/* Output the generated parsing program for bison, Copyright (C) 1984, 1986, 1989, 1992, 2000 Free Software Foundation, Inc. This file is part of Bison, the GNU Compiler Compiler. Bison is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Bison is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Bison; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* The parser tables consist of these tables. Starred ones needed only for the semantic parser. Double starred are output only if switches are set. yytranslate = vector mapping yylex's token numbers into bison's token numbers. ** yytname = vector of string-names indexed by bison token number ** yytoknum = vector of yylex token numbers corresponding to entries in yytname yyrline = vector of line-numbers of all rules. For yydebug printouts. yyrhs = vector of items of all rules. This is exactly what ritems contains. For yydebug and for semantic parser. yyprhs[r] = index in yyrhs of first item for rule r. yyr1[r] = symbol number of symbol that rule r derives. yyr2[r] = number of symbols composing right hand side of rule r. * yystos[s] = the symbol number of the symbol that leads to state s. yydefact[s] = default rule to reduce with in state s, when yytable doesn't specify something else to do. Zero means the default is an error. yydefgoto[i] = default state to go to after a reduction of a rule that generates variable ntokens + i, except when yytable specifies something else to do. yypact[s] = index in yytable of the portion describing state s. The lookahead token's type is used to index that portion to find out what to do. If the value in yytable is positive, we shift the token and go to that state. If the value is negative, it is minus a rule number to reduce by. If the value is zero, the default action from yydefact[s] is used. yypgoto[i] = the index in yytable of the portion describing what to do after reducing a rule that derives variable i + ntokens. This portion is indexed by the parser state number, s, as of before the text for this nonterminal was read. The value from yytable is the state to go to if the corresponding value in yycheck is s. yytable = a vector filled with portions for different uses, found via yypact and yypgoto. yycheck = a vector indexed in parallel with yytable. It indicates, in a roundabout way, the bounds of the portion you are trying to examine. Suppose that the portion of yytable starts at index p and the index to be examined within the portion is i. Then if yycheck[p+i] != i, i is outside the bounds of what is actually allocated, and the default (from yydefact or yydefgoto) should be used. Otherwise, yytable[p+i] should be used. YYFINAL = the state number of the termination state. YYFLAG = most negative short int. Used to flag ?? YYNTBASE = ntokens. */ #include "system.h" #include "getargs.h" #include "xalloc.h" #include "files.h" #include "gram.h" #include "LR0.h" #include "complain.h" #include "output.h" #include "lalr.h" #include "reader.h" #include "conflicts.h" extern void berror PARAMS((const char *)); static int nvectors; static int nentries; static short **froms; static short **tos; static short *tally; static short *width; static short *actrow; static short *state_count; static short *order; static short *base; static short *pos; static short *table; static short *check; static int lowzero; static int high; static inline void output_short_table (FILE *out, const char *table_name, short *short_table, short first_value, short begin, short end) { int i, j; fprintf (out, "static const short %s[] = {%6d", table_name, first_value); j = 10; for (i = begin; i < end; i++) { putc (',', out); if (j >= 10) { putc ('\n', out); j = 1; } else { j++; } fprintf (out, "%6d", short_table[i]); } fprintf (out, "\n};\n"); } /*--------------------------------------------------------------. | output_headers -- Output constant strings to the beginning of | | certain files. | `--------------------------------------------------------------*/ #define GUARDSTR \ "\n\ #include \"%s\"\n\ extern int yyerror;\n\ extern int yycost;\n\ extern char * yymsg;\n\ extern YYSTYPE yyval;\n\ \n\ yyguard(n, yyvsp, yylsp)\n\ register int n;\n\ register YYSTYPE *yyvsp;\n\ register YYLTYPE *yylsp;\n\ {\n\ yyerror = 0;\n\ yycost = 0;\n\ yymsg = 0;\n\ switch (n)\n\ {" #define ACTSTR \ "\n\ #include \"%s\"\n\ extern YYSTYPE yyval;\n\ extern int yychar;\n\ \n\ yyaction(n, yyvsp, yylsp)\n\ register int n;\n\ register YYSTYPE *yyvsp;\n\ register YYLTYPE *yylsp;\n\ {\n\ switch (n)\n\ {" #define ACTSTR_SIMPLE "\n switch (yyn) {\n" void output_headers (void) { if (semantic_parser) fprintf (fguard, GUARDSTR, attrsfile); if (no_parser_flag) return; fprintf (faction, (semantic_parser ? ACTSTR : ACTSTR_SIMPLE), attrsfile); /* if (semantic_parser) JF moved this below fprintf(ftable, "#include \"%s\"\n", attrsfile); fprintf(ftable, "#include \n\n"); */ /* Rename certain symbols if -p was specified. */ if (spec_name_prefix) { fprintf (ftable, "#define yyparse %sparse\n", spec_name_prefix); fprintf (ftable, "#define yylex %slex\n", spec_name_prefix); fprintf (ftable, "#define yyerror %serror\n", spec_name_prefix); fprintf (ftable, "#define yylval %slval\n", spec_name_prefix); fprintf (ftable, "#define yychar %schar\n", spec_name_prefix); fprintf (ftable, "#define yydebug %sdebug\n", spec_name_prefix); fprintf (ftable, "#define yynerrs %snerrs\n", spec_name_prefix); fprintf (ftable, "#define yytypecode %stypecode\n", spec_name_prefix); fprintf (ftable, "#define yytypecode_cache %stypecode_cache\n", spec_name_prefix); } } /*-------------------------------------------------------. | Output constant strings to the ends of certain files. | `-------------------------------------------------------*/ void output_trailers (void) { if (semantic_parser) fprintf (fguard, "\n }\n}\n"); fprintf (faction, "\n"); if (no_parser_flag) return; if (semantic_parser) fprintf (faction, " }\n"); fprintf (faction, "}\n"); } static void output_token_translations (void) { int i, j; /* short *sp; JF unused */ if (translations) { fprintf (ftable, "\n#define YYTRANSLATE(x) ((unsigned)(x) <= %d ? yytranslate[x] : %d)\n", max_user_token_number, nsyms); if (ntokens < 127) /* play it very safe; check maximum element value. */ fprintf (ftable, "\nstatic const char yytranslate[] = { 0"); else fprintf (ftable, "\nstatic const short yytranslate[] = { 0"); j = 10; for (i = 1; i <= max_user_token_number; i++) { putc (',', ftable); if (j >= 10) { putc ('\n', ftable); j = 1; } else { j++; } fprintf (ftable, "%6d", token_translations[i]); } fprintf (ftable, "\n};\n"); } else { fprintf (ftable, "\n#define YYTRANSLATE(x) (x)\n"); } } static void output_gram (void) { int j; short *sp; /* With the ordinary parser, yyprhs and yyrhs are needed only for yydebug. */ /* With the no_parser option, all tables are generated */ if (!semantic_parser && !no_parser_flag) fprintf (ftable, "\n#if YYDEBUG != 0\n"); output_short_table (ftable, "yyprhs", rrhs, 0, 1, nrules + 1); fprintf (ftable, "\nstatic const short yyrhs[] = {%6d", ritem[0]); j = 10; for (sp = ritem + 1; *sp; sp++) { putc (',', ftable); if (j >= 10) { putc ('\n', ftable); j = 1; } else { j++; } if (*sp > 0) fprintf (ftable, "%6d", *sp); else fprintf (ftable, " 0"); } fprintf (ftable, "\n};\n"); if (!semantic_parser && !no_parser_flag) fprintf (ftable, "\n#endif\n"); } static void output_stos (void) { output_short_table (ftable, "yystos", accessing_symbol, 0, 1, nstates); } #define SWAP(x, y) (temp = (x), (x) = (y), (y) = temp) static void adjust(int tc[], int m, register int n) { register int *b, j, k, temp; b = tc - 1; j = m; k = m * 2; while (k <= n) { if (k < n && strcmp(tags[b[k]], tags[b[k+1]]) < 0) ++k; if (strcmp(tags[b[j]], tags[b[k]]) < 0) SWAP(b[j], b[k]); j = k; k *= 2; } } static void output_name_typecode_table(void) { int* tc; /* The value is a type-code in the tags table. */ int i, j, temp, k; tc = calloc(nsyms, sizeof(int)); for (i=0; i 0; --j) adjust(tc, j, nsyms); for (j = nsyms-1; j > 0; --j) { SWAP(tc[0], tc[j]); adjust(tc, 1, j); } putc('\n', ftable); /* Output the size of the sorted symbol names table: */ fprintf(ftable, "static const int yytname_typecode_size = %d;\n\n", nsyms); /* Output the struct for use with the table of sorted symbol names: */ fputs("struct name_typecode_t { char* name; int typecode; };\n\n", ftable); /* Output the table of sorted symbol names: */ fputs("static const name_typecode_t yytname_typecode[] = {\n", ftable); j = 0; k = nsyms - 1; for (i = 0; i < nsyms; ++i) { char *p; if (j > 75) { putc ('\n', ftable); j = 0; } else if (i != 0) { putc (' ', ftable); ++j; } fputs("{\"", ftable); j += 2; for (p = tags[tc[i]]; p && *p; p++) { if (*p == '"' || *p == '\\') { fprintf (ftable, "\\%c", *p); j += 2; } else if (*p == '\n') { fprintf (ftable, "\\n"); j += 2; } else if (*p == '\t') { fprintf (ftable, "\\t"); j += 2; } else if (*p == '\b') { fprintf (ftable, "\\b"); j += 2; } else if (*p < 040 || *p >= 0177) { fprintf (ftable, "\\%03o", *p); j += 4; } else { putc (*p, ftable); j++; } } temp = tc[i]; fprintf(ftable, "\", %d}", temp); j += 5 + (temp >= 10) + (temp >= 100) + (temp >= 1000) + (temp >= 10000); if (i < k) { fputs(",", ftable); ++j; } } fputs("\n};\n", ftable); /* Output the type-code lookup functions: */ fputs( "\nint yytypecode(const char* s);\n" "int yytypecode_cache(const char* s, int* cache);\n\n" "int yytypecode(const char* s) {\n" " int low = 0, high = yytname_typecode_size;\n" " while (low != high) {\n" " int i = low + (high - low)/2;\n" " int c = strcmp(s, yytname_typecode[i].name);\n" " switch ((c > 0) - (c < 0)) {\n" " case -1: high = i; break;\n" " case 1: low = i + 1; break;\n", ftable); if (!raw_flag) fputs( " /* Add 254 to translate from Bison to Yacc type-code: */\n" " default: return yytname_typecode[i].typecode + 254;\n", ftable); else fputs( " default: return yytname_typecode[i].typecode;\n", ftable); fputs( " }\n" " }\n" " return -1;\n" "}\n\n", ftable); fputs( "int yytypecode_cache(const char* s, int* cache) {\n" " if (cache != NULL && *cache >= -1) return *cache;\n" " int low = 0, high = yytname_typecode_size;\n" " while (low != high) {\n" " int i = low + (high - low)/2;\n" " int c = strcmp(s, yytname_typecode[i].name);\n" " switch ((c > 0) - (c < 0)) {\n" " case -1: high = i; break;\n" " case 1: low = i + 1; break;\n", ftable); if (!raw_flag) fputs( " /* Add 254 to translate from Bison to Yacc type-code: */\n" " default: { int tc = yytname_typecode[i].typecode + 254;\n", ftable); else fputs( " default: { int tc = yytname_typecode[i].typecode;\n", ftable); fputs( " if (cache != NULL) *cache = tc;\n" " return tc; }\n" " }\n" " }\n" " if (cache != NULL) *cache = -1;\n" " return -1;\n" "}\n", ftable); free(tc); } static void output_rule_data (void) { int i; int j; fputs ("\n\ #if YYDEBUG != 0\n\ /* YYRLINE[yyn]: source line where rule number YYN was defined. */\n", ftable); output_short_table (ftable, "yyrline", rline, 0, 1, nrules + 1); fputs ("#endif\n\n", ftable); if (token_table_flag || no_parser_flag) { fprintf (ftable, "#define YYNTOKENS %d\n", ntokens); fprintf (ftable, "#define YYNNTS %d\n", nvars); fprintf (ftable, "#define YYNRULES %d\n", nrules); fprintf (ftable, "#define YYNSTATES %d\n", nstates); fprintf (ftable, "#define YYMAXUTOK %d\n\n", max_user_token_number); } if (!token_table_flag && !no_parser_flag) fprintf (ftable, "\n#if YYDEBUG != 0 || defined (YYERROR_VERBOSE)\n\n"); /* Output the table of symbol names. */ fprintf (ftable, "static const char * const yytname[] = { \"%s\"", tags[0]); j = strlen (tags[0]) + 44; for (i = 1; i < nsyms; i++) /* this used to be i<=nsyms, but that output a final "" symbol almost by accident */ { char *p; putc (',', ftable); j++; if (j > 75) { putc ('\n', ftable); j = 0; } putc ('\"', ftable); j++; for (p = tags[i]; p && *p; p++) { if (*p == '"' || *p == '\\') { fprintf (ftable, "\\%c", *p); j += 2; } else if (*p == '\n') { fprintf (ftable, "\\n"); j += 2; } else if (*p == '\t') { fprintf (ftable, "\\t"); j += 2; } else if (*p == '\b') { fprintf (ftable, "\\b"); j += 2; } else if (*p < 040 || *p >= 0177) { fprintf (ftable, "\\%03o", *p); j += 4; } else { putc (*p, ftable); j++; } } putc ('\"', ftable); j++; } /* add a NULL entry to list of tokens */ fprintf (ftable, ", NULL\n};\n"); output_name_typecode_table(); if (!token_table_flag && !no_parser_flag) fprintf (ftable, "#endif\n\n"); /* Output YYTOKNUM. */ if (token_table_flag) { output_short_table (ftable, "yytoknum", user_toknums, 0, 1, ntokens + 1); } /* Output YYR1. */ fputs ("\ /* YYR1[YYN]: Symbol number of symbol that rule YYN derives. */\n", ftable); output_short_table (ftable, "yyr1", rlhs, 0, 1, nrules + 1); XFREE (rlhs + 1); putc ('\n', ftable); /* Output YYR2. */ fputs ("\ /* YYR2[YYN]: Number of symbols composing right hand side of rule YYN. */\n\ static const short yyr2[] = { 0", ftable); j = 10; for (i = 1; i < nrules; i++) { putc (',', ftable); if (j >= 10) { putc ('\n', ftable); j = 1; } else { j++; } fprintf (ftable, "%6d", rrhs[i + 1] - rrhs[i] - 1); } putc (',', ftable); if (j >= 10) putc ('\n', ftable); fprintf (ftable, "%6d\n};\n", nitems - rrhs[nrules] - 1); XFREE (rrhs + 1); } static void output_defines (void) { fprintf (ftable, "\n\n#define\tYYFINAL\t\t%d\n", final_state); fprintf (ftable, "#define\tYYFLAG\t\t%d\n", MINSHORT); fprintf (ftable, "#define\tYYNTBASE\t%d\n", ntokens); } /*------------------------------------------------------------------. | Decide what to do for each type of token if seen as the lookahead | | token in specified state. The value returned is used as the | | default action (yydefact) for the state. In addition, actrow is | | filled with what to do for each kind of token, index by symbol | | number, with zero meaning do the default action. The value | | MINSHORT, a very negative number, means this situation is an | | error. The parser recognizes this value specially. | | | | This is where conflicts are resolved. The loop over lookahead | | rules considered lower-numbered rules last, and the last rule | | considered that likes a token gets to handle it. | `------------------------------------------------------------------*/ static int action_row (int state) { int i; int j; int k; int m = 0; int n = 0; int count; int default_rule; int nreds; int max; int rule; int shift_state; int symbol; unsigned mask; unsigned *wordp; reductions *redp; shifts *shiftp; errs *errp; int nodefault = 0; /* set nonzero to inhibit having any default reduction */ for (i = 0; i < ntokens; i++) actrow[i] = 0; default_rule = 0; nreds = 0; redp = reduction_table[state]; if (redp) { nreds = redp->nreds; if (nreds >= 1) { /* loop over all the rules available here which require lookahead */ m = lookaheads[state]; n = lookaheads[state + 1]; for (i = n - 1; i >= m; i--) { rule = -LAruleno[i]; wordp = LA + i * tokensetsize; mask = 1; /* and find each token which the rule finds acceptable to come next */ for (j = 0; j < ntokens; j++) { /* and record this rule as the rule to use if that token follows. */ if (mask & *wordp) actrow[j] = rule; mask <<= 1; if (mask == 0) { mask = 1; wordp++; } } } } } shiftp = shift_table[state]; /* Now see which tokens are allowed for shifts in this state. For them, record the shift as the thing to do. So shift is preferred to reduce. */ if (shiftp) { k = shiftp->nshifts; for (i = 0; i < k; i++) { shift_state = shiftp->shifts[i]; if (!shift_state) continue; symbol = accessing_symbol[shift_state]; if (ISVAR (symbol)) break; actrow[symbol] = shift_state; /* Do not use any default reduction if there is a shift for error */ if (symbol == error_token_number) nodefault = 1; } } errp = err_table[state]; /* See which tokens are an explicit error in this state (due to %nonassoc). For them, record MINSHORT as the action. */ if (errp) { k = errp->nerrs; for (i = 0; i < k; i++) { symbol = errp->errs[i]; actrow[symbol] = MINSHORT; } } /* Now find the most common reduction and make it the default action for this state. */ if (nreds >= 1 && !nodefault) { if (consistent[state]) default_rule = redp->rules[0]; else { max = 0; for (i = m; i < n; i++) { count = 0; rule = -LAruleno[i]; for (j = 0; j < ntokens; j++) { if (actrow[j] == rule) count++; } if (count > max) { max = count; default_rule = rule; } } /* actions which match the default are replaced with zero, which means "use the default" */ if (max > 0) { for (j = 0; j < ntokens; j++) { if (actrow[j] == default_rule) actrow[j] = 0; } default_rule = -default_rule; } } } /* If have no default rule, the default is an error. So replace any action which says "error" with "use default". */ if (default_rule == 0) for (j = 0; j < ntokens; j++) { if (actrow[j] == MINSHORT) actrow[j] = 0; } return default_rule; } static void save_row (int state) { int i; int count; short *sp; short *sp1; short *sp2; count = 0; for (i = 0; i < ntokens; i++) { if (actrow[i] != 0) count++; } if (count == 0) return; froms[state] = sp1 = sp = XCALLOC (short, count); tos[state] = sp2 = XCALLOC (short, count); for (i = 0; i < ntokens; i++) { if (actrow[i] != 0) { *sp1++ = i; *sp2++ = actrow[i]; } } tally[state] = count; width[state] = sp1[-1] - sp[0] + 1; } /*------------------------------------------------------------------. | Figure out the actions for the specified state, indexed by | | lookahead token type. | | | | The YYDEFACT table is output now. The detailed info is saved for | | putting into YYTABLE later. | `------------------------------------------------------------------*/ static void token_actions (void) { int i; short *yydefact = XCALLOC (short, nstates); actrow = XCALLOC (short, ntokens); for (i = 0; i < nstates; ++i) { yydefact[i] = action_row (i); save_row (i); } XFREE (actrow); output_short_table (ftable, "yydefact", yydefact, yydefact[0], 1, nstates); XFREE (yydefact); } static void free_shifts (void) { shifts *sp, *sptmp; /* JF derefrenced freed ptr */ XFREE (shift_table); for (sp = first_shift; sp; sp = sptmp) { sptmp = sp->next; XFREE (sp); } } static void free_reductions (void) { reductions *rp, *rptmp; /* JF fixed freed ptr */ XFREE (reduction_table); for (rp = first_reduction; rp; rp = rptmp) { rptmp = rp->next; XFREE (rp); } } static void save_column (int symbol, int default_state) { int i; int m; int n; short *sp; short *sp1; short *sp2; int count; int symno; m = goto_map[symbol]; n = goto_map[symbol + 1]; count = 0; for (i = m; i < n; i++) { if (to_state[i] != default_state) count++; } if (count == 0) return; symno = symbol - ntokens + nstates; froms[symno] = sp1 = sp = XCALLOC (short, count); tos[symno] = sp2 = XCALLOC (short, count); for (i = m; i < n; i++) { if (to_state[i] != default_state) { *sp1++ = from_state[i]; *sp2++ = to_state[i]; } } tally[symno] = count; width[symno] = sp1[-1] - sp[0] + 1; } static int default_goto (int symbol) { int i; int m; int n; int default_state; int max; m = goto_map[symbol]; n = goto_map[symbol + 1]; if (m == n) return -1; for (i = 0; i < nstates; i++) state_count[i] = 0; for (i = m; i < n; i++) state_count[to_state[i]]++; max = 0; default_state = -1; for (i = 0; i < nstates; i++) { if (state_count[i] > max) { max = state_count[i]; default_state = i; } } return default_state; } /*-------------------------------------------------------------------. | Figure out what to do after reducing with each rule, depending on | | the saved state from before the beginning of parsing the data that | | matched this rule. | | | | The YYDEFGOTO table is output now. The detailed info is saved for | | putting into YYTABLE later. | `-------------------------------------------------------------------*/ static void goto_actions (void) { int i, j, k; state_count = XCALLOC (short, nstates); k = default_goto (ntokens); fprintf (ftable, "\nstatic const short yydefgoto[] = {%6d", k); save_column (ntokens, k); j = 10; for (i = ntokens + 1; i < nsyms; i++) { putc (',', ftable); if (j >= 10) { putc ('\n', ftable); j = 1; } else { j++; } k = default_goto (i); fprintf (ftable, "%6d", k); save_column (i, k); } fprintf (ftable, "\n};\n"); XFREE (state_count); } /* The next few functions decide how to pack the actions and gotos information into yytable. */ static void sort_actions (void) { int i; int j; int k; int t; int w; order = XCALLOC (short, nvectors); nentries = 0; for (i = 0; i < nvectors; i++) { if (tally[i] > 0) { t = tally[i]; w = width[i]; j = nentries - 1; while (j >= 0 && (width[order[j]] < w)) j--; while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t)) j--; for (k = nentries - 1; k > j; k--) order[k + 1] = order[k]; order[j + 1] = i; nentries++; } } } static int matching_state (int vector) { int i; int j; int k; int t; int w; int match; int prev; i = order[vector]; if (i >= nstates) return -1; t = tally[i]; w = width[i]; for (prev = vector - 1; prev >= 0; prev--) { j = order[prev]; if (width[j] != w || tally[j] != t) return -1; match = 1; for (k = 0; match && k < t; k++) { if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]) match = 0; } if (match) return j; } return -1; } static int pack_vector (int vector) { int i; int j; int k; int t; int loc = 0; int ok; short *from; short *to; i = order[vector]; t = tally[i]; assert (t); from = froms[i]; to = tos[i]; for (j = lowzero - from[0]; j < MAXTABLE; j++) { ok = 1; for (k = 0; ok && k < t; k++) { loc = j + from[k]; if (loc > MAXTABLE) fatal (_("maximum table size (%d) exceeded"), MAXTABLE); if (table[loc] != 0) ok = 0; } for (k = 0; ok && k < vector; k++) { if (pos[k] == j) ok = 0; } if (ok) { for (k = 0; k < t; k++) { loc = j + from[k]; table[loc] = to[k]; check[loc] = from[k]; } while (table[lowzero] != 0) lowzero++; if (loc > high) high = loc; return j; } } berror ("pack_vector"); return 0; /* JF keep lint happy */ } static void pack_table (void) { int i; int place; int state; base = XCALLOC (short, nvectors); pos = XCALLOC (short, nentries); table = XCALLOC (short, MAXTABLE); check = XCALLOC (short, MAXTABLE); lowzero = 0; high = 0; for (i = 0; i < nvectors; i++) base[i] = MINSHORT; for (i = 0; i < MAXTABLE; i++) check[i] = -1; for (i = 0; i < nentries; i++) { state = matching_state (i); if (state < 0) place = pack_vector (i); else place = base[state]; pos[i] = place; base[order[i]] = place; } for (i = 0; i < nvectors; i++) { if (froms[i]) XFREE (froms[i]); if (tos[i]) XFREE (tos[i]); } XFREE (froms); XFREE (tos); XFREE (pos); } /* the following functions output yytable, yycheck and the vectors whose elements index the portion starts */ static void output_base (void) { output_short_table (ftable, "yypact", base, base[0], 1, nstates); putc ('\n', ftable); output_short_table (ftable, "yypgoto", base, base[nstates], nstates + 1, nvectors); XFREE (base); } static void output_table (void) { fprintf (ftable, "\n\n#define\tYYLAST\t\t%d\n\n\n", high); output_short_table (ftable, "yytable", table, table[0], 1, high + 1); XFREE (table); } static void output_check (void) { output_short_table (ftable, "yycheck", check, check[0], 1, high + 1); XFREE (check); } /* compute and output yydefact, yydefgoto, yypact, yypgoto, yytable and yycheck. */ static void output_actions (void) { nvectors = nstates + nvars; froms = XCALLOC (short *, nvectors); tos = XCALLOC (short *, nvectors); tally = XCALLOC (short, nvectors); width = XCALLOC (short, nvectors); token_actions (); free_shifts (); free_reductions (); XFREE (lookaheads); XFREE (LA); XFREE (LAruleno); XFREE (accessing_symbol); goto_actions (); XFREE (goto_map + ntokens); XFREE (from_state); XFREE (to_state); sort_actions (); pack_table (); putc ('\n', ftable); output_base (); output_table (); putc ('\n', ftable); output_check (); } /* copy the parser code into the ftable file at the end. */ static void output_parser (void) { int c; static int number_of_dollar_signs = 0; #ifdef DONTDEF FILE *fpars; #else #define fpars fparser #endif if (pure_parser) fprintf (ftable, "#define YYPURE 1\n\n"); #ifdef DONTDEF /* JF no longer needed 'cuz open_extra_files changes the currently open parser from bison.simple to bison.hairy */ if (semantic_parser) fpars = fparser; else fpars = fparser1; #endif /* Loop over lines in the standard parser file. */ while (1) { int write_line = 1; c = getc (fpars); /* See if the line starts with `#line. If so, set write_line to 0. */ if (no_lines_flag) if (c == '#') { c = getc (fpars); if (c == 'l') { c = getc (fpars); if (c == 'i') { c = getc (fpars); if (c == 'n') { c = getc (fpars); if (c == 'e') write_line = 0; else fprintf (ftable, "#lin"); } else fprintf (ftable, "#li"); } else fprintf (ftable, "#l"); } else fprintf (ftable, "#"); } /* now write out the line... */ for (; c != '\n' && c != EOF; c = getc (fpars)) if (write_line) { if (c == '$') { number_of_dollar_signs++; assert (number_of_dollar_signs == 1); /* `$' in the parser file indicates where to put the actions. Copy them in at this point. */ rewind (faction); for (c = getc (faction); c != EOF; c = getc (faction)) putc (c, ftable); /* Skip the end of the line containing `$'. */ write_line = 0; } else putc (c, ftable); } if (c == EOF) break; putc (c, ftable); } assert (number_of_dollar_signs == 1); } static void output_program (void) { int c; if (!no_lines_flag) fprintf (ftable, "#line %d \"%s\"\n", lineno, infile); c = getc (finput); while (c != EOF) { putc (c, ftable); c = getc (finput); } } static void free_itemsets (void) { core *cp, *cptmp; XFREE (state_table); for (cp = first_state; cp; cp = cptmp) { cptmp = cp->next; XFREE (cp); } } /*----------------------------------------------------------. | Output the parsing tables and the parser code to ftable. | `----------------------------------------------------------*/ void output (void) { int c; /* output_token_defines(ftable); / * JF put out token defines FIRST */ if (!semantic_parser) /* JF Put out other stuff */ { rewind (fattrs); while ((c = getc (fattrs)) != EOF) putc (c, ftable); } reader_output_yylsp (ftable); if (debug_flag) fputs ("\ #ifndef YYDEBUG\n\ # define YYDEBUG 1\n\ #endif\n\ \n", ftable); if (semantic_parser) fprintf (ftable, "#include \"%s\"\n", attrsfile); if (!no_parser_flag) fprintf (ftable, "#include \n\n"); /* Make "const" do nothing if not in ANSI C. */ fputs ("\ #ifndef __cplusplus\n\ # ifndef __STDC__\n\ # define const\n\ # endif\n\ #endif\n\ \n", ftable); free_itemsets (); output_defines (); output_token_translations (); /* if (semantic_parser) */ /* This is now unconditional because debugging printouts can use it. */ output_gram (); XFREE (ritem); if (semantic_parser) output_stos (); output_rule_data (); output_actions (); if (!no_parser_flag) output_parser (); output_program (); }