commit-gnuradio
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Commit-gnuradio] r6532 - gnuradio/branches/developers/matt/u2f/models


From: matt
Subject: [Commit-gnuradio] r6532 - gnuradio/branches/developers/matt/u2f/models
Date: Tue, 25 Sep 2007 12:18:55 -0600 (MDT)

Author: matt
Date: 2007-09-25 12:18:47 -0600 (Tue, 25 Sep 2007)
New Revision: 6532

Added:
   gnuradio/branches/developers/matt/u2f/models/math_real.v
Log:
copied from zhuochen's directory, originally by Brian Padalino (?)


Copied: gnuradio/branches/developers/matt/u2f/models/math_real.v (from rev 
6531, gnuradio/branches/developers/zhuochen/simulations/burst_test/math_real.v)
===================================================================
--- gnuradio/branches/developers/matt/u2f/models/math_real.v                    
        (rev 0)
+++ gnuradio/branches/developers/matt/u2f/models/math_real.v    2007-09-25 
18:18:47 UTC (rev 6532)
@@ -0,0 +1,496 @@
+/*
+ * This is a general recreation of the VHDL ieee.math_real package.
+ */
+ 
+// Constants for use below and for general reference
+// TODO: Bring it out to 12 (or more???) places beyond the decimal?
+`define     MATH_E              2.7182818284
+`define     MATH_1_OVER_E       0.3678794411
+`define     MATH_PI             3.1415926536
+`define     MATH_2_PI           6.2831853071
+`define     MATH_1_OVER_PI      0.3183098861
+`define     MATH_PI_OVER_2      1.5707963267
+`define     MATH_PI_OVER_3      1.0471975511
+`define     MATH_PI_OVER_4      0.7853981633
+`define     MATH_3_PI_OVER_2    4.7123889803
+`define     MATH_LOG_OF_2       0.6931471805
+`define     MATH_LOG_OF_10      2.3025850929
+`define     MATH_LOG2_OF_E      1.4426950408
+`define     MATH_LOG10_OF_E     0.4342944819
+`define     MATH_SQRT_2         1.4142135623
+`define     MATH_1_OVER_SQRT_2  0.7071067811
+`define     MATH_SQRT_PI        1.7724538509
+`define     MATH_DEG_TO_RAD     0.0174532925
+`define     MATH_RAD_TO_DEG     57.2957795130
+
+// The number of iterations to do for the Taylor series approximations
+`define     EXPLOG_ITERATIONS   19
+`define     COS_ITERATIONS      13
+
+module math ;
+    
+    /* Conversion Routines */
+    
+    // Return the sign of a particular number.
+    function real sign ;
+      input real x ;
+      begin
+        sign = x < 0.0 ? 1.0 : 0.0 ;
+      end
+    endfunction
+    
+    // Return the trunc function of a number
+    function real trunc ;
+      input real x ;
+      begin
+        trunc = x - mod(x,1.0) ;
+      end
+    endfunction
+    
+    // Return the ceiling function of a number.
+    function real ceil ;
+      input real x ;
+      real retval ;
+      begin
+        retval = mod(x,1.0) ;
+        if( retval != 0.0 && x > 0.0 )  retval = x+1.0 ;
+        else retval = x ;
+        ceil = trunc(retval) ;
+      end
+    endfunction
+    
+    // Return the floor function of a number
+    function real floor ;
+      input real x ;
+      real retval ;
+      begin
+        retval = mod(x,1.0) ;
+        if( retval != 0.0 && x < 0.0 ) retval = x - 1.0 ;
+        else retval = x ;
+        floor = trunc(retval) ;
+      end
+    endfunction
+    
+    // Return the round function of a number
+    function real round ;
+      input real x ;
+      real retval ;
+      begin
+        retval = x > 0.0 ? x + 0.5 : x - 0.5 ;
+        round = trunc(retval) ;
+      end
+    endfunction
+    
+    // Return the fractional remainder of (x mod m)
+    function real mod ;
+      input real x ;
+      input real m ;
+      real retval ;
+      begin
+        retval = x ;
+        if( retval > m ) begin
+            while( retval > m ) begin
+                retval = retval - m ;
+            end
+        end
+        else begin
+            while( retval < -m ) begin
+                retval = retval + m ;
+            end
+        end
+        mod = retval ;
+      end
+    endfunction
+    
+    // Return the max between two real numbers
+    function real realmax ;
+      input real x ;
+      input real y ;
+      begin
+        realmax = x > y ? x : y ;
+      end
+    endfunction
+    
+    // Return the min between two real numbers
+    function real realmin ;
+      input real x ;
+      input real y ;
+      begin
+        realmin = x > y ? y : x ;
+      end
+    endfunction
+    
+    /* Random Numbers */
+    
+    // Generate Gaussian distributed variables
+    function real gaussian ;
+      input real mean ;
+      input real var ;
+      real u1, u2, v1, v2, s ;
+      begin
+        s = 1.0 ;
+        while( s >= 1.0  ) begin
+            // Two random numbers between 0 and 1
+            u1 = $random/4294967296.0 + 0.5 ;
+            u2 = $random/4294967296.0 + 0.5 ;
+            // Adjust to be between -1,1
+            v1 = 2*u1-1.0 ;
+            v2 = 2*u2-1.0 ;
+            // Polar mag squared
+            s = (v1*v1 + v2*v2) ;
+        end
+        gaussian = mean + sqrt((-2.0*log(s))/s) * v1 * sqrt(var) ;
+        // gaussian2 = mean + sqrt(-2*log(s)/s)*v2 * sqrt(var) ;
+      end
+    endfunction
+    
+    /* Roots and Log Functions */
+    
+    // Return the square root of a number
+    function real sqrt ;
+      input real x ;
+      real retval ;
+      begin
+        sqrt = (x == 0.0) ? 0.0 : powr(x,0.5) ;
+      end
+    endfunction
+    
+    // Return the cube root of a number
+    function real cbrt ;
+      input real x ;
+      real retval ;
+      begin
+        cbrt = (x == 0.0) ? 0.0 : powr(x,1.0/3.0) ;
+      end
+    endfunction
+    
+    // Return the absolute value of a real value
+    function real abs ;
+      input real x ;
+      begin
+        abs = (x > 0.0) ? x : -x ;
+      end
+    endfunction 
+    
+    // Return a real value raised to an integer power
+    function real pow ;
+      input real b ;
+      input integer x ;
+      integer absx ;
+      real retval ;
+      begin
+        retval = 1.0 ;
+        absx = abs(x) ;
+        repeat(absx) begin
+            retval = b*retval ;
+        end
+        pow = x < 0 ? (1.0/retval) : retval ;
+      end
+    endfunction
+    
+    // Return a real value raised to a real power
+    function real powr ;
+      input real b ;
+      input real x ;
+      begin
+        powr = exp(x*log(b)) ;
+      end
+    endfunction
+    
+    // Return the evaluation of e^x where e is the natural logarithm base
+    // NOTE: This is the Taylor series expansion of e^x
+    function real exp ;
+      input real x ;
+      real retval ;
+      integer i ;
+      real nm1_fact ;
+      real powm1 ;
+      begin
+        nm1_fact = 1.0 ;
+        powm1 = 1.0 ;
+        retval = 1.0 ;
+        for( i = 1 ; i < `EXPLOG_ITERATIONS ; i = i + 1 ) begin
+            powm1 = x*powm1 ;
+            nm1_fact = nm1_fact * i ;
+            retval = retval + powm1/nm1_fact ;
+        end
+        exp = retval ;
+      end
+    endfunction
+    
+    // Return the evaluation log(x)
+    function real log ;
+      input real x ;
+      integer i ;
+      real whole ;
+      real xm1oxp1 ;
+      real retval ;
+      real newx ;
+      begin
+        retval = 0.0 ;
+        whole = 0.0 ;
+        newx = x ;
+        while( newx > `MATH_E ) begin
+            whole = whole + 1.0 ;
+            newx = newx / `MATH_E ;
+        end
+        xm1oxp1 = (newx-1.0)/(newx+1.0) ;
+        for( i = 0 ; i < `EXPLOG_ITERATIONS ; i = i + 1 ) begin
+            retval = retval + pow(xm1oxp1,2*i+1)/(2.0*i+1.0) ;
+        end
+        log = whole+2.0*retval ;
+      end
+    endfunction
+    
+    // Return the evaluation ln(x) (same as log(x))
+    function real ln ;
+      input real x ;
+      begin
+        ln = log(x) ;
+      end
+    endfunction
+    
+    // Return the evaluation log_2(x)
+    function real log2 ;
+      input real x ;
+      begin
+        log2 = log(x)/`MATH_LOG_OF_2 ;
+      end
+    endfunction
+    
+    function real log10 ;
+      input real x ;
+      begin
+        log10 = log(x)/`MATH_LOG_OF_10 ;
+      end
+    endfunction
+    
+    function real log_base ;
+      input real x ;
+      input real b ;
+      begin
+        log_base = log(x)/log(b) ;
+      end
+    endfunction
+    
+    /* Trigonometric Functions */
+    
+    // Internal function to reduce a value to be between [-pi:pi]
+    function real reduce ;
+      input real x ;
+      real retval ;
+      begin
+        retval = x ;
+        while( abs(retval) > `MATH_PI ) begin
+            retval = retval > `MATH_PI ? 
+                     (retval - `MATH_2_PI) : 
+                     (retval + `MATH_2_PI) ;
+        end
+        reduce = retval ;
+      end
+    endfunction
+    
+    // Return the cos of a number in radians
+    function real cos ;
+      input real x ;
+      integer i ;
+      integer sign ;
+      real newx ;
+      real retval ;
+      real xsqnm1 ;
+      real twonm1fact ;
+      begin
+        newx = reduce(x) ;
+        xsqnm1 = 1.0 ;
+        twonm1fact = 1.0 ;
+        retval = 1.0 ;
+        for( i = 1 ; i < `COS_ITERATIONS ; i = i + 1 ) begin
+            sign = -2*(i % 2)+1 ;
+            xsqnm1 = xsqnm1*newx*newx ;
+            twonm1fact = twonm1fact * (2.0*i) * (2.0*i-1.0) ;
+            retval = retval + sign*(xsqnm1/twonm1fact) ; 
+        end
+        cos = retval ;
+      end
+    endfunction
+    
+    // Return the sin of a number in radians
+    function real sin ;
+      input real x ;
+      begin
+        sin = cos(x - `MATH_PI_OVER_2) ;
+      end
+    endfunction
+    
+    // Return the tan of a number in radians
+    function real tan ;
+      input real x ;
+      begin
+        tan = sin(x) / cos(x) ;
+      end
+    endfunction
+    
+    // Return the arcsin in radians of a number
+    function real arcsin ;
+      input real x ;
+      begin
+        arcsin = 2.0*arctan(x/(1.0+sqrt(1.0-x*x))) ;
+      end
+    endfunction
+    
+    // Return the arccos in radians of a number
+    function real arccos ;
+      input real x ;
+      begin
+        arccos = `MATH_PI_OVER_2-arcsin(x) ;
+      end
+    endfunction
+    
+    // Return the arctan in radians of a number
+    // TODO: Make sure this REALLY does work as it is supposed to!
+    function real arctan ;
+      input real x ;
+      real retval ;
+      real y ;
+      real newx ;
+      real twoiotwoip1 ;
+      integer i ;
+      integer mult ;
+      begin
+        retval = 1.0 ;
+        twoiotwoip1 = 1.0 ;
+        mult = 1 ;
+        newx = abs(x) ;
+        while( newx > 1.0 ) begin
+            mult = mult*2 ;
+            newx = newx/(1.0+sqrt(1.0+newx*newx)) ;
+        end
+        y = 1.0 ;
+        for( i = 1 ; i < 2*`COS_ITERATIONS ; i = i + 1 ) begin
+            y = y*((newx*newx)/(1+newx*newx)) ;
+            twoiotwoip1 = twoiotwoip1 * (2.0*i)/(2.0*i+1.0) ;
+            retval = retval + twoiotwoip1*y ;
+        end
+        retval = retval * (newx/(1+newx*newx)) ;
+        retval = retval * mult ;
+        
+        arctan = (x > 0.0) ? retval : -retval ;
+      end
+    endfunction
+    
+    // Return the arctan in radians of a ratio x/y
+    // TODO: Test to make sure this works as it is supposed to!
+    function real arctan_xy ;
+      input real x ;
+      input real y ;
+      real retval ;
+      begin
+        retval = 0.0 ;
+        if( x < 0.0 ) retval = `MATH_PI - arctan(-abs(y)/x) ;
+        else if( x > 0.0 ) retval = arctan(abs(y)/x) ;
+        else if( x == 0.0 ) retval = `MATH_PI_OVER_2 ;
+        arctan_xy = (y < 0.0) ? -retval : retval ;
+      end
+    endfunction
+    
+    /* Hyperbolic Functions */
+    
+    // Return the sinh of a number
+    function real sinh ;
+      input real x ;
+      begin
+        sinh = (exp(x) - exp(-x))/2.0 ;
+      end
+    endfunction
+    
+    // Return the cosh of a number
+    function real cosh ;
+      input real x ;
+      begin
+        cosh = (exp(x) + exp(-x))/2.0 ;
+      end
+    endfunction
+    
+    // Return the tanh of a number
+    function real tanh ;
+      input real x ;
+      real e2x ;
+      begin
+        e2x = exp(2.0*x) ;
+        tanh = (e2x+1.0)/(e2x-1.0) ;
+      end
+    endfunction
+    
+    // Return the arcsinh of a number
+    function real arcsinh ;
+      input real x ;
+      begin
+        arcsinh = log(x+sqrt(x*x+1.0)) ;
+      end
+    endfunction
+    
+    // Return the arccosh of a number
+    function real arccosh ;
+      input real x ;
+      begin
+        arccosh = ln(x+sqrt(x*x-1.0)) ;
+      end
+    endfunction
+    
+    // Return the arctanh of a number
+    function real arctanh ;
+      input real x ;
+      begin
+        arctanh = 0.5*ln((1.0+x)/(1.0-x)) ;
+      end
+    endfunction
+    /*
+    initial begin
+        $display( "cos(MATH_PI_OVER_3): %f", cos(`MATH_PI_OVER_3) ) ;
+        $display( "sin(MATH_PI_OVER_3): %f", sin(`MATH_PI_OVER_3) ) ;
+        $display( "sign(-10): %f", sign(-10) ) ;
+        $display( "realmax(MATH_PI,MATH_E): %f", realmax(`MATH_PI,`MATH_E) ) ;
+        $display( "realmin(MATH_PI,MATH_E): %f", realmin(`MATH_PI,`MATH_E) ) ;
+        $display( "mod(MATH_PI,MATH_E): %f", mod(`MATH_PI,`MATH_E) ) ;
+        $display( "ceil(-MATH_PI): %f", ceil(-`MATH_PI) ) ;
+        $display( "ceil(4.0): %f", ceil(4.0) ) ;
+        $display( "ceil(3.99999999999999): %f", ceil(3.99999999999999) ) ;
+        $display( "pow(MATH_PI,2): %f", pow(`MATH_PI,2) ) ;
+        $display( "gaussian(1.0,1.0): %f", gaussian(1.0,1.0) ) ;
+        $display( "round(MATH_PI): %f", round(`MATH_PI) ) ;
+        $display( "trunc(-MATH_PI): %f", trunc(-`MATH_PI) ) ;
+        $display( "ceil(-MATH_PI): %f", ceil(-`MATH_PI) ) ;
+        $display( "floor(MATH_PI): %f", floor(`MATH_PI) ) ;
+        $display( "round(e): %f", round(`MATH_E)) ;
+        $display( "ceil(-e): %f", ceil(-`MATH_E)) ;
+        $display( "exp(MATH_PI): %f", exp(`MATH_PI) ) ;
+        $display( "log2(MATH_PI): %f", log2(`MATH_PI) ) ;
+        $display( "log_base(pow(2,32),2): %f", log_base(pow(2,32),2) ) ;
+        $display( "ln(0.1): %f", log(0.1) ) ;
+        $display( "cbrt(7): %f", cbrt(7) ) ;
+        $display( "cos(`MATH_2_PI): %f", cos(20*`MATH_2_PI) ) ;
+        $display( "sin(-`MATH_2_PI): %f", sin(-50*`MATH_2_PI) ) ;
+        $display( "sinh(`MATH_E): %f", sinh(`MATH_E) ) ;
+        $display( "cosh(`MATH_2_PI): %f", cosh(`MATH_2_PI) ) ;
+        $display( "arctan_xy(-4,3): %f", arctan_xy(-4,3) ) ;
+        $display( "arctan(MATH_PI): %f", arctan(`MATH_PI) ) ;
+        $display( "arctan(-MATH_E/2): %f", arctan(-`MATH_E/2) ) ;
+        $display( "arctan(MATH_PI_OVER_2): %f", arctan(`MATH_PI_OVER_2) ) ;
+        $display( "arctan(1/7) = %f", arctan(1.0/7.0) ) ;
+        $display( "arctan(3/79) = %f", arctan(3.0/79.0) ) ;
+        $display( "pi/4 ?= %f", 5*arctan(1.0/7.0)+2*arctan(3.0/79.0) ) ;
+        $display( "arcsin(1.0): %f", arcsin(1.0) ) ;
+        $display( "cos(pi/2): %f", cos(`MATH_PI_OVER_2)) ;
+        $display( "arccos(cos(pi/2)): %f", arccos(cos(`MATH_PI_OVER_2)) ) ;
+        $display( "cos(0): %f", cos(0) ) ;
+        $display( "cos(`MATH_PI_OVER_4): %f", cos(`MATH_PI_OVER_4) ) ;
+        $display( "cos(`MATH_PI_OVER_2): %f", cos(`MATH_PI_OVER_2) ) ;
+        $display( "cos(3*`MATH_PI_OVER_4): %f", cos(3*`MATH_PI_OVER_4) ) ;
+        $display( "cos(`MATH_PI): %f", cos(`MATH_PI) ) ;
+        $display( "cos(5*`MATH_PI_OVER_4): %f", cos(5*`MATH_PI_OVER_4) ) ;
+        $display( "cos(6*`MATH_PI_OVER_4): %f", cos(6*`MATH_PI_OVER_4) ) ;
+        $display( "cos(7*`MATH_PI_OVER_4): %f", cos(7*`MATH_PI_OVER_4) ) ;
+        $display( "cos(8*`MATH_PI_OVER_4): %f", cos(8*`MATH_PI_OVER_4) ) ;
+    end*/
+    
+endmodule





reply via email to

[Prev in Thread] Current Thread [Next in Thread]