task_setnice:
 *      Check permission before setting the nice value of @p to @nice.
 *      @p contains the task_struct of process.
 *      @nice contains the new nice value.
 *      Return 0 if permission is granted.
 * @task_setioprio
 *      Check permission before setting the ioprio value of @p to @ioprio.
 *      @p contains the task_struct of process.
 *      @ioprio contains the new ioprio value
 *      Return 0 if permission is granted.
 * @task_getioprio
 *      Check permission before getting the ioprio value of @p.
 *      @p contains the task_struct of process.
 *      Return 0 if permission is granted.
 * @task_setrlimit:
 *      Check permission before setting the resource limits of the current
 *      process for @resource to @new_rlim.  The old resource limit values can
 *      be examined by dereferencing (current->signal->rlim + resource).
 *      @resource contains the resource whose limit is being set.
 *      @new_rlim contains the new limits for @resource.
 *      Return 0 if permission is granted.
 * @task_setscheduler:
 *      Check permission before setting scheduling policy and/or parameters of
 *      process @p based on @policy and @lp.
 *      @p contains the task_struct for process.
 *      @policy contains the scheduling policy.
 *      @lp contains the scheduling parameters.
 *      Return 0 if permission is granted.
 * @task_getscheduler:
 *      Check permission before obtaining scheduling information for process
 *      @p.
 *      @p contains the task_struct for process.
 *      Return 0 if permission is granted.
 * @task_movememory
 *      Check permission before moving memory owned by process @p.
 *      @p contains the task_struct for process.
 *      Return 0 if permission is granted.
 * @task_kill:
 *      Check permission before sending signal @sig to @p.  @info can be NULL,
 *      the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
 *      SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
 *      from the kernel and should typically be permitted.
 *      SIGIO signals are handled separately by the send_sigiotask hook in
 *      file_security_ops.
 *      @p contains the task_struct for process.
 *      @info contains the signal information.
 *      @sig contains the signal value.
 *      @secid contains the sid of the process where the signal originated
 *      Return 0 if permission is granted.
 * @task_wait:
 *      Check permission before allowing a process to reap a child process @p
 *      and collect its status information.
 *      @p contains the task_struct for process.
 *      Return 0 if permission is granted.
 * @task_prctl:
 *      Check permission before performing a process control operation on the
 *      current process.
 *      @option contains the operation.
 *      @arg2 contains a argument.
 *      @arg3 contains a argument.
 *      @arg4 contains a argument.
 *      @arg5 contains a argument.
 *      @rc_p contains a pointer to communicate back the forced return code
 *      Return 0 if permission is granted, and non-zero if the security module
 *      has taken responsibility (setting *rc_p) for the prctl call.
 * @task_reparent_to_init:
 *      Set the security attributes in @p->security for a kernel thread that
 *      is being reparented to the init task.
 *      @p contains the task_struct for the kernel thread.
 * @task_to_inode:
 *      Set the security attributes for an inode based on an associated task's
 *      security attributes, e.g. for /proc/pid inodes.
 *      @p contains the task_struct for the task.
 *      @inode contains the inode structure for the inode.
 *
 * Security hooks for Netlink messaging.
 *
 * @netlink_send:
 *      Save security information for a netlink message so that permission
 *      checking can be performed when the message is processed.  The security
 *      information can be saved using the eff_cap field of the
 *      netlink_skb_parms structure.  Also may be used to provide fine
 *      grained control over message transmission.
 *      @sk associated sock of task sending the message.,
 *      @skb contains the sk_buff structure for the netlink message.
 *      Return 0 if the information was successfully saved and message
 *      is allowed to be transmitted.
 * @netlink_recv:
 *      Check permission before processing the received netlink message in
 *      @skb.
 *      @skb contains the sk_buff structure for the netlink message.
 *      @cap indicates the capability required
 *      Return 0 if permission is granted.
 *
 * Security hooks for Unix domain networking.
 *
 * @unix_stream_connect:
 *      Check permissions before establishing a Unix domain stream connection
 *      between @sock and @other.
 *      @sock contains the socket structure.
 *      @other contains the peer socket structure.
 *      Return 0 if permission is granted.
 * @unix_may_send:
 *      Check permissions before connecting or sending datagrams from @sock to
 *      @other.
 *      @sock contains the socket structure.
 *      @sock contains the peer socket structure.
 *      Return 0 if permission is granted.
 *
 * The @unix_stream_connect and @unix_may_send hooks were necessary because
 * Linux provides an alternative to the conventional file name space for Unix
 * domain sockets.  Whereas binding and connecting to sockets in the file name
 * space is mediated by the typical file permissions (and caught by the mknod
 * and permission hooks in inode_security_ops), binding and connecting to
 * sockets in the abstract name space is completely unmediated.  Sufficient
 * control of Unix domain sockets in the abstract name space isn't possible
 * using only the socket layer hooks, since we need to know the actual target
 * socket, which is not looked up until we are inside the af_unix code.
 *
 * Security hooks for socket operations.
 *
 * @socket_create:
 *      Check permissions prior to creating a new socket.
 *      @family contains the requested protocol family.
 *      @type contains the requested communications type.
 *      @protocol contains the requested protocol.
 *      @kern set to 1 if a kernel socket.
 *      Return 0 if permission is granted.
 * @socket_post_create:
 *      This hook allows a module to update or allocate a per-socket security
 *      structure. Note that the security field was not added directly to the
 *      socket structure, but rather, the socket security information is stored
 *      in the associated inode.  Typically, the inode alloc_security hook will
 *      allocate and and attach security information to
 *      sock->inode->i_security.  This hook may be used to update the
 *      sock->inode->i_security field with additional information that wasn't
 *      available when the inode was allocated.
 *      @sock contains the newly created socket structure.
 *      @family contains the requested protocol family.
 *      @type contains the requested communications type.
 *      @protocol contains the requested protocol.
 *      @kern set to 1 if a kernel socket.
 * @socket_bind:
 *      Check permission before socket protocol layer bind operation is
 *      performed and the socket @sock is bound to the address specified in the
 *      @address parameter.
 *      @sock contains the socket structure.
 *      @address contains the address to bind to.
 *      @addrlen contains the length of address.
 *      Return 0 if permission is granted.
 * @socket_connect:
 *      Check permission before socket protocol layer connect operation
 *      attempts to connect socket @sock to a remote address, @address.
 *      @sock contains the socket structure.
 *      @address contains the address of remote endpoint.
 *      @addrlen contains the length of address.
 *      Return 0 if permission is granted.
 * @socket_listen:
 *      Check permission before socket protocol layer listen operation.
 *      @sock contains the socket structure.
 *      @backlog contains the maximum length for the pending connection queue.
 *      Return 0 if permission is granted.
 * @socket_accept:
 *      Check permission before accepting a new connection.  Note that the new
 *      socket, @newsock, has been created and some information copied to it,
 *      but the accept operation has not actually been performed.
 *      @sock contains the listening socket structure.
 *      @newsock contains the newly created server socket for connection.
 *      Return 0 if permission is granted.
 * @socket_post_accept:
 *      This hook allows a security module to copy security
 *      information into the newly created socket's inode.
 *      @sock contains the listening socket structure.
 *      @newsock contains the newly created server socket for connection.
 * @socket_sendmsg:
 *      Check permission before transmitting a message to another socket.
 *      @sock contains the socket structure.
 *      @msg contains the message to be transmitted.
 *      @size contains the size of message.
 *      Return 0 if permission is granted.
 * @socket_recvmsg:
 *      Check permission before receiving a message from a socket.
 *      @sock contains the socket structure.
 *      @msg contains the message structure.
 *      @size contains the size of message structure.
 *      @flags contains the operational flags.
 *      Return 0 if permission is granted.
 * @socket_getsockname:
 *      Check permission before the local address (name) of the socket object
 *      @sock is retrieved.
 *      @sock contains the socket structure.
 *      Return 0 if permission is granted.
 * @socket_getpeername:
 *      Check permission before the remote address (name) of a socket object
 *      @sock is retrieved.
 *      @sock contains the socket structure.
 *      Return 0 if permission is granted.
 * @socket_getsockopt:
 *      Check permissions before retrieving the options associated with socket
 *      @sock.
 *      @sock contains the socket structure.
 *      @level contains the protocol level to retrieve option from.
 *      @optname contains the name of option to retrieve.
 *      Return 0 if permission is granted.
 * @socket_setsockopt:
 *      Check permissions before setting the options associated with socket
 *      @sock.
 *      @sock contains the socket structure.
 *      @level contains the protocol level to set options for.
 *      @optname contains the name of the option to set.
 *      Return 0 if permission is granted.
 * @socket_shutdown:
 *      Checks permission before all or part of a connection on the socket
 *      @sock is shut down.
 *      @sock contains the socket structure.
 *      @how contains the flag indicating how future sends and receives are 
handled.
 *      Return 0 if permission is granted.
 * @socket_sock_rcv_skb:
 *      Check permissions on incoming network packets.  This hook is distinct
 *      from Netfilter's IP input hooks since it is the first time that the
 *      incoming sk_buff @skb has been associated with a particular socket, @sk.
 *      @sk contains the sock (not socket) associated with the incoming sk_buff.
 *      @skb contains the incoming network data.
 * @socket_getpeersec_stream:
 *      This hook allows the security module to provide peer socket security
 *      state for unix or connected tcp sockets to userspace via getsockopt
 *      SO_GETPEERSEC.  For tcp sockets this can be meaningful if the
 *      socket is associated with an ipsec SA.
 *      @sock is the local socket.
 *      @optval userspace memory where the security state is to be copied.
 *      @optlen userspace int where the module should copy the actual length
 *      of the security state.
 *      @len as input is the maximum length to copy to userspace provided
 *      by the caller.
 *      Return 0 if all is well, otherwise, typical getsockopt return
 *      values.
 * @socket_getpeersec_dgram:
 *      This hook allows the security module to provide peer socket security
 *      state for udp sockets on a per-packet basis to userspace via
 *      getsockopt SO_GETPEERSEC.  The application must first have indicated
 *      the IP_PASSSEC option via getsockopt.  It can then retrieve the
 *      security state returned by this hook for a packet via the SCM_SECURITY
 *      ancillary message type.
 *      @skb is the skbuff for the packet being queried
 *      @secdata is a pointer to a buffer in which to copy the security data
 *      @seclen is the maximum length for @secdata
 *      Return 0 on success, error on failure.
 * @sk_alloc_security:
 *      Allocate and attach a security structure to the sk->sk_security field,
 *      which is used to copy security attributes between local stream sockets.
 * @sk_free_security:
 *      Deallocate security structure.
 * @sk_clone_security:
 *      Clone/copy security structure.
 * @sk_getsecid:
 *      Retrieve the LSM-specific secid for the sock to enable caching of 
network
 *      authorizations.
 * @sock_graft:
 *      Sets the socket's isec sid to the sock's sid.
 * @inet_conn_request:
 *      Sets the openreq's sid to socket's sid with MLS portion taken from peer 
sid.
 * @inet_csk_clone:
 *      Sets the new child socket's sid to the openreq sid.
 * @inet_conn_established:
 *      Sets the connection's peersid to the secmark on skb.
 * @req_classify_flow:
 *      Sets the flow's sid to the openreq sid.
 *
 * Security hooks for XFRM operations.
 *
 * @xfrm_policy_alloc_security:
 *      @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy
 *      Database used by the XFRM system.
 *      @sec_ctx contains the security context information being provided by
 *      the user-level policy update program (e.g., setkey).
 *      Allocate a security structure to the xp->security field; the security
 *      field is initialized to NULL when the xfrm_policy is allocated.
 *      Return 0 if operation was successful (memory to allocate, legal context)
 * @xfrm_policy_clone_security:
 *      @old_ctx contains an existing xfrm_sec_ctx.
 *      @new_ctxp contains a new xfrm_sec_ctx being cloned from old.
 *      Allocate a security structure in new_ctxp that contains the
 *      information from the old_ctx structure.
 *      Return 0 if operation was successful (memory to allocate).
 * @xfrm_policy_free_security:
 *      @ctx contains the xfrm_sec_ctx
 *      Deallocate xp->security.
 * @xfrm_policy_delete_security:
 *      @ctx contains the xfrm_sec_ctx.
 *      Authorize deletion of xp->security.
 * @xfrm_state_alloc_security:
 *      @x contains the xfrm_state being added to the Security Association
 *      Database by the XFRM system.
 *      @sec_ctx contains the security context information being provided by
 *      the user-level SA generation program (e.g., setkey or racoon).
 *      @secid contains the secid from which to take the mls portion of the 
context.
 *      Allocate a security structure to the x->security field; the security
 *      field is initialized to NULL when the xfrm_state is allocated. Set the
 *      context to correspond to either sec_ctx or polsec, with the mls portion
 *      taken from secid in the latter case.
 *      Return 0 if operation was successful (memory to allocate, legal 
context).
 * @xfrm_state_free_security:
 *      @x contains the xfrm_state.
 *      Deallocate x->security.
 * @xfrm_state_delete_security:
 *      @x contains the xfrm_state.
 *      Authorize deletion of x->security.
 * @xfrm_policy_lookup:
 *      @ctx contains the xfrm_sec_ctx for which the access control is being
 *      checked.
 *      @fl_secid contains the flow security label that is used to authorize
 *      access to the policy xp.
 *      @dir contains the direction of the flow (input or output).
 *      Check permission when a flow selects a xfrm_policy for processing
 *      XFRMs on a packet.  The hook is called when selecting either a
 *      per-socket policy or a generic xfrm policy.
 *      Return 0 if permission is granted, -ESRCH otherwise, or -errno
 *      on other errors.
 * @xfrm_state_pol_flow_match:
 *      @x contains the state to match.
 *      @xp contains the policy to check for a match.
 *      @fl contains the flow to check for a match.
 *      Return 1 if there is a match.
 * @xfrm_decode_session:
 *      @skb points to skb to decode.
 *      @secid points to the flow key secid to set.
 *      @ckall says if all xfrms used should be checked for same secid.
 *      Return 0 if ckall is zero or all xfrms used have the same secid.
 *
 * Security hooks affecting all Key Management operations
 *
 * @key_alloc:
 *      Permit allocation of a key and assign security data. Note that key does
 *      not have a serial number assigned at this point.
 *      @key points to the key.
 *      @flags is the allocation flags
 *      Return 0 if permission is granted, -ve error otherwise.
 * @key_free:
 *      Notification of destruction; free security data.
 *      @key points to the key.
 *      No return value.
 * @key_permission:
 *      See whether a specific operational right is granted to a process on a
 *      key.
 *      @key_ref refers to the key (key pointer + possession attribute bit).
 *      @context points to the process to provide the context against which to
 *      evaluate the security data on the key.
 *      @perm describes the combination of permissions required of this key.
 *      Return 1 if permission granted, 0 if permission denied and -ve it the
 *      normal permissions model should be effected.
 * @key_getsecurity:
 *      Get a textual representation of the security context attached to a key
 *      for the purposes of honouring KEYCTL_GETSECURITY.  This function
 *      allocates the storage for the NUL-terminated string and the caller
 *      should free it.
 *      @key points to the key to be queried.
 *      @_buffer points to a pointer that should be set to point to the
 *       resulting string (if no label or an error occurs).
 *      Return the length of the string (including terminating NUL) or -ve if
 *      an error.
 *      May also return 0 (and a NULL buffer pointer) if there is no label.
 *
 * Security hooks affecting all System V IPC operations.
 *
 * @ipc_permission:
 *      Check permissions for access to IPC
 *      @ipcp contains the kernel IPC permission structure
 *      @flag contains the desired (requested) permission set
 *      Return 0 if permission is granted.
 * @ipc_getsecid:
 *      Get the secid associated with the ipc object.
 *      @ipcp contains the kernel IPC permission structure.
 *      @secid contains a pointer to the location where result will be saved.
 *      In case of failure, @secid will be set to zero.
 *
 * Security hooks for individual messages held in System V IPC message queues
 * @msg_msg_alloc_security:
 *      Allocate and attach a security structure to the msg->security field.
 *      The security field is initialized to NULL when the structure is first
 *      created.
 *      @msg contains the message structure to be modified.
 *      Return 0 if operation was successful and permission is granted.
 * @msg_msg_free_security:
 *      Deallocate the security structure for this message.
 *      @msg contains the message structure to be modified.
 *
 * Security hooks for System V IPC Message Queues
 *
 * @msg_queue_alloc_security:
 *      Allocate and attach a security structure to the
 *      msq->q_perm.security field. The security field is initialized to
 *      NULL when the structure is first created.
 *      @msq contains the message queue structure to be modified.
 *      Return 0 if operation was successful and permission is granted.
 * @msg_queue_free_security:
 *      Deallocate security structure for this message queue.
 *      @msq contains the message queue structure to be modified.
 * @msg_queue_associate:
 *      Check permission when a message queue is requested through the
 *      msgget system call.  This hook is only called when returning the
 *      message queue identifier for an existing message queue, not when a
 *      new message queue is created.
 *      @msq contains the message queue to act upon.
 *      @msqflg contains the operation control flags.
 *      Return 0 if permission is granted.
 * @msg_queue_msgctl:
 *      Check permission when a message control operation specified by @cmd
 *      is to be performed on the message queue @msq.
 *      The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
 *      @msq contains the message queue to act upon.  May be NULL.
 *      @cmd contains the operation to be performed.
 *      Return 0 if permission is granted.
 * @msg_queue_msgsnd:
 *      Check permission before a message, @msg, is enqueued on the message
 *      queue, @msq.
 *      @msq contains the message queue to send message to.
 *      @msg contains the message to be enqueued.
 *      @msqflg contains operational flags.
 *      Return 0 if permission is granted.
 * @msg_queue_msgrcv:
 *      Check permission before a message, @msg, is removed from the message
 *      queue, @msq.  The @target task structure contains a pointer to the
 *      process that will be receiving the message (not equal to the current
 *      process when inline receives are being performed).
 *      @msq contains the message queue to retrieve message from.
 *      @msg contains the message destination.
 *      @target contains the task structure for recipient process.
 *      @type contains the type of message requested.
 *      @mode contains the operational flags.
 *      Return 0 if permission is granted.
 *
 * Security hooks for System V Shared Memory Segments
 *
 * @shm_alloc_security:
 *      Allocate and attach a security structure to the shp->shm_perm.security
 *      field.  The security field is initialized to NULL when the structure is
 *      first created.
 *      @shp contains the shared memory structure to be modified.
 *      Return 0 if operation was successful and permission is granted.
 * @shm_free_security:
 *      Deallocate the security struct for this memory segment.
 *      @shp contains the shared memory structure to be modified.
 * @shm_associate:
 *      Check permission when a shared memory region is requested through the
 *      shmget system call.  This hook is only called when returning the shared
 *      memory region identifier for an existing region, not when a new shared
 *      memory region is created.
 *      @shp contains the shared memory structure to be modified.
 *      @shmflg contains the operation control flags.
 *      Return 0 if permission is granted.
 * @shm_shmctl:
 *      Check permission when a shared memory control operation specified by
 *      @cmd is to be performed on the shared memory region @shp.
 *      The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
 *      @shp contains shared memory structure to be modified.
 *      @cmd contains the operation to be performed.
 *      Return 0 if permission is granted.
 * @shm_shmat:
 *      Check permissions prior to allowing the shmat system call to attach the
 *      shared memory segment @shp to the data segment of the calling process.
 *      The attaching address is specified by @shmaddr.
 *      @shp contains the shared memory structure to be modified.
 *      @shmaddr contains the address to attach memory region to.
 *      @shmflg contains the operational flags.
 *      Return 0 if permission is granted.
 *
 * Security hooks for System V Semaphores
 *
 * @sem_alloc_security:
 *      Allocate and attach a security structure to the sma->sem_perm.security
 *      field.  The security field is initialized to NULL when the structure is
 *      first created.
 *      @sma contains the semaphore structure
 *      Return 0 if operation was successful and permission is granted.
 * @sem_free_security:
 *      deallocate security struct for this semaphore
 *      @sma contains the semaphore structure.
 * @sem_associate:
 *      Check permission when a semaphore is requested through the semget
 *      system call.  This hook is only called when returning the semaphore
 *      identifier for an existing semaphore, not when a new one must be
 *      created.
 *      @sma contains the semaphore structure.
 *      @semflg contains the operation control flags.
 *      Return 0 if permission is granted.
 * @sem_semctl:
 *      Check permission when a semaphore operation specified by @cmd is to be
 *      performed on the semaphore @sma.  The @sma may be NULL, e.g. for
 *      IPC_INFO or SEM_INFO.
 *      @sma contains the semaphore structure.  May be NULL.
 *      @cmd contains the operation to be performed.
 *      Return 0 if permission is granted.
 * @sem_semop
 *      Check permissions before performing operations on members of the
 *      semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
 *      may be modified.
 *      @sma contains the semaphore structure.
 *      @sops contains the operations to perform.
 *      @nsops contains the number of operations to perform.
 *      @alter contains the flag indicating whether changes are to be made.
 *      Return 0 if permission is granted.
 *
 * @ptrace_may_access:
 *      Check permission before allowing the current process to trace the
 *      @child process.
 *      Security modules may also want to perform a process tracing check
 *      during an execve in the set_security or apply_creds hooks of
 *      binprm_security_ops if the process is being traced and its security
 *      attributes would be changed by the execve.
 *      @child contains the task_struct structure for the target process.
 *      @mode contains the PTRACE_MODE flags indicating the form of access.
 *      Return 0 if permission is granted.
 * @ptrace_traceme:
 *      Check that the @parent process has sufficient permission to trace the
 *      current process before allowing the current process to present itself
 *      to the @parent process for tracing.
 *      The parent process will still have to undergo the ptrace_may_access
 *      checks before it is allowed to trace this one.
 *      @parent contains the task_struct structure for debugger process.
 *      Return 0 if permission is granted.
 * @capget:
 *      Get the @effective, @inheritable, and @permitted capability sets for
 *      the @target process.  The hook may also perform permission checking to
 *      determine if the current process is allowed to see the capability sets
 *      of the @target process.
 *      @target contains the task_struct structure for target process.
 *      @effective contains the effective capability set.
 *      @inheritable contains the inheritable capability set.
 *      @permitted contains the permitted capability set.
 *      Return 0 if the capability sets were successfully obtained.
 * @capset_check:
 *      Check permission before setting the @effective, @inheritable, and
 *      @permitted capability sets for the @target process.
 *      Caveat:  @target is also set to current if a set of processes is
 *      specified (i.e. all processes other than current and init or a
 *      particular process group).  Hence, the capset_set hook may need to
 *      revalidate permission to the actual target process.
 *      @target contains the task_struct structure for target process.
 *      @effective contains the effective capability set.
 *      @inheritable contains the inheritable capability set.
 *      @permitted contains the permitted capability set.
 *      Return 0 if permission is granted.
 * @capset_set:
 *      Set the @effective, @inheritable, and @permitted capability sets for
 *      the @target process.  Since capset_check cannot always check permission
 *      to the real @target process, this hook may also perform permission
 *      checking to determine if the current process is allowed to set the
 *      capability sets of the @target process.  However, this hook has no way
 *      of returning an error due to the structure of the sys_capset code.
 *      @target contains the task_struct structure for target process.
 *      @effective contains the effective capability set.
 *      @inheritable contains the inheritable capability set.
 *      @permitted contains the permitted capability set.
 * @capable:
 *      Check whether the @tsk process has the @cap capability.
 *      @tsk contains the task_struct for the process.
 *      @cap contains the capability <include/linux/capability.h>.
 *      Return 0 if the capability is granted for @tsk.
 * @acct:
 *      Check permission before enabling or disabling process accounting.  If
 *      accounting is being enabled, then @file refers to the open file used to
 *      store accounting records.  If accounting is being disabled, then @file
 *      is NULL.
 *      @file contains the file structure for the accounting file (may be NULL).
 *      Return 0 if permission is granted.
 * @sysctl:
 *      Check permission before accessing the @table sysctl variable in the
 *      manner specified by @op.
 *      @table contains the ctl_table structure for the sysctl variable.
 *      @op contains the operation (001 = search, 002 = write, 004 = read).
 *      Return 0 if permission is granted.
 * @syslog:
 *      Check permission before accessing the kernel message ring or changing
 *      logging to the console.
 *      See the syslog(2) manual page for an explanation of the @type values.
 *      @type contains the type of action.
 *      Return 0 if permission is granted.
 * @settime:
 *      Check permission to change the system time.
 *      struct timespec and timezone are defined in include/linux/time.h
 *      @ts contains new time
 *      @tz contains new timezone
 *      Return 0 if permission is granted.
 * @vm_enough_memory:
 *      Check permissions for allocating a new virtual mapping.
 *      @mm contains the mm struct it is being added to.
 *      @pages contains the number of pages.
 *      Return 0 if permission is granted.
 *
 * @secid_to_secctx:
 *      Convert secid to security context.
 *      @secid contains the security ID.
 *      @secdata contains the pointer that stores the converted security 
context.
 * @secctx_to_secid:
 *      Convert security context to secid.
 *      @secid contains the pointer to the generated security ID.
 *      @secdata contains the security context.
 *
 * @release_secctx:
 *      Release the security context.
 *      @secdata contains the security context.
 *      @seclen contains the length of the security context.
 *
 * Security hooks for Audit
 *
 * @audit_rule_init:
 *      Allocate and initialize an LSM audit rule structure.
 *      @field contains the required Audit action. Fields flags are defined in 
include/linux/audit.h
 *      @op contains the operator the rule uses.
 *      @rulestr contains the context where the rule will be applied to.
 *      @lsmrule contains a pointer to receive the result.
 *      Return 0 if @lsmrule has been successfully set,
 *      -EINVAL in case of an invalid rule.
 *
 * @audit_rule_known:
 *      Specifies whether given @rule contains any fields related to current 
LSM.
 *      @rule contains the audit rule of interest.
 *      Return 1 in case of relation found, 0 otherwise.
 *
 * @audit_rule_match:
 *      Determine if given @secid matches a rule previously approved
 *      by @audit_rule_known.
 *      @secid contains the security id in question.
 *      @field contains the field which relates to current LSM.
 *      @op contains the operator that will be used for matching.
 *      @rule points to the audit rule that will be checked against.
 *      @actx points to the audit context associated with the check.
 *      Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure.
 *
 * @audit_rule_free:
 *      Deallocate the LSM audit rule structure previously allocated by
 *      audit_rule_init.
 *      @rule contains the allocated rule
 *
 * This is the main security structure.
 */
struct security_operations {
        char name[SECURITY_NAME_MAX + 1];

        int (*ptrace_may_access) (struct task_struct *child, unsigned int mode);
        int (*ptrace_traceme) (struct task_struct *parent);
        int (*capget) (struct task_struct *target,
                       kernel_cap_t *effective,
                       kernel_cap_t *inheritable, kernel_cap_t *permitted);
        int (*capset_check) (struct task_struct *target,
                             kernel_cap_t *effective,
                             kernel_cap_t *inheritable,
                             kernel_cap_t *permitted);
        void (*capset_set) (struct task_struct *target,
                            kernel_cap_t *effective,
                            kernel_cap_t *inheritable,
                            kernel_cap_t *permitted);
        int (*capable) (struct task_struct *tsk, int cap);
        int (*acct) (struct file *file);
        int (*sysctl) (struct ctl_table *table, int op);
        int (*quotactl) (int cmds, int type, int id, struct super_block *sb);
        int (*quota_on) (struct dentry *dentry);
        int (*syslog) (int type);
        int (*settime) (struct timespec *ts, struct timezone *tz);
        int (*vm_enough_memory) (struct mm_struct *mm, long pages);

        int (*bprm_alloc_security) (struct linux_binprm *bprm);
        void (*bprm_free_security) (struct linux_binprm *bprm);
        void (*bprm_apply_creds) (struct linux_binprm *bprm, int unsafe);
        void (*bprm_post_apply_creds) (struct linux_binprm *bprm);
        int (*bprm_set_security) (struct linux_binprm *bprm);
        int (*bprm_check_security) (struct linux_binprm *bprm);
        int (*bprm_secureexec) (struct linux_binprm *bprm);

        int (*sb_alloc_security) (struct super_block *sb);
        void (*sb_free_security) (struct super_block *sb);
        int (*sb_copy_data) (char *orig, char *copy);
        int (*sb_kern_mount) (struct super_block *sb, void *data);
        int (*sb_show_options) (struct seq_file *m, struct super_block *sb);
        int (*sb_statfs) (struct dentry *dentry);
        int (*sb_mount) (char *dev_name, struct path *path,
                         char *type, unsigned long flags, void *data);
        int (*sb_check_sb) (struct vfsmount *mnt, struct path *path);
        int (*sb_umount) (struct vfsmount *mnt, int flags);
        void (*sb_umount_close) (struct vfsmount *mnt);
        void (*sb_umount_busy) (struct vfsmount *mnt);
        void (*sb_post_remount) (struct vfsmount *mnt,
                                 unsigned long flags, void *data);
        void (*sb_post_addmount) (struct vfsmount *mnt,
                                  struct path *mountpoint);
        int (*sb_pivotroot) (struct path *old_path,
                             struct path *new_path);
        void (*sb_post_pivotroot) (struct path *old_path,
                                   struct path *new_path);
        int (*sb_set_mnt_opts) (struct super_block *sb,
                                struct security_mnt_opts *opts);
        void (*sb_clone_mnt_opts) (const struct super_block *oldsb,
                                   struct super_block *newsb);
        int (*sb_parse_opts_str) (char *options, struct security_mnt_opts 
*opts);

        int (*inode_alloc_security) (struct inode *inode);
        void (*inode_free_security) (struct inode *inode);
        int (*inode_init_security) (struct inode *inode, struct inode *dir,
                                    char **name, void **value, size_t *len);
        int (*inode_create) (struct inode *dir, struct dentry *dentry,
                             struct vfsmount *mnt, int mode);
        int (*inode_link) (struct dentry *old_dentry, struct vfsmount *old_mnt,
                           struct inode *dir, struct dentry *new_dentry,
                           struct vfsmount *new_mnt);
        int (*inode_unlink) (struct inode *dir, struct dentry *dentry,
                             struct vfsmount *mnt);
        int (*inode_symlink) (struct inode *dir, struct dentry *dentry,
                              struct vfsmount *mnt, const char *old_name);
        int (*inode_mkdir) (struct inode *dir, struct dentry *dentry,
                            struct vfsmount *mnt, int mode);
        int (*inode_rmdir) (struct inode *dir, struct dentry *dentry,
                            struct vfsmount *mnt);
        int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
                            struct vfsmount *mnt, int mode, dev_t dev);
        int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
                             struct vfsmount *old_mnt,
                             struct inode *new_dir, struct dentry *new_dentry,
                             struct vfsmount *new_mnt);
        int (*inode_readlink) (struct dentry *dentry, struct vfsmount *mnt);
        int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
        int (*inode_permission) (struct inode *inode, int mask);
        int (*inode_setattr)    (struct dentry *dentry, struct vfsmount *,
                                 struct iattr *attr);
        int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
        void (*inode_delete) (struct inode *inode);
        int (*inode_setxattr) (struct dentry *dentry, struct vfsmount *mnt,
                               const char *name, const void *value, size_t size,
                               int flags, struct file *file);
        void (*inode_post_setxattr) (struct dentry *dentry,
                                     struct vfsmount *mnt,
                                     const char *name, const void *value,
                                     size_t size, int flags);
        int (*inode_getxattr) (struct dentry *dentry, struct vfsmount *mnt,
                               const char *name, struct file *file);
        int (*inode_listxattr) (struct dentry *dentry, struct vfsmount *mnt,
                                struct file *file);
        int (*inode_removexattr) (struct dentry *dentry, struct vfsmount *mnt,
                                  const char *name, struct file *file);
        int (*inode_need_killpriv) (struct dentry *dentry);
        int (*inode_killpriv) (struct dentry *dentry);
        int (*inode_getsecurity) (const struct inode *inode, const char *name, 
void **buffer, bool alloc);
        int (*inode_setsecurity) (struct inode *inode, const char *name, const 
void *value, size_t size, int flags);
        int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t 
buffer_size);
        void (*inode_getsecid) (const struct inode *inode, u32 *secid);

        int (*file_permission) (struct file *file, int mask);
        int (*file_alloc_security) (struct file *file);
        void (*file_free_security) (struct file *file);
        int (*file_ioctl) (struct file *file, unsigned int cmd,
                           unsigned long arg);
        int (*file_mmap) (struct file *file,
                          unsigned long reqprot, unsigned long prot,
                          unsigned long flags, unsigned long addr,
                          unsigned long addr_only);
        int (*file_mprotect) (struct vm_area_struct *vma,
                              unsigned long reqprot,
                              unsigned long prot);
        int (*file_lock) (struct file *file, unsigned int cmd);
        int (*file_fcntl) (struct file *file, unsigned int cmd,
                           unsigned long arg);
        int (*file_set_fowner) (struct file *file);
        int (*file_send_sigiotask) (struct task_struct *tsk,
                                    struct fown_struct *fown, int sig);
        int (*file_receive) (struct file *file);
        int (*dentry_open) (struct file *file);
        int (*path_permission) (struct path *path, int mask);

        int (*task_create) (unsigned long clone_flags);
        int (*task_alloc_security) (struct task_struct *p);
        void (*task_free_security) (struct task_struct *p);
        int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
        int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
                                 uid_t old_euid, uid_t old_suid, int flags);
        int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
        int (*task_setpgid) (struct task_struct *p, pid_t pgid);
        int (*task_getpgid) (struct task_struct *p);
        int (*task_getsid) (struct task_struct *p);
        void (*task_getsecid) (struct task_struct *p, u32 *secid);
        int (*task_setgroups) (struct group_info *group_info);
        int (*task_setnice) (struct task_struct *p, int nice);
        int (*task_setioprio) (struct task_struct *p, int ioprio);
        int (*task_getioprio) (struct task_struct *p);
        int (*task_setrlimit) (unsigned int resource, struct rlimit *new_rlim);
        int (*task_setscheduler) (struct task_struct *p, int policy,
                                  struct sched_param *lp);
        int (*task_getscheduler) (struct task_struct *p);
        int (*task_movememory) (struct task_struct *p);
        int (*task_kill) (struct task_struct *p,
                          struct siginfo *info, int sig, u32 secid);
        int (*task_wait) (struct task_struct *p);
        int (*task_prctl) (int option, unsigned long arg2,
                           unsigned long arg3, unsigned long arg4,
                           unsigned long arg5, long *rc_p);
        void (*task_reparent_to_init) (struct task_struct *p);
        void (*task_to_inode) (struct task_struct *p, struct inode *inode);

        int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag);
        void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid);

        int (*msg_msg_alloc_security) (struct msg_msg *msg);
        void (*msg_msg_free_security) (struct msg_msg *msg);

        int (*msg_queue_alloc_security) (struct msg_queue *msq);
        void (*msg_queue_free_security) (struct msg_queue *msq);
        int (*msg_queue_associate) (struct msg_queue *msq, int msqflg);
        int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd);
        int (*msg_queue_msgsnd) (struct msg_queue *msq,
                                 struct msg_msg *msg, int msqflg);
        int (*msg_queue_msgrcv) (struct msg_queue *msq,
                                 struct msg_msg *msg,
                                 struct task_struct *target,
                                 long type, int mode);

        int (*shm_alloc_security) (struct shmid_kernel *shp);
        void (*shm_free_security) (struct shmid_kernel *shp);
        int (*shm_associate) (struct shmid_kernel *shp, int shmflg);
        int (*shm_shmctl) (struct shmid_kernel *shp, int cmd);
        int (*shm_shmat) (struct shmid_kernel *shp,
                          char __user *shmaddr, int shmflg);

        int (*sem_alloc_security) (struct sem_array *sma);
        void (*sem_free_security) (struct sem_array *sma);
        int (*sem_associate) (struct sem_array *sma, int semflg);
        int (*sem_semctl) (struct sem_array *sma, int cmd);
        int (*sem_semop) (struct sem_array *sma,
                          struct sembuf *sops, unsigned nsops, int alter);

        int (*netlink_send) (struct sock *sk, struct sk_buff *skb);
        int (*netlink_recv) (struct sk_buff *skb, int cap);

        void (*d_instantiate) (struct dentry *dentry, struct inode *inode);

        int (*getprocattr) (struct task_struct *p, char *name, char **value);
        int (*setprocattr) (struct task_struct *p, char *name, void *value, 
size_t size);
        int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen);
        int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid);
        void (*release_secctx) (char *secdata, u32 seclen);

#ifdef CONFIG_SECURITY_NETWORK
        int (*unix_stream_connect) (struct socket *sock,
                                    struct socket *other, struct sock *newsk);
        int (*unix_may_send) (struct socket *sock, struct socket *other);

        int (*socket_create) (int family, int type, int protocol, int kern);
        int (*socket_post_create) (struct socket *sock, int family,
                                   int type, int protocol, int kern);
        int (*socket_bind) (struct socket *sock,
                            struct sockaddr *address, int addrlen);
        int (*socket_connect) (struct socket *sock,
                               struct sockaddr *address, int addrlen);
        int (*socket_listen) (struct socket *sock, int backlog);
        int (*socket_accept) (struct socket *sock, struct socket *newsock);
        void (*socket_post_accept) (struct socket *sock,
                                    struct socket *newsock);
        int (*socket_sendmsg) (struct socket *sock,
                               struct msghdr *msg, int size);
        int (*socket_recvmsg) (struct socket *sock,
                               struct msghdr *msg, int size, int flags);
        int (*socket_getsockname) (struct socket *sock);
        int (*socket_getpeername) (struct socket *sock);
        int (*socket_getsockopt) (struct socket *sock, int level, int optname);
        int (*socket_setsockopt) (struct socket *sock, int level, int optname);
        int (*socket_shutdown) (struct socket *sock, int how);
        int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb);
        int (*socket_getpeersec_stream) (struct socket *sock, char __user 
*optval, int __user *optlen, unsigned len);
        int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff 
*skb, u32 *secid);
        int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
        void (*sk_free_security) (struct sock *sk);
        void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
        void (*sk_getsecid) (struct sock *sk, u32 *secid);
        void (*sock_graft) (struct sock *sk, struct socket *parent);
        int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb,
                                  struct request_sock *req);
        void (*inet_csk_clone) (struct sock *newsk, const struct request_sock 
*req);
        void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb);
        void (*req_classify_flow) (const struct request_sock *req, struct flowi 
*fl);
#endif  /* CONFIG_SECURITY_NETWORK */

#ifdef CONFIG_SECURITY_NETWORK_XFRM
        int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp,
                        struct xfrm_user_sec_ctx *sec_ctx);
        int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct 
xfrm_sec_ctx **new_ctx);
        void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx);
        int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx);
        int (*xfrm_state_alloc_security) (struct xfrm_state *x,
                struct xfrm_user_sec_ctx *sec_ctx,
                u32 secid);
        void (*xfrm_state_free_security) (struct xfrm_state *x);
        int (*xfrm_state_delete_security) (struct xfrm_state *x);
        int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 
dir);
        int (*xfrm_state_pol_flow_match) (struct xfrm_state *x,
                                          struct xfrm_policy *xp,
                                          struct flowi *fl);
        int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall);
#endif  /* CONFIG_SECURITY_NETWORK_XFRM */

        /* key management security hooks */
#ifdef CONFIG_KEYS
        int (*key_alloc) (struct key *key, struct task_struct *tsk, unsigned 
long flags);
        void (*key_free) (struct key *key);
        int (*key_permission) (key_ref_t key_ref,
                               struct task_struct *context,
                               key_perm_t perm);
        int (*key_getsecurity)(struct key *key, char **_buffer);
#endif  /* CONFIG_KEYS */

#ifdef CONFIG_AUDIT
        int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void 
**lsmrule);
        int (*audit_rule_known) (struct audit_krule *krule);
        int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule,
                                 struct audit_context *actx);
        void (*audit_rule_free) (void *lsmrule);
#endif /* CONFIG_AUDIT */
};

/* prototypes */
extern int security_init(void);
extern int security_module_enable(struct security_operations *ops);
extern int register_security(struct security_operations *ops);
extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
                                             struct dentry *parent, void *data,
                                             const struct file_operations 
*fops);
extern struct dentry *securityfs_create_dir(const char *name, struct dentry 
*parent);
extern void securityfs_remove(struct dentry *dentry);

/* Security operations */
int security_ptrace_may_access(struct task_struct *child, unsigned int mode);
int security_ptrace_traceme(struct task_struct *parent);
int security_capget(struct task_struct *target,
                    kernel_cap_t *effective,
                    kernel_cap_t *inheritable,
                    kernel_cap_t *permitted);
int security_capset_check(struct task_struct *target,
                          kernel_cap_t *effective,
                          kernel_cap_t *inheritable,
                          kernel_cap_t *permitted);
void security_capset_set(struct task_struct *target,
                         kernel_cap_t *effective,
                         kernel_cap_t *inheritable,
                         kernel_cap_t *permitted);
int security_capable(struct task_struct *tsk, int cap);
int security_acct(struct file *file);
int security_sysctl(struct ctl_table *table, int op);
int security_quotactl(int cmds, int type, int id, struct super_block *sb);
int security_quota_on(struct dentry *dentry);
int security_syslog(int type);
int security_settime(struct timespec *ts, struct timezone *tz);
int security_vm_enough_memory(long pages);
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages);
int security_bprm_alloc(struct linux_binprm *bprm);
void security_bprm_free(struct linux_binprm *bprm);
void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe);
void security_bprm_post_apply_creds(struct linux_binprm *bprm);
int security_bprm_set(struct linux_binprm *bprm);
int security_bprm_check(struct linux_binprm *bprm);
int security_bprm_secureexec(struct linux_binprm *bprm);
int security_sb_alloc(struct super_block *sb);
void security_sb_free(struct super_block *sb);
int security_sb_copy_data(char *orig, char *copy);
int security_sb_kern_mount(struct super_block *sb, void *data);
int security_sb_show_options(struct seq_file *m, struct super_block *sb);
int security_sb_statfs(struct dentry *dentry);
int security_sb_mount(char *dev_name, struct path *path,
                      char *type, unsigned long flags, void *data);
int security_sb_check_sb(struct vfsmount *mnt, struct path *path);
int security_sb_umount(struct vfsmount *mnt, int flags);
void security_sb_umount_close(struct vfsmount *mnt);
void security_sb_umount_busy(struct vfsmount *mnt);
void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void 
*data);
void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint);
int security_sb_pivotroot(struct path *old_path, struct path *new_path);
void security_sb_post_pivotroot(struct path *old_path, struct path *new_path);
int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts 
*opts);
void security_sb_clone_mnt_opts(const struct super_block *oldsb,
                                struct super_block *newsb);
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts);

int security_inode_alloc(struct inode *inode);
void security_inode_free(struct inode *inode);
int security_inode_init_security(struct inode *inode, struct inode *dir,
                                  char **name, void **value, size_t *len);
int security_inode_create(struct inode *dir, struct dentry *dentry,
                          struct vfsmount *mnt, int mode);
int security_inode_link(struct dentry *old_dentry, struct vfsmount *old_mnt,
                        struct inode *dir, struct dentry *new_dentry,
                        struct vfsmount *new_mnt);
int security_inode_unlink(struct inode *dir, struct dentry *dentry,
                          struct vfsmount *mnt);
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
                           struct vfsmount *mnt, const char *old_name);
int security_inode_mkdir(struct inode *dir, struct dentry *dentry,
                         struct vfsmount *mnt, int mode);
int security_inode_rmdir(struct inode *dir, struct dentry *dentry,
                         struct vfsmount *mnt);
int security_inode_mknod(struct inode *dir, struct dentry *dentry,
                         struct vfsmount *mnt, int mode, dev_t dev);
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
                          struct vfsmount *old_mnt, struct inode *new_dir,
                          struct dentry *new_dentry, struct vfsmount *new_mnt);
int security_inode_readlink(struct dentry *dentry, struct vfsmount *mnt);
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd);
int security_inode_permission(struct inode *inode, int mask);
int security_inode_setattr(struct dentry *dentry, struct vfsmount *mnt,
                           struct iattr *attr);
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry);
void security_inode_delete(struct inode *inode);
int security_inode_setxattr(struct dentry *dentry, struct vfsmount *mnt,
                            const char *name, const void *value,
                            size_t size, int flags, struct file *file);
void security_inode_post_setxattr(struct dentry *dentry, struct vfsmount *mnt,
                                  const char *name, const void *value,
                                  size_t size, int flags);
int security_inode_getxattr(struct dentry *dentry, struct vfsmount *mnt,
                            const char *name, struct file *file);
int security_inode_listxattr(struct dentry *dentry, struct vfsmount *mnt,
                             struct file *file);
int security_inode_removexattr(struct dentry *dentry, struct vfsmount *mnt,
                               const char *name, struct file *file);
int security_inode_need_killpriv(struct dentry *dentry);
int security_inode_killpriv(struct dentry *dentry);
int security_inode_getsecurity(const struct inode *inode, const char *name, 
void **buffer, bool alloc);
int security_inode_setsecurity(struct inode *inode, const char *name, const 
void *value, size_t size, int flags);
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t 
buffer_size);
void security_inode_getsecid(const struct inode *inode, u32 *secid);
int security_file_permission(struct file *file, int mask);
int security_file_alloc(struct file *file);
void security_file_free(struct file *file);
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int security_file_mmap(struct file *file, unsigned long reqprot,
                        unsigned long prot, unsigned long flags,
                        unsigned long addr, unsigned long addr_only);
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
                           unsigned long prot);
int security_file_lock(struct file *file, unsigned int cmd);
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg);
int security_file_set_fowner(struct file *file);
int security_file_send_sigiotask(struct task_struct *tsk,
                                 struct fown_struct *fown, int sig);
int security_file_receive(struct file *file);
int security_dentry_open(struct file *file);
int security_path_permission(struct path *path, int mask);
int security_task_create(unsigned long clone_flags);
int security_task_alloc(struct task_struct *p);
void security_task_free(struct task_struct *p);
int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags);
int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
                              uid_t old_suid, int flags);
int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags);
int security_task_setpgid(struct task_struct *p, pid_t pgid);
int security_task_getpgid(struct task_struct *p);
int security_task_getsid(struct task_struct *p);
void security_task_getsecid(struct task_struct *p, u32 *secid);
int security_task_setgroups(struct group_info *group_info);
int security_task_setnice(struct task_struct *p, int nice);
int security_task_setioprio(struct task_struct *p, int ioprio);
int security_task_getioprio(struct task_struct *p);
int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim);
int security_task_setscheduler(struct task_struct *p,
                                int policy, struct sched_param *lp);
int security_task_getscheduler(struct task_struct *p);
int security_task_movememory(struct task_struct *p);
int security_task_kill(struct task_struct *p, struct siginfo *info,
                        int sig, u32 secid);
int security_task_wait(struct task_struct *p);
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
                         unsigned long arg4, unsigned long arg5, long *rc_p);
void security_task_reparent_to_init(struct task_struct *p);
void security_task_to_inode(struct task_struct *p, struct inode *inode);
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag);
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid);
int security_msg_msg_alloc(struct msg_msg *msg);
void security_msg_msg_free(struct msg_msg *msg);
int security_msg_queue_alloc(struct msg_queue *msq);
void security_msg_queue_free(struct msg_queue *msq);
int security_msg_queue_associate(struct msg_queue *msq, int msqflg);
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd);
int security_msg_queue_msgsnd(struct msg_queue *msq,
                              struct msg_msg *msg, int msqflg);
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
                              struct task_struct *target, long type, int mode);
int security_shm_alloc(struct shmid_kernel *shp);
void security_shm_free(struct shmid_kernel *shp);
int security_shm_associate(struct shmid_kernel *shp, int shmflg);
int security_shm_shmctl(struct shmid_kernel *shp, int cmd);
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int 
shmflg);
int security_sem_alloc(struct sem_array *sma);
void security_sem_free(struct sem_array *sma);
int security_sem_associate(struct sem_array *sma, int semflg);
int security_sem_semctl(struct sem_array *sma, int cmd);
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
                        unsigned nsops, int alter);
void security_d_instantiate(struct dentry *dentry, struct inode *inode);
int security_getprocattr(struct task_struct *p, char *name, char **value);
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t 
size);
int security_netlink_send(struct sock *sk, struct sk_buff *skb);
int security_netlink_recv(struct sk_buff *skb, int cap);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen);
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid);
void security_release_secctx(char *secdata, u32 seclen);

#else /* CONFIG_SECURITY */
struct security_mnt_opts {
};

static inline void security_init_mnt_opts(struct security_mnt_opts *opts)
{
}

static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
{
}

/*
 * This is the default capabilities functionality.  Most of these functions
 * are just stubbed out, but a few must call the proper capable code.
 */

static inline int security_init(void)
{
        return 0;
}

static inline int security_ptrace_may_access(struct task_struct *child,
                                             unsigned int mode)
{
        return cap_ptrace_may_access(child, mode);
}

static inline int security_ptrace_traceme(struct task_struct *parent)
{
        return cap_ptrace_traceme(parent);
}

static inline int security_capget(struct task_struct *target,
                                   kernel_cap_t *effective,
                                   kernel_cap_t *inheritable,
                                   kernel_cap_t *permitted)
{
        return cap_capget(target, effective, inheritable, permitted);
}

static inline int security_capset_check(struct task_struct *target,
                                         kernel_cap_t *effective,
                                         kernel_cap_t *inheritable,
                                         kernel_cap_t *permitted)
{
        return cap_capset_check(target, effective, inheritable, permitted);
}

static inline void security_capset_set(struct task_struct *target,
                                        kernel_cap_t *effective,
                                        kernel_cap_t *inheritable,
                                        kernel_cap_t *permitted)
{
        cap_capset_set(target, effective, inheritable, permitted);
}

static inline int security_capable(struct task_struct *tsk, int cap)
{
        return cap_capable(tsk, cap);
}

static inline int security_acct(struct file *file)
{
        return 0;
}

static inline int security_sysctl(struct ctl_table *table, int op)
{
        return 0;
}

static inline int security_quotactl(int cmds, int type, int id,
                                     struct super_block *sb)
{
        return 0;
}

static inline int security_quota_on(struct dentry *dentry)
{
        return 0;
}

static inline int security_syslog(int type)
{
        return cap_syslog(type);
}

static inline int security_settime(struct timespec *ts, struct timezone *tz)
{
        return cap_settime(ts, tz);
}

static inline int security_vm_enough_memory(long pages)
{
        return cap_vm_enough_memory(current->mm, pages);
}

static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
        return cap_vm_enough_memory(mm, pages);
}

static inline int security_bprm_alloc(struct linux_binprm *bprm)
{
        return 0;
}

static inline void security_bprm_free(struct linux_binprm *bprm)
{ }

static inline void security_bprm_apply_creds(struct linux_binprm *bprm, int 
unsafe)
{
        cap_bprm_apply_creds(bprm, unsafe);
}

static inline void security_bprm_post_apply_creds(struct linux_binprm *bprm)
{
        return;
}

static inline int security_bprm_set(struct linux_binprm *bprm)
{
        return cap_bprm_set_security(bprm);
}

static inline int security_bprm_check(struct linux_binprm *bprm)
{
        return 0;
}

static inline int security_bprm_secureexec(struct linux_binprm *bprm)
{
        return cap_bprm_secureexec(bprm);
}

static inline int security_sb_alloc(struct super_block *sb)
{
        return 0;
}

static inline void security_sb_free(struct super_block *sb)
{ }

static inline int security_sb_copy_data(char *orig, char *copy)
{
        return 0;
}

static inline int security_sb_kern_mount(struct super_block *sb, void *data)
{
        return 0;
}

static inline int security_sb_show_options(struct seq_file *m,
                                           struct super_block *sb)
{
        return 0;
}

static inline int security_sb_statfs(struct dentry *dentry)
{
        return 0;
}

static inline int security_sb_mount(char *dev_name, struct path *path,
                                    char *type, unsigned long flags,
                                    void *data)
{
        return 0;
}

static inline int security_sb_check_sb(struct vfsmount *mnt,
                                       struct path *path)
{
        return 0;
}

static inline int security_sb_umount(struct vfsmount *mnt, int flags)
{
        return 0;
}

static inline void security_sb_umount_close(struct vfsmount *mnt)
{ }

static inline void security_sb_umount_busy(struct vfsmount *mnt)
{ }

static inline void security_sb_post_remount(struct vfsmount *mnt,
                                             unsigned long flags, void *data)
{ }

static inline void security_sb_post_addmount(struct vfsmount *mnt,
                                             struct path *mountpoint)
{ }

static inline int security_sb_pivotroot(struct path *old_path,
                                        struct path *new_path)
{
        return 0;
}

static inline void security_sb_post_pivotroot(struct path *old_path,
                                              struct path *new_path)
{ }

static inline int security_sb_set_mnt_opts(struct super_block *sb,
                                           struct security_mnt_opts *opts)
{
        return 0;
}

static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb,
                                              struct super_block *newsb)
{ }

static inline int security_sb_parse_opts_str(char *options, struct 
security_mnt_opts *opts)
{
        return 0;
}

static inline int security_inode_alloc(struct inode *inode)
{
        return 0;
}

static inline void security_inode_free(struct inode *inode)
{ }

static inline int security_inode_init_security(struct inode *inode,
                                                struct inode *dir,
                                                char **name,
                                                void **value,
                                                size_t *len)
{
        return -EOPNOTSUPP;
}

static inline int security_inode_create(struct inode *dir,
                                         struct dentry *dentry,
                                         struct vfsmount *mnt,
                                         int mode)
{
        return 0;
}

static inline int security_inode_link(struct dentry *old_dentry,
                                      struct vfsmount *old_mnt,
                                      struct inode *dir,
                                      struct dentry *new_dentry,
                                      struct vfsmount *new_mnt)
{
        return 0;
}

static inline int security_inode_unlink(struct inode *dir,
                                        struct dentry *dentry,
                                        struct vfsmount *mnt)
{
        return 0;
}

static inline int security_inode_symlink(struct inode *dir,
                                          struct dentry *dentry,
                                          struct vfsmount *mnt,
                                          const char *old_name)
{
        return 0;
}

static inline int security_inode_mkdir(struct inode *dir,
                                        struct dentry *dentry,
                                        struct vfsmount *mnt,
                                        int mode)
{
        return 0;
}

static inline int security_inode_rmdir(struct inode *dir,
                                       struct dentry *dentry,
                                       struct vfsmount *mnt)
{
        return 0;
}

static inline int security_inode_mknod(struct inode *dir,
                                        struct dentry *dentry,
                                        struct vfsmount *mnt,
                                        int mode, dev_t dev)
{
        return 0;
}

static inline int security_inode_rename(struct inode *old_dir,
                                         struct dentry *old_dentry,
                                         struct vfsmount *old_mnt,
                                         struct inode *new_dir,
                                         struct dentry *new_dentry,
                                         struct vfsmount *new_mnt)
{
        return 0;
}

static inline int security_inode_readlink(struct dentry *dentry,
                                          struct vfsmount *mnt)
{
        return 0;
}

static inline int security_inode_follow_link(struct dentry *dentry,
                                              struct nameidata *nd)
{
        return 0;
}

static inline int security_inode_permission(struct inode *inode, int mask)
{
        return 0;
}

static inline int security_inode_setattr(struct dentry *dentry,
                                         struct vfsmount *mnt,
                                         struct iattr *attr)
{
        return 0;
}

static inline int security_inode_getattr(struct vfsmount *mnt,
                                          struct dentry *dentry)
{
        return 0;
}

static inline void security_inode_delete(struct inode *inode)
{ }

static inline int security_inode_setxattr(struct dentry *dentry,
                                          struct vfsmount *mnt,
                                          const char *name, const void *value,
                                          size_t size, int flags,
                                          struct file *file)
{
        return cap_inode_setxattr(dentry, mnt, name, value, size, flags, file);
}

static inline void security_inode_post_setxattr(struct dentry *dentry,
                                                struct vfsmount *mnt,
                                                const char *name,
                                                const void *value,
                                                size_t size, int flags)
{ }

static inline int security_inode_getxattr(struct dentry *dentry,
                                          struct vfsmount *mnt,
                                          const char *name,
                                          struct file *file)
{
        return 0;
}

static inline int security_inode_listxattr(struct dentry *dentry,
                                           struct vfsmount *mnt,
                                           struct file *file)
{
        return 0;
}

static inline int security_inode_removexattr(struct dentry *dentry,
                                             struct vfsmount *mnt,
                                             const char *name,
                                             struct file *file)
{
        return cap_inode_removexattr(dentry, mnt, name, file);
}

static inline int security_inode_need_killpriv(struct dentry *dentry)
{
        return cap_inode_need_killpriv(dentry);
}

static inline int security_inode_killpriv(struct dentry *dentry)
{
        return cap_inode_killpriv(dentry);
}

static inline int security_inode_getsecurity(const struct inode *inode, const 
char *name, void **buffer, bool alloc)
{
        return -EOPNOTSUPP;
}

static inline int security_inode_setsecurity(struct inode *inode, const char 
*name, const void *value, size_t size, int flags)
{
        return -EOPNOTSUPP;
}

static inline int security_inode_listsecurity(struct inode *inode, char 
*buffer, size_t buffer_size)
{
        return 0;
}

static inline void security_inode_getsecid(const struct inode *inode, u32 
*secid)
{
        *secid = 0;
}

static inline int security_file_permission(struct file *file, int mask)
{
        return 0;
}

static inline int security_file_alloc(struct file *file)
{
        return 0;
}

static inline void security_file_free(struct file *file)
{ }

static inline int security_file_ioctl(struct file *file, unsigned int cmd,
                                      unsigned long arg)
{
        return 0;
}

static inline int security_file_mmap(struct file *file, unsigned long reqprot,
                                     unsigned long prot,
                                     unsigned long flags,
                                     unsigned long addr,
                                     unsigned long addr_only)
{
        return 0;
}

static inline int security_file_mprotect(struct vm_area_struct *vma,
                                         unsigned long reqprot,
                                         unsigned long prot)
{
        return 0;
}

static inline int security_file_lock(struct file *file, unsigned int cmd)
{
        return 0;
}

static inline int security_file_fcntl(struct file *file, unsigned int cmd,
                                      unsigned long arg)
{
        return 0;
}

static inline int security_file_set_fowner(struct file *file)
{
        return 0;
}

static inline int security_file_send_sigiotask(struct task_struct *tsk,
                                               struct fown_struct *fown,
                                               int sig)
{
        return 0;
}

static inline int security_file_receive(struct file *file)
{
        return 0;
}

static inline int security_dentry_open(struct file *file)
{
        return 0;
}

static inline int security_path_permission(struct path *path, int mask)
{
        return 0;
}

static inline int security_task_create(unsigned long clone_flags)
{
        return 0;
}

static inline int security_task_alloc(struct task_struct *p)
{
        return 0;
}

static inline void security_task_free(struct task_struct *p)
{ }

static inline int security_task_setuid(uid_t id0, uid_t id1, uid_t id2,
                                       int flags)
{
        return 0;
}

static inline int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
                                            uid_t old_suid, int flags)
{
        return cap_task_post_setuid(old_ruid, old_euid, old_suid, flags);
}

static inline int security_task_setgid(gid_t id0, gid_t id1, gid_t id2,
                                       int flags)
{
        return 0;
}

static inline int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
        return 0;
}

static inline int security_task_getpgid(struct task_struct *p)
{
        return 0;
}

static inline int security_task_getsid(struct task_struct *p)
{
        return 0;
}

static inline void security_task_getsecid(struct task_struct *p, u32 *secid)
{
        *secid = 0;
}

static inline int security_task_setgroups(struct group_info *group_info)
{
        return 0;
}

static inline int security_task_setnice(struct task_struct *p, int nice)
{
        return cap_task_setnice(p, nice);
}

static inline int security_task_setioprio(struct task_struct *p, int ioprio)
{
        return cap_task_setioprio(p, ioprio);
}

static inline int security_task_getioprio(struct task_struct *p)
{
        return 0;
}

static inline int security_task_setrlimit(unsigned int resource,
                                          struct rlimit *new_rlim)
{
        return 0;
}

static inline int security_task_setscheduler(struct task_struct *p,
                                             int policy,
                                             struct sched_param *lp)
{
        return cap_task_setscheduler(p, policy, lp);
}

static inline int security_task_getscheduler(struct task_struct *p)
{
        return 0;
}

static inline int security_task_movememory(struct task_struct *p)
{
        return 0;
}

static inline int security_task_kill(struct task_struct *p,
                                     struct siginfo *info, int sig,
                                     u32 secid)
{
        return 0;
}

static inline int security_task_wait(struct task_struct *p)
{
        return 0;
}

static inline int security_task_prctl(int option, unsigned long arg2,
                                      unsigned long arg3,
                                      unsigned long arg4,
                                      unsigned long arg5, long *rc_p)
{
        return cap_task_prctl(option, arg2, arg3, arg3, arg5, rc_p);
}

static inline void security_task_reparent_to_init(struct task_struct *p)
{
        cap_task_reparent_to_init(p);
}

static inline void security_task_to_inode(struct task_struct *p, struct inode 
*inode)
{ }

static inline int security_ipc_permission(struct kern_ipc_perm *ipcp,
                                          short flag)
{
        return 0;
}

static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
        *secid = 0;
}

static inline int security_msg_msg_alloc(struct msg_msg *msg)
{
        return 0;
}

static inline void security_msg_msg_free(struct msg_msg *msg)
{ }

static inline int security_msg_queue_alloc(struct msg_queue *msq)
{
        return 0;
}

static inline void security_msg_queue_free(struct msg_queue *msq)
{ }

static inline int security_msg_queue_associate(struct msg_queue *msq,
                                               int msqflg)
{
        return 0;
}

static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
{
        return 0;
}

static inline int security_msg_queue_msgsnd(struct msg_queue *msq,
                                            struct msg_msg *msg, int msqflg)
{
        return 0;
}

static inline int security_msg_queue_msgrcv(struct msg_queue *msq,
                                            struct msg_msg *msg,
                                            struct task_struct *target,
                                            long type, int mode)
{
        return 0;
}

static inline int security_shm_alloc(struct shmid_kernel *shp)
{
        return 0;
}

static inline void security_shm_free(struct shmid_kernel *shp)
{ }

static inline int security_shm_associate(struct shmid_kernel *shp,
                                         int shmflg)
{
        return 0;
}

static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
{
        return 0;
}

static inline int security_shm_shmat(struct shmid_kernel *shp,
                                     char __user *shmaddr, int shmflg)
{
        return 0;
}

static inline int security_sem_alloc(struct sem_array *sma)
{
        return 0;
}

static inline void security_sem_free(struct sem_array *sma)
{ }

static inline int security_sem_associate(struct sem_array *sma, int semflg)
{
        return 0;
}

static inline int security_sem_semctl(struct sem_array *sma, int cmd)
{
        return 0;
}

static inline int security_sem_semop(struct sem_array *sma,
                                     struct sembuf *sops, unsigned nsops,
                                     int alter)
{
        return 0;
}

static inline void security_d_instantiate(struct dentry *dentry, struct inode 
*inode)
{ }

static inline int security_getprocattr(struct task_struct *p, char *name, char 
**value)
{
        return -EINVAL;
}

static inline int security_setprocattr(struct task_struct *p, char *name, void 
*value, size_t size)
{
        return -EINVAL;
}

static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
        return cap_netlink_send(sk, skb);
}

static inline int security_netlink_recv(struct sk_buff *skb, int cap)
{
        return cap_netlink_recv(skb, cap);
}

static inline struct dentry *securityfs_create_dir(const char *name,
                                        struct dentry *parent)
{
        return ERR_PTR(-ENODEV);
}

static inline struct dentry *securityfs_create_file(const char *name,
                                                mode_t mode,
                                                struct dentry *parent,
                                                void *data,
                                                const struct file_operations 
*fops)
{
        return ERR_PTR(-ENODEV);
}

static inline void securityfs_remove(struct dentry *dentry)
{
}

static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 
*seclen)
{
        return -EOPNOTSUPP;
}

static inline int security_secctx_to_secid(const char *secdata,
                                           u32 seclen,
                                           u32 *secid)
{
        return -EOPNOTSUPP;
}

static inline void security_release_secctx(char *secdata, u32 seclen)
{
}
#endif  /* CONFIG_SECURITY */

#ifdef CONFIG_SECURITY_NETWORK

int security_unix_stream_connect(struct socket *sock, struct socket *other,
                                 struct sock *newsk);
int security_unix_may_send(struct socket *sock,  struct socket *other);
int security_socket_create(int family, int type, int protocol, int kern);
int security_socket_post_create(struct socket *sock, int family,
                                int type, int protocol, int kern);
int security_socket_bind(struct socket *sock, struct sockaddr *address, int 
addrlen);
int security_socket_connect(struct socket *sock, struct sockaddr *address, int 
addrlen);
int security_socket_listen(struct socket *sock, int backlog);
int security_socket_accept(struct socket *sock, struct socket *newsock);
void security_socket_post_accept(struct socket *sock, struct socket *newsock);
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size);
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
                            int size, int flags);
int security_socket_getsockname(struct socket *sock);
int security_socket_getpeername(struct socket *sock);
int security_socket_getsockopt(struct socket *sock, int level, int optname);
int security_socket_setsockopt(struct socket *sock, int level, int optname);
int security_socket_shutdown(struct socket *sock, int how);
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
                                      int __user *optlen, unsigned len);
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, 
u32 *secid);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority);
void security_sk_free(struct sock *sk);
void security_sk_clone(const struct sock *sk, struct sock *newsk);
void security_sk_classify_flow(struct sock *sk, struct flowi *fl);
void security_req_classify_flow(const struct request_sock *req, struct flowi 
*fl);
void security_sock_graft(struct sock*sk, struct socket *parent);
int security_inet_conn_request(struct sock *sk,
                        struct sk_buff *skb, struct request_sock *req);
void security_inet_csk_clone(struct sock *newsk,
                        const struct request_sock *req);
void security_inet_conn_established(struct sock *sk,
                        struct sk_buff *skb);

#else   /* CONFIG_SECURITY_NETWORK */
static inline int security_unix_stream_connect(struct socket *sock,
                                               struct socket *other,
                                               struct sock *newsk)
{
        return 0;
}

static inline int security_unix_may_send(struct socket *sock,
                                         struct socket *other)
{
        return 0;
}

static inline int security_socket_create(int family, int type,
                                         int protocol, int kern)
{
        return 0;
}

static inline int security_socket_post_create(struct socket *sock,
                                              int family,
                                              int type,
                                              int protocol, int kern)
{
        return 0;
}

static inline int security_socket_bind(struct socket *sock,
                                       struct sockaddr *address,
                                       int addrlen)
{
        return 0;
}

static inline int security_socket_connect(struct socket *sock,
                                          struct sockaddr *address,
                                          int addrlen)
{
        return 0;
}

static inline int security_socket_listen(struct socket *sock, int backlog)
{
        return 0;
}

static inline int security_socket_accept(struct socket *sock,
                                         struct socket *newsock)
{
        return 0;
}

static inline void security_socket_post_accept(struct socket *sock,
                                               struct socket *newsock)
{
}

static inline int security_socket_sendmsg(struct socket *sock,
                                          struct msghdr *msg, int size)
{
        return 0;
}

static inline int security_socket_recvmsg(struct socket *sock,
                                          struct msghdr *msg, int size,
                                          int flags)
{
        return 0;
}

static inline int security_socket_getsockname(struct socket *sock)
{
        return 0;
}

static inline int security_socket_getpeername(struct socket *sock)
{
        return 0;
}

static inline int security_socket_getsockopt(struct socket *sock,
                                             int level, int optname)
{
        return 0;
}

static inline int security_socket_setsockopt(struct socket *sock,
                                             int level, int optname)
{
        return 0;
}

static inline int security_socket_shutdown(struct socket *sock, int how)
{
        return 0;
}
static inline int security_sock_rcv_skb(struct sock *sk,
                                        struct sk_buff *skb)
{
        return 0;
}

static inline int security_socket_getpeersec_stream(struct socket *sock, char 
__user *optval,
                                                    int __user *optlen, 
unsigned len)
{
        return -ENOPROTOOPT;
}

static inline int security_socket_getpeersec_dgram(struct socket *sock, struct 
sk_buff *skb, u32 *secid)
{
        return -ENOPROTOOPT;
}

static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
        return 0;
}

static inline void security_sk_free(struct sock *sk)
{
}

static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
}

static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
}

static inline void security_req_classify_flow(const struct request_sock *req, 
struct flowi *fl)
{
}

static inline void security_sock_graft(struct sock *sk, struct socket *parent)
{
}

static inline int security_inet_conn_request(struct sock *sk,
                        struct sk_buff *skb, struct request_sock *req)
{
        return 0;
}

static inline void security_inet_csk_clone(struct sock *newsk,
                        const struct request_sock *req)
{
}

static inline void security_inet_conn_established(struct sock *sk,
                        struct sk_buff *skb)
{
}
#endif  /* CONFIG_SECURITY_NETWORK */

#ifdef CONFIG_SECURITY_NETWORK_XFRM

int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct 
xfrm_user_sec_ctx *sec_ctx);
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct 
xfrm_sec_ctx **new_ctxp);
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx);
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx);
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx 
*sec_ctx);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
                                      struct xfrm_sec_ctx *polsec, u32 secid);
int security_xfrm_state_delete(struct xfrm_state *x);
void security_xfrm_state_free(struct xfrm_state *x);
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir);
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
                                       struct xfrm_policy *xp, struct flowi 
*fl);
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid);
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl);

#else   /* CONFIG_SECURITY_NETWORK_XFRM */

static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct 
xfrm_user_sec_ctx *sec_ctx)
{
        return 0;
}

static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct 
xfrm_sec_ctx **new_ctxp)
{
        return 0;
}

static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
}

static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
        return 0;
}

static inline int security_xfrm_state_alloc(struct xfrm_state *x,
                                        struct xfrm_user_sec_ctx *sec_ctx)
{
        return 0;
}

static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
                                        struct xfrm_sec_ctx *polsec, u32 secid)
{
        return 0;
}

static inline void security_xfrm_state_free(struct xfrm_state *x)
{
}

static inline int security_xfrm_state_delete(struct xfrm_state *x)
{
        return 0;
}

static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 
fl_secid, u8 dir)
{
        return 0;
}

static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
                        struct xfrm_policy *xp, struct flowi *fl)
{
        return 1;
}

static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
        return 0;
}

static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi 
*fl)
{
}

#endif  /* CONFIG_SECURITY_NETWORK_XFRM */

#ifdef CONFIG_KEYS
#ifdef CONFIG_SECURITY

int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long 
flags);
void security_key_free(struct key *key);
int security_key_permission(key_ref_t key_ref,
                            struct task_struct *context, key_perm_t perm);
int security_key_getsecurity(struct key *key, char **_buffer);

#else

static inline int security_key_alloc(struct key *key,
                                     struct task_struct *tsk,
                                     unsigned long flags)
{
        return 0;
}

static inline void security_key_free(struct key *key)
{
}

static inline int security_key_permission(key_ref_t key_ref,
                                          struct task_struct *context,
                                          key_perm_t perm)
{
        return 0;
}

static inline int security_key_getsecurity(struct key *key, char **_buffer)
{
        *_buffer = NULL;
        return 0;
}

#endif
#endif /* CONFIG_KEYS */

#ifdef CONFIG_AUDIT
#ifdef CONFIG_SECURITY
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule);
int security_audit_rule_known(struct audit_krule *krule);
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
                              struct audit_context *actx);
void security_audit_rule_free(void *lsmrule);

#else

static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr,
                                           void **lsmrule)
{
        return 0;
}

static inline int security_audit_rule_known(struct audit_krule *krule)
{
        return 0;
}

static inline int security_audit_rule_match(u32 secid, u32 field, u32 op,
                                   void *lsmrule, struct audit_context *actx)
{
        return 0;
}

static inline void security_audit_rule_free(void *lsmrule)
{ }

#endif /* CONFIG_SECURITY */
#endif /* CONFIG_AUDIT */

#endif /* ! __LINUX_SECURITY_H */


reply via email to

[Prev in Thread] Current Thread [Next in Thread]