
Contents

1 Modules and macros 1
1.1 Macro definitions . 1

1.1.1 define-syntax . 1
1.1.2 define-compiled-syntax 2
1.1.3 syntax . 2

1.2 Explicit renaming macros . 2
1.3 Modules . 5

1.3.1 module . 6
1.3.2 import . 6
1.3.3 import-for-syntax . 7

1.4 import libraries . 8
1.5 Predefined modules . 8
1.6 Examples of using modules 9
1.7 Caveats . 11

1 Modules and macros

CHICKEN supports standard R5RS syntax-rules macros and a low-
level macro system based on explicit renaming.

1.1 Macro definitions

1.1.1 define-syntax

\[syntax\] (define-syntax IDENTIFIER TRANSFORMER)

Defines a macro named IDENTIFIER that will transform an expression
with IDENTIFIER in operator position according to TRANSFORMER. The
transformer expression must be a procedure with three arguments or a
syntax-rules form. If syntax-rules is used, the usual R5RS seman-
tics apply. If TRANSFORMER is a procedure, then it will be called on ex-
pansion with the complete s-expression of the macro invocation, a rename
procedure that hygienically renames identifiers and a comparison proce-
dure that compares (possibly renamed) identifiers.

define-syntax may be used to define local macros that are visible
throughout the rest of the body in which the definition occurred, i.e.

1

(let ()
...
(define-syntax foo ...)
(define-syntax bar ...)
...)

is expanded into

(let ()
...
(letrec-syntax ((foo ...) (bar ...))
...))

syntax-rules partially supports SRFI-46 in allowing the ellipsis identi-
fier to be user-defined by passing it as the first argument to the syntax-rules
form.

1.1.2 define-compiled-syntax

\[syntax\] (define-compiled-syntax IDENTIFIER TRANSFORMER)

Equivalent to define-syntax, but when compiled, will also define the
macro at runtime.

1.1.3 syntax

\[syntax\] (syntax EXPRESSION)

Similar to quote but retains syntactical context information for embedded
identifiers.

1.2 Explicit renaming macros

The low-level macro facility that CHICKEN provides is called explicit re-
naming and allows writing hygienic or nonhygienic macros procedurally.
When given a lambda-expression instead of a syntax-rules form, define-syntax
evaluates the procedure in a distinct expansion environment (initially hav-
ing access to the exported identifiers of the scheme module). The proce-
dure takes an expression and two other arguments and returns a trans-
formed expression.

2

http://srfi.schemers.org/srfi-46/

For example, the transformation procedure for a call macro such that
(call proc arg ...) expands into (proc arg ...) can be written
as

(lambda (exp rename compare)
(cdr exp))

Expressions are represented as lists in the traditional manner, except that
identifiers are represented as special uninterned symbols.

The second argument to a transformation procedure is a renaming pro-
cedure that takes the representation of an identifier as its argument and
returns the representation of a fresh identifier that occurs nowhere else in
the program. For example, the transformation procedure for a simplified
version of the let macro might be written as

(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))

(inits (map cadr (cadr exp)))
(body (cddr exp)))

‘((lambda ,vars ,@body)
,@inits)))

This would not be hygienic, however. A hygienic let macro must rename
the identifier lambda to protect it from being captured by a local binding.
The renaming effectively creates an fresh alias for lambda, one that cannot
be captured by any subsequent binding:

(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))

(inits (map cadr (cadr exp)))
(body (cddr exp)))

‘((,(rename ’lambda) ,vars ,@body)
,@inits)))

The expression returned by the transformation procedure will be expanded
in the syntactic environment obtained from the syntactic environment of
the macro application by binding any fresh identifiers generated by the
renaming procedure to the denotations of the original identifiers in the
syntactic environment in which the macro was defined. This means that

3

a renamed identifier will denote the same thing as the original identifier
unless the transformation procedure that renamed the identifier placed an
occurrence of it in a binding position.

Identifiers obtained from any two calls to the renaming procedure with
the same argument will necessarily be the same, but will denote the same
syntactical binding. It is an error if the renaming procedure is called after
the transformation procedure has returned.

The third argument to a transformation procedure is a comparison
predicate that takes the representations of two identifiers as its arguments
and returns true if and only if they denote the same thing in the syntactic
environment that will be used to expand the transformed macro applica-
tion. For example, the transformation procedure for a simplified version
of the cond macro can be written as

(lambda (exp rename compare)
(let ((clauses (cdr exp)))
(if (null? clauses)

‘(,(rename ’quote) unspecified)
(let* ((first (car clauses))

(rest (cdr clauses))
(test (car first)))

(cond ((and (identifier? test)
(compare test (rename ’else)))

‘(,(rename ’begin) ,@(cdr first)))
(else ‘(,(rename ’if)

,test
(,(rename ’begin) ,@(cdr first))
(cond ,@rest))))))))

In this example the identifier else is renamed before being passed to the
comparison predicate, so the comparison will be true if and only if the
test expression is an identifier that denotes the same thing in the syntactic
environment of the expression being transformed as else denotes in the
syntactic environment in which the cond macro was defined. If else
were not renamed before being passed to the comparison predicate, then
it would match a local variable that happened to be named else, and the
macro would not be hygienic.

Some macros are non-hygienic by design. For example, the following
defines a loop macro that implicitly binds exit to an escape procedure.

4

The binding of exit is intended to capture free references to exit in the
body of the loop, so exit is not renamed.

(define-syntax loop
(lambda (x r c)
(let ((body (cdr x)))
‘(,(r ’call-with-current-continuation)
(,(r ’lambda) (exit)
(,(r ’let) ,(r ’f) () ,@body (,(r ’f))))))))

Suppose a while macro is implemented using loop, with the intent that
exit may be used to escape from the while loop. The while macro
cannot be written as

(define-syntax while
(syntax-rules ()
((while test body ...)
(loop (if (not test) (exit \#f))

body ...))))

because the reference to exit that is inserted by the while macro is in-
tended to be captured by the binding of exit that will be inserted by the
loopmacro. In other words, this whilemacro is not hygienic. Like loop,
it must be written using procedurally:

(define-syntax while
(lambda (x r c)
(let ((test (cadr x))

(body (cddr x)))
‘(,(r ’loop)
(,(r ’if) (,(r ’not) ,test) (exit \#f))
,@body))))

1.3 Modules

To allow some control over visible bindings and to organize code at the
global level, a simple module system is available. A module defines a set
of toplevel expressions that are initially evaluated in an empty syntactical

5

environment. By importing other modules, exported value- and macro-
bindings are made visible inside the environment of the module that im-
ports them.

Note that modules are purely syntactical - they do not change the con-
trol flow or delay the execution of the contained toplevel forms. The body
of a module is executed at load-time, when code is loaded or accessed
via the uses declaration, just like normal toplevel expressions. Exported
macro-definitions are compiled as well, and can be accessed in interpreted
or compiled code by loading and importing the compiled file that contains
the module.

A module is initially empty (has no visible bindings). You must at least
import the scheme module to do anything useful.

1.3.1 module

\[syntax\] (module NAME (EXPORT ...) BODY ...)

Defines a module with the name NAME, a set of exported bindings and a
contained sequence of toplevel expressions that are evaluated in an empty
syntactical environment. EXPORT may be a symbol or a list of the form
(IDENTIFIER1 IDENTIFIER2 ...). In the former case the identifier
given is exported from the module and can be imported at the toplevel
or in other modules. The latter case exports all identifiers listed (this is
a hint to the module expander to export bindings referenced by syntax-
definitions which make use of them, but which would normally be inter-
nal to the module - that allows some optimization, which is currently not
implemented but may be in the future).

Nested modules or modules not at toplevel (i.e. local modules) are not
supported.

When compiled, the module information, including exported macros
is stored in the generated binary and available when loading it into in-
terpreted or compiled code. Note that this is different to normal macros
(outside of module declarations), which are normally not exported from
compiled code.

1.3.2 import

\[syntax\] (import IMPORT ...)

6

Imports module bindings into the currentl syntactical environment. The
visibility of any imported bindings is limited to the current module, if used
inside a module-definition, or to the current compilation unit, if compiled
and used outside of a module.

Importing a module does not load or link it - this is a separate operation
from importing its bindings.

IMPORT may be a module name, or an import specifier. An IMPORT
defines a set of bindings that are to be made visible in the current scope.
only

\[import specifier\] (only IMPORT IDENTIFIER ...)

Only import the listed value- or syntax bindings from the set given by
IMPORT.
except

\[import specifier\] (except IMPORT IDENTIFIER ...)

Remove the listed identifiers from the import-set defined by IMPORT.
rename

\[import specifier\] (rename IMPORT (OLD1 NEW1) ...)

Renames identifiers imported from IMPORT.
prefix

\[import specifier\] (prefix IMPORT SYMBOL)

Prefixes all imported identifiers with SYMBOL.

1.3.3 import-for-syntax

\[syntax\] (import-for-syntax IMPORT ...)

Similar to import, but imports exported bindings of a module into the
environment in which macro transformers are evaluated.

Note: currently this isn’t fully correct - value bindings are still im-
ported into the normal environment because a separate import environ-
ment for syntax has not been implemented (syntactic bindings are kept
separate correctly).

7

1.4 import libraries

import libraries allow the syntactical (compile-time) and run-time parts of a
compiled module to be separated into a normal compiled file and a shared
library that only contains macro definitions and module information. This
reduces the size of executables and simplifies compiling code that uses
modules for a different architecture than the machine the compiler is exe-
cuting on (i.e. cross compilation).

By using the emit-import-library compiler-option or declaration,
a separate file is generated that only contains syntactical information (in-
cluding macros) for a module. import will automatically find and load
an import library for a currently unknown module, if the import- library
is either in the extension repository or the current include path. Import li-
braries may also be explicitly loaded into the compiler by using the -extend
compiler option. Interpreted code can simply load the import library to
make the module-definition available.

1.5 Predefined modules

Import libraries for the following modules are initially available:

\[module\] scheme

Exports the standard R5RS bindings.

\[module\] chicken

Everything from the library, eval and expand library units.

\[module\] extras
\[module\] data-structures
\[module\] lolevel
\[module\] posix
\[module\] regex
\[module\] srfi-1
\[module\] srfi-4
\[module\] srfi-13
\[module\] srfi-14
\[module\] srfi-18

8

\[module\] srfi-69
\[module\] tcp
\[module\] utils

Modules exporting the bindings from the respective library units.

\[module\] foreign

Exports all macros and procedures that are used to access foreign C/C++
code.

1.6 Examples of using modules

Here is a silly little test module to demonstrate how modules are defined
and used:

; hello.scm

(module test (hello greet)

(import scheme)

(define-syntax greet
(syntax-rules ()
((_ whom)
(begin

(display Hello,) (display whom) (display !n)))))

(define (hello)
(greet world)))

The module test exports one value (hello) and one syntax binding
(greet). To use it in csi, the interpreter, simply load and import it:

\#;1> ,l hello.scm
; loading hello.scm ...
; loading /usr/local/lib/chicken/4/scheme.import.so ...
\#;1> (import test)
\#;2> (hello)
Hello, world !
\#;3> (greet you)
Hello, you !

9

The module can easily be compiled

% csc -s hello.scm

and used in an indentical manner:

\#;1> ,l hello.so
; loading hello.so ...
\#;1> (import test)
\#;2> (hello)
Hello, world !
\#;3> (greet you)
Hello, you !

If you want to keep macro-definitions in a separate file, use import li-
braries:

% csc -s hello.scm -j test
% csc -s test.import.scm

\#;1> ,l hello.so
; loading hello.so ...
\#;1> (import test)
; loading ./test.import.so ...
\#;2> (hello)
Hello, world !
\#;3> (greet you)
Hello, you !

If an import library (compiled or in source-form) is located somewhere
in the extensions-repository or include path, it is automatically loaded on
import. Otherwise you have to load it manually:

\#;1> ,l hello.so
; loading hello.so ...
\#;1> ,l test.import.so
; loading test.import.so ...
\#;1> (import test)
\#;2>

10

1.7 Caveats

Macros are currently not referentially transparent on the module level: in-
ternal Identifiers used by exported macros must be exported too or the
macro expansion will contain references to unbound identifiers. This is a
bug.

The macro- and module system has been implemented relatively re-
cently and is likely to contain bugs. Please contact the maintainers if you
encounter behaviour that you think is not correct or that triggers an error
where there shouldn’t be one.

Currently value bindings imported by import and import-for-syntax
share the same import-environment.

Previous: Non-standard macros and special forms
Next: Declarations

11

	Modules and macros
	Macro definitions
	define-syntax
	define-compiled-syntax
	syntax

	Explicit renaming macros
	Modules
	module
	import
	import-for-syntax

	import libraries
	Predefined modules
	Examples of using modules
	Caveats

