
Modular Lazy Search for Constraint Satisfaction Problems�

Thomas Nordin Andrew Tolmach
Pacific Software Research Center

Oregon Graduate Institute & Portland State University
nordin@cse.ogi.edu apt@cs.pdx.edu

Abstract

We describe a unified, lazy, declarative framework for solving constraint satisfaction problems, an im-
portant subclass of combinatorial search problems. These problems are both practically significant and
hard. Finding good solutions involves combining good general-purpose search algorithms with problem-
specific heuristics. Conventional imperative algorithms are usually implemented and presented monolithi-
cally, which makes them hard to understand and reuse, even though new algorithms often are combinations
of simpler ones. Lazy functional languages, such as Haskell, encourage modular structuring of search algo-
rithms by separating the generation and testing of potential solutions into distinct functions communicating
through an explicit, lazy intermediate data structure. But only relatively simple search algorithms have been
treated in this way in the past.

Our framework uses a generic generation and pruning algorithm parameterized by a labeling function
that annotates search trees with conflict sets. We show that many advanced imperative search algorithms,
including backmarking, conflict-directed backjumping, and minimal forward checking, can be obtained by
suitable instantiation of the labelling function. More importantly, arbitrary combinations of these algorithms
can be built by simply composing their labelling functions. Our modular algorithms are as efficient as the
monolithic imperative algorithms in the sense that they make the same number of consistency checks, and
most of our algorithms are within a constant factor of their imperative counterparts in runtime and space
usage. We believe our framework is especially well-suited for experimenting to find good combinations of
algorithms for specific problems.

1 Introduction

Combinatorial search problems offer a great challenge to the academic researcher: they are of tremendous
interest to commercial users, and they are often very computationally intensive to solve. Over the past several
decades the AI community has responded to this challenge by producing a steady stream of improvements to
generic search algorithms. There have also been numerous attempts to organize the various algorithms into
standardized frameworks for comparison (e.g., [8, 6, 16]).

While the speed and cunning of the search algorithms have improved, the new algorithms are more com-
plicated and harder to understand, even though they are often combinations of simpler standard algorithms.
The problem is exacerbated by the fact that most algorithms are described by large, monolithic chunks of
pseudo-code (or C code). Although it is recognized that most problems benefit from a tailor-made solu-
tion, involving a combination of existing generic and domain-specific algorithms, modularity has not been
a strong point of much of the recent research. It is difficult to reuse code except via cut-and-paste. More-
over, to prove these algorithms correct we must resort to complex reasoning about their dynamic behavior.

�Work supported, in part, by the US Air Force Materiel Command under contract F19628-26-C-0161.

1

For example, although most of these search algorithms are conceived as varieties of “tree search,” no actual
tree data structures appear in their implementations; only virtual trees are present, in the form of recursive
routine activation histories. Perhaps for this reason, even widely-used and well-studied algorithms often lack
correctness proofs.

In the lazy functional programming world, the idea of implementing a search algorithm using modular
techniques is a commonplace. The classic paper of Hughes [9] and text of Bird and Wadler [3] both give
examples of search algorithms in which generation and testing of candidate solutions are separated into
distinct phases, glued together using an explicit, lazy, intermediate data structure. This “generate-and-test”
paradigm makes essential use of laziness to synchronize the two functions (really coroutines) in such a way
that we never need to store much of the (exponential-sized) intermediate data structure at any one time. In
general, the modular lazy approach can lead to algorithms that are much simpler to read, write, and modify
than their imperative counterparts. However, the algorithms described in these sources are fairly elementary.

In this paper we present a lazy declarative framework for solving one important class of combinatorial
search problems, namely constraint satisfaction problems (CSPs). For simplicity, we restrict our attention
to binary constraint problems, and to search algorithms that use a fixed variable order; neither of these re-
strictions is fundamental. Our framework is based on explicit, lazy, tree structures, in which each tree node
represents astate in the search space; a subset of the tree’s leaf nodes corresponds to problem solutions.
Nodes can be labeled withconflict sets, which record constraint violations in the corresponding states; many
algorithms use these sets toprunesubtrees that cannot contribute a solution.

Our framework is written in Haskell. We provide a small library of separate functions for generating,
labeling, rearranging, pruning, and collecting solutions from trees. In particular, we describe a generic search
algorithm, parameterized by a labeling function, and show that a variety of standard imperative CSP algo-
rithms, including simple backtracking, backmarking, conflict-directed backtracking, and forward checking,
can be obtained by making a suitable choice of pruning function. Using an explicit representation of the
search tree allows us to think about the intermediate values and gives us new insights into more efficient
algorithms. As in recent work on functional data structures[10, 14], we found that recasting imperative algo-
rithms into a declarative lazy setting casts new light on the fundamental algorithmic ideas. In particular, it is
easy to see how to combine our algorithms, simply by composing their labeling functions, and to see that the
result will be correct.

Since the whole point of improving search algorithms is to be able to solve larger problems faster, we
must obviously be concerned with the performance of our lazy algorithms. Our experiments show that lazy,
modular Haskell code is several times slower than strict, manually integrated Haskell code; moreover, even
the latter can be an order of magnitude slower than highly optimized C code. However, since search times
often explode exponentially, even slowdowns of one or two orders of magnitude have little effect on the size
of problem we can solve within a fixed time bound. All our algorithms and their combinations are fast enough
for experiments that have been interesting to researchers in the past; for example we are able to reproduce
parts of the tables in [2, 11]. More importantly, our implementations are fast enough to allow experimentation
with different combinations of algorithms on problems of realistic size. For such experiments, CPU time
is often not an ideal comparison metric, since it is difficult to compare numbers obtained from different
implementations on different systems. A widely used alternative metric is the number of consistency checks
performed by the algorithm.

The remainder of the paper is organized as follows. Section 2 describes our problem domain and Section 3
gives a Haskell specification for it. Section 4 describes simple tree-based backtracking search. Section 5
introduces conflict sets and our generic search algorithm, and recasts backtracking search in that framework.
Section 6 briefly discusses search heuristics. Sections 7, 8, and 9 describe more sophisticated algorithms, and
Section 10 discusses their combination. Section 11 summarizes performance results, Section 12 describes
related work, and Section 13 concludes.

The reader is assumed to have a working knowledge of functional programming, and some familiarity

2

with laziness. Peculiarities of Haskell syntax will be explained as they arise. All the code examples in this
paper are available on the World Wide Web athttp://www.cs.pdx.edu/˜apt/CSP.hs .

2 Binary Constraint Satisfaction Problems

A binary constraint satisfaction problemis:

� a set of variablesV = fv1; v2; : : : vng;

� for each variablevi, a finite setDi of possible values (itsdomain);

� and a setC of pairwiseconstraintsbetween variables that restrict the values that they can take on
simultaneously.

Each constraint is a relation on two named variables, i.e., a triple(i; j; R) whereR � Di �Dj .
An assignmentvi:= xi associates a variablevi to some valuexi 2 Di. A stateis a collection of assign-

ments for a subset ofV . A statef: : : vi:= xi; : : : vj := xj ; : : :g satisfiesa constraint(i; j; R) if (xi; xj) 2 R. A
state isconsistentif it satisfies every constraint on its variables, i.e., if for every pair of assignmentsvj := xj ,
vk:= xk in the state, and every matching constraint(j; k; R) in C, (xj ; xk) 2 R. A state iscompleteif it
assigns all the variables ofV ; otherwise it ispartial. A solutionto a CSP is any complete consistent state.
For some problems we want to calculate all solutions, but for many we only wish to find the first solution as
quickly as possible.

In this paper, we fix the variable orderv1; v2; : : : vn, i.e., we consider only states such that ifvi is in the
state so isvj for all j < i. We define thelevel of a variablevi to be i and the level of a state to be the
maximum of its variables’ levels. To simplify the presentation, we further assume that all domains have the
same sizem and that their values are represented by integers in the setf1; 2; : : : ;mg.

A naive approach to solving a CSP is to enumerate all possible complete states and then check each in
turn for consistency. In a binary CSP, consistency of a state can be determined by performingconsistency
checkson each pair of assignments in the state, until aninconsistent pairof variables is detected, or all pairs
have been checked. Following the conventions of the search literature, we use the number of consistency
checks as a key measure of execution code, although it is not necessarily an accurate measure unless each
check can be performed in unit time, which is not the case for all problems.

3 CSPs in Haskell

Figure 1 gives a Haskell framework for describing CSP problems and an implementation of a naive solver.
An assignment is constructed using the infix constructor:= . A CSP is modeled as a record containing the
number of variables,vars , the size of their domain,vals , and a constraint oracle,rel . We represent the
oracle as a Haskell function taking two assignments and returningFalse iff the assignments violate some
constraint. This function can be implemented by a four-dimensional array of booleans or by a mathematical
formula.

We present the solver in the standard “lazy pipeline” style that separates generation of candidate solutions
(here the set of all complete states) from consistency testing. States are represented as lists of assignments
sorted in decreasing order by variable number. Although this code appears to produce a huge intermedi-
ate list data structurecandidates , lazy evaluation insures that list elements are generated only on de-
mand, and elements that fail the filter intest can be immediately garbage collected. Similarly, although
inconsistencies appears to build a list ofall inconsistent variable pairs in the state1, consistent

1This function uses a Haskelllist comprehension, which is similar to a familiar set comprehension: this one builds a list of pairs of
variable levels such that the corresponding assignments are drawn from the current state and are in conflict according torel .

3

type Var = Int
type Value = Int

data Assign = Var := Value deriving (Eq, Ord, Show)

type Relation = Assign -> Assign -> Bool

data CSP = CSP f vars, vals :: Int, rel :: Relation g

type State = [Assign]

level :: Assign -> Var
level (var := val) = var

value :: Assign -> Value
value (var := val) = val

maxLevel :: State -> Var
maxLevel [] = 0
maxLevel ((var := val):_) = var

complete :: CSP -> State -> Bool
complete CSP fvars g s = maxLevel s == vars

generate :: CSP -> [State]
generate CSP fvals,vars g = g vars

where g 0 = [[]]
g var = [(var := val):st | val <- [1..vals], st <- g (var-1)]

inconsistencies :: CSP -> State -> [(Var,Var)]
inconsistencies CSP frel g as =

[(level a, level b) | a <- as, b <- reverse as, a > b, not (rel a b)]

consistent :: CSP -> State -> Bool
consistent csp = null . (inconsistencies csp)

test :: CSP -> [State] -> [State]
test csp = filter (consistent csp)

solver :: CSP -> [State]
solver csp = test csp candidates

where candidates = generate csp

queens :: Int -> CSP
queens n = CSP fvars = n, vals = n, rel = safe g

where safe (i := m) (j := n) = (m /= n) && abs (i - j) /= abs (m - n)

Figure 1: A formulation of CSPs in Haskell.

4

data Tree a = Node a [Tree a]

label :: Tree a -> a
label (Node lab _) = lab

type Transform a b = Tree a -> Tree b

mapTree :: (a -> b) -> Transform a b
mapTree f (Node a cs) = Node (f a) (map (mapTree f) cs)

foldTree :: (a -> [b] -> b) -> Tree a -> b
foldTree f (Node a cs) = f a (map (foldTree f) cs)

filterTree :: (a -> Bool) -> Transform a a
filterTree p = foldTree f

where f a cs = Node a (filter (p . label) cs)

prune :: (a -> Bool) -> Transform a a
prune p = filterTree (not . p)

leaves :: Tree a -> [a]
leaves (Node leaf []) = [leaf]
leaves (Node _ cs) = concat (map leaves cs)

initTree :: (a -> [a]) -> a -> Tree a
initTree f a = Node a (map (initTree f) (f a))

Figure 2: Trees in Haskell.

actually demands only the head of the list (to check whether the list isnull). Thus the solver actually cal-
culates only theearliest inconsistent pairof variables for each state. Finally, although the solver returns a list
of all solutions if demanded, it can be used to obtain just the first solution (and do no further computation)
by asking for just the head of the result. Although the code thus uses much less space than a strict reading
would suggest, this solver is still extremely inefficient because it duplicates work, but it is useful to illustrate
lazy coding style and as a specification for the more sophisticated solvers we introduce below.

A simple problem useful for illustrating different search strategies is then-queens problem, that is, trying
to put n queens on an � n chess board such that no queen is threatening another. using the standard
optimization that we only try to place one queen in each column [13]. Given the definition ofqueens , we
can apply the general-purpose CSP machinery to solve it; for example, the expressionsolver (queens
5) generates a list of solutions to the 5-queens problem.

4 Backtracking and Tree Search

The most obvious defect of the naive solver is that it can duplicate a tremendous amount of work by repeat-
edly checking the consistency of assignments that are common to many complete states. We say stateS0

extendsstateS if it contains all the assignments ofS together with zero or more additional assignments. A
fundamental fact about CSP’s is that no extension to an inconsistent state can ever be consistent, so there
is no point in searching such an extension for a solution. This observation immediately suggests a better
solver algorithm. Abacktrackingsolver searches for solutions by constructing and checkingpartial states,
beginning with the empty state and extending with one assignment at a time. Whenever the solver discovers
an inconsistent state, it immediatelybacktracksto try a different assignment, thus avoiding the fruitless ex-
ploration of that state’s extensions. Moreover, consistency of each new state can be tested just by comparing

5

mkTree :: CSP -> Tree State
mkTree CSPfvars,vals g = initTree next []

where next ss = [((maxLevel ss + 1) := j):ss | maxLevel ss < vars, j <- [1..vals]]

data Maybe a = Just a | Nothing deriving Eq

earliestInconsistency :: CSP -> State -> Maybe (Var,Var)
earliestInconsistency CSP frel g [] = Nothing
earliestInconsistency CSP frel g (a:as) =

case filter (not . rel a) (reverse as) of
[] -> Nothing
(b:_) -> Just (level a, level b)

labelInconsistencies :: CSP -> Transform State (State,Maybe (Var,Var))
labelInconsistencies csp = mapTree f

where f s = (s,earliestInconsistency csp s)

btsolver0 :: CSP -> [State]
btsolver0 csp =

(filter (complete csp) . leaves . (mapTree fst) . prune ((/= Nothing) . snd)
. (labelInconsistencies csp) . mkTree) csp

Figure 3: Simple backtracking solver for CSPs.

the newly added assignment to all previous assignments in the state, since any inconsistency involvingonly
the previous assignments would already have been discovered earlier. If the solver manages to reach a com-
plete state without encountering an inconsistency, it records a solution; if multiple solutions are wanted, it
backtracks to find the others.

Backtracking solvers can be viewed very naturally as searching atree, in which each node corresponds
to a state and the descendents of a node correspond to extensions of its state. In conventional imperative
implementations of backtracking, the tree is not explicit in the program; if a recursive implementation is
used, the tree is isomorphic to the dynamic activation history tree of the program, but usually the tree is
little more than a metaphor for helping the programmer reason informally about the algorithm. In the lazy
functional paradigm it is natural to treat search trees asexplicitdata structures, i.e., programs are constructed
as pipelines of operations that build, search, label, manipulate, and prune actual trees. As before, we rely on
laziness to avoid actually building the entire tree.

Figure 2 gives Haskell definitions for a tree datatype and associated utility functions. ATree is a node
containing a label and a list of children, themselvesTree s. mapTree , foldTree , andfilterTree are
the analogues of the familiar functions on lists.leaves extracts the labels of the leaves of a tree into a list
in left-to-right order.initTree generates a tree from a function that computes the children of a node [9].

The code in Figure 3 uses these trees to implement a backtracking solverbtsolver0 using a lazy
pipeline. All the algorithms discussed in this paper expect the tree to be generated and maintained in fixed
variable order, so that nodes at leveli of the tree (counting the root as level 0) always extend their parent by
an assignment tovi. Thus, the generator,mkTree , works by providing anext function toinitTree that
generates one extension for each possible value of the next variable. Each node describes an entire (partial)
state, but (in any reasonable Haskell implementation) it actually stores only a single assignment, together
with a pointer to the remainder of the state embedded in its parent node.

The application(labelInconsistencies csp) returns atree transformer: it adds an annotation
to each node recording its earliest inconsistent pair (if any), as returned byearliestInconsistency .
The standard tree functionprune p removes nodes for which predicatep is true; in this instance it prunes
all inconsistent nodes. The annotations are then removed by(mapTree fst) . Any nodes representing

6

(3,4) (1,4) (2,4) - (1,4)

(3,5) (1,5) (3,5) (4,5) (2,5) ()

-

-

-

- -(1,3)

- (1,4) (2,4) (3,4) (1,4)

(3,5) (1,5) (3,5) (2,5)

0

1

2

3

4

5

...

...

...
2

5

1 2 3

1 2 3 4 5 1 2 43 5

543211 2 3 4 5

Figure 4: Portion of search tree forqueens 5 . Nodes at leveli are annotated with their assigned valuexi
(in bold), and with their earliest inconsistent pair, if any.

5

4

3

2

1

1 2 3 4 5

Q

Q5

4

3

2

1

1 2 3 4 5

Q

Q

Q

Q

Figure 5: Two positions from thequeens 5 search tree in Figure 4. The left and right diagrams correspond
to the left-most and right-most subtrees of level 3, respectively.

complete states that are still left in the tree must be solutions; the remaining pipeline stages extract these
using the standard tree functionleaves and the standard list functionfilter . Figure 4 illustrates the
labels produced bybtsolver0 on part of the tree forqueens 5 ; the corresponding board positions are
shown in Figure 5. Note that the children of inconsistent nodes have been pruned.

It is essential to note that this pipeline is demand driven: each stage executes only when demanded by
the following stage. In particular, inconsistency calculations willnot be performed on nodes of the tree
excised byprune , because the values of these nodes will never be demanded. Thus we get the desired
effect of backtracking without any explicit manipulation of control flow. Also, as before, only a small part
of each intermediate tree is ever “live” (non-garbage data) at any one time, namely the spine of the tree from
root to current node, i.e., essentially what would be stored in activation records for a recursive imperative
implementation. So our lazy algorithms pay at worst a constant factor more space than their imperative
counterparts. We do, however, pay some overhead for building, storing, and garbage collecting each tree
node, and, unless our Haskell implementation performs effective deforestation [7], this cost will be repeated
for each intermediate tree in the pipeline. For these reasons, the lazy implementation of backtracking is about
four times slower than a monolithic, strict Haskell implementation (see Section 11).

7

data ConflictSet = Known [Var] | Unknown deriving Eq

knownConflict :: ConflictSet -> Bool
knownConflict (Known (a:as)) = True
knownConflict _ = False

knownSolution :: ConflictSet -> Bool
knownSolution (Known []) = True
knownSolution _ = False

checkComplete :: CSP -> State -> ConflictSet
checkComplete csp s = if complete csp s then Known [] else Unknown

type Labeler = CSP -> Transform State (State, ConflictSet)

search :: Labeler -> CSP -> [State]
search labeler csp =

(map fst . filter (knownSolution . snd) . leaves .
prune (knownConflict . snd) . labeler csp . mkTree) csp

bt :: Labeler
bt csp = mapTree f

where f s = (s,
case earliestInconsistency csp s of

Nothing -> checkComplete csp s
Just (a,b) -> Known [a,b])

btsolver :: CSP -> [State]
btsolver = search bt

Figure 6: Conflict-directed solving of CSPs.

5 Conflict Sets and Generic Search

The utility of the backtracking solver is based on its ability to prune subtrees rooted at inconsistent nodes;
it does nothing with consistent nodes. Of course, just because a state is consistent doesn’t mean it can be
extended to a solution; the assignments already made may be inconsistent with any possible choices for
future variables. Figure 4 shows an example forqueens 5 : the assignment to value 1 at level 3 of the
left-hand tree is consistent, but cannot be extended to a solution.

If a solver could identify suchconflictedstates, it could prune their subtrees too. To make precise the exact
conditions under which such pruning is possible, we use the following definition. Aconflict setfor a state is a
subset of (the indices of) the variables assigned by the state such thatanysolution must assign adifferentvalue
to at least one member of the subset. More formally, given a stateS = fv1:= x1; v2:= x2; : : : ; vk:= xkg, a
conflict setCS for S is a subset off1; 2; : : : ; kg such that, iffv1:= y1; v2:= y2; : : : ; vn:= yng is a solution,
then(9i 2 CS)xi 6= yi. (Thinking imperatively, we might say a conflict set contains variables at least one of
which “must be changed” to reach a solution.) Note that conflict sets are not, in general, uniquely defined. In
particular, if a state at levelk has a non-empty conflict setCS, then every subset off1; : : : ; kg containingCS
is also a conflict set. If a state has a non-empty conflict set then no extension of that state can be a solution;
conversely, if it has an empty conflict set, then it must have at least one extension that is a solution. This is
a very strong characterization of states: for example, if we could compute a conflict set for the root of the
tree (the empty state), we could test whether it were empty and thereby determine whether the problem has a
solution at all! We will therefore often operate in an environment where many conflict sets are unknown. It is
obviously not possible to identify a conflicted, but consistent, state without exploringsomeof its extensions;

8

hrandom :: Int -> Transform a a
hrandom seed (Node a cs) = Node a (randomList seed’ (zipWith hrandom (randoms seed’) cs))

where seed’ = random seed

btr :: Int -> Labeler
btr seed csp = bt csp . hrandom seed

Figure 7: A randomization heuristic

the trick is to avoid exploring all of them, and save effort by pruning the remainder. We address algorithms
with this property beginning in Section 7.

For the moment, note that any inconsistent state has a non-empty conflict set. In particular, if a state has
an earliest inconsistent pair(i; j) then it hasfi; jg as a conflict set, which we call theearliest conflict set.
So we can subsume backtracking search in a more general algorithm we call conflict-directed search, shown
in Figure 6. We define a generic routinesearch , parameterized by alabeler function, which annotates
nodes with conflict sets. More precisely, if the labeler can determine a legal conflict sets for the node, it
annotates the node withKnown s; otherwise, it annotates it withUnknown. (In general, we also permit the
labeler to rearrange or prune its input tree, so long as its output tree is properly labeled and still contains all
solution states.) The output of the labeling stage is fed to a pruner, which removes subtrees rooted at nodes
labeled with known non-empty conflict sets. Again, demand-driven execution guarantees that the excised
subtrees never need to be labeled. Because of this arrangement, the labeler is allowed to assume that if it
labels a node with a non-empty conflict set, it will never be called on a descendent of that node, so it need
not annotate such descendents properly; this allows simpler labeler code. After pruning, the solution nodes
are just the leaves of the tree annotated with known empty conflict sets; the remainder of the pipeline simply
filters these out.

The framework of Figure 6 is sufficiently general-purpose to accommodate all the search algorithms dis-
cussed in the remainder of the paper. By instantiatingsearch with the labeler functionbt we obtain a
simple backtracking solverbtsolver that behaves just likebtsolver0 . The more sophisticated algo-
rithms discussed below are all obtained by using fancier labeler functions, leavingsearch itself unchanged.

6 Heuristics and Search Order

As with the naive solver, if we are interested in only the first solution rather than all solutions, we can still use
search unchanged; we merely demand just the head of the solution list. Since solutions are always extracted
in left-to-right order, this implies that the time required to find the first solution will be very sensitive to the or-
der in which values are tried for each variable. The use ofvalue-orderingheuristics is well-established in the
imperative search literature. Such heuristics can be implemented using specialized generator functions that
produce the initial tree in the desired order. A more modular approach, however, is to view these heuristics
as asrearrangementsof a canonically-ordered initial tree; this keeps the initial generator simple and allows
multiple heuristics to be readily composed.

Such rearrangement heuristics can be easily expressed in our framework by incorporating them into the
labeler function. For example,queens search can be speeded up by considering values in random order.
The following functionhrandom in Figure 7 transforms a canonical tree by randomizing its children (using
a random number generator not shown here). The application(btr seed) returns a labeler that combines
randomization with standard backtracking search. We have implemented a number of other such heuristics,
both generic and problem-specific, but we omit details from this paper for lack of space.

9

type Table = [Row] -- indexed by Var
type Row = [ConflictSet] -- indexed by Value

bm :: Labeler
bm csp = mapTree fst . lookupCache csp . cacheChecks csp (emptyTable csp)

emptyTable :: CSP -> Table
emptyTable CSP fvars,vals g = []:[[Unknown | m <- [1..vals]] | n <- [1..vars]]

cacheChecks :: CSP -> Table -> Transform State (State, Table)
cacheChecks csp tbl (Node s cs) =

Node (s, tbl) (map (cacheChecks csp (fillTable s csp (tail tbl))) cs)

fillTable :: State -> CSP -> Table -> Table
fillTable [] csp tbl = tbl
fillTable ((var’ := val’):as) CSP fvars,vals,rel g tbl =

zipWith (zipWith f) tbl [[(var,val) | val <- [1..vals]] | var <- [var’+1..vars]]
where f cs (var,val) =

if cs == Unknown && not (rel (var’ := val’) (var := val))
then Known [var’,var]
else cs

lookupCache :: CSP -> Transform (State, Table) ((State, ConflictSet), Table)
lookupCache csp t = mapTree f t

where f ([], tbl) = (([], Unknown), tbl)
f (s@(a:_), tbl) = ((s, cs), tbl)

where cs = if tableEntry == Unknown then checkComplete csp s else tableEntry
tableEntry = (head tbl)!!(value a-1)

Figure 8: Backmarking

7 Backmarking

Given the formulation of backtracking search as a pipelined algorithm with separate labeling and pruning
phases, using a tree annotated with conflict sets as intermediate data structure, it makes sense to ask if there
are other ways to perform the labeling phase.bt works by checking each assignment against all previous
assignments in its state. Although this approach checks the overall consistency of each partial state only once,
it can still perform many duplicate pairwise consistency checks because all the children of a given node are
isomorphic. Consider a nodes at levell, and consider any descendent ofs. In checking the consistency of the
descendent, pairwise checks will be made between its assignment and all the assignments ins at levels less
thanl. These checks will be duplicated for the corresponding descendents ofeverysibling of s (unless, of
course, they had an inconsistent ancestor and have been pruned away). For an example, compare the leftmost
nodes of the left-most and right-most subtrees on level 5 of Figure 4: to generate these conflict sets,bt makes
the same three comparisons in each case.

An alternative approach is tocachethe results of such consistency checks so they can be reused for
each sibling; this should reduce the total number of consistency checks at the cost of the space needed
for the cache. Figure 8 shows a Haskell algorithm incorporating this idea. We annotate each node with a
cache to store information about inconsistencies between that node’s state and the assignments made in its
descendents. Each cache is organized as a table of earliest conflict sets forall descendents, indexed by level
(greater than or equal to the node’s own level) and value; the table is represented as a list of lists. The root
has a table in which every entry containsUnknown. fillTable computes the table contents for a node
based on the node’s assignment and the node’s parent’s table by considering each possible future assignment
in turn. If the parent’s table already records a known conflict pair for the future assignment, that conflict

10

{3,4} {1,4} {2,4} {1,4}

{3,5} {1,5} {3,5} {4,5} {2,5} {}

{}

{}

{}

{1,2,3} {}{1,3}

{} {1,4} {2,4} {3,4} {1,4}

{3,5} {1,5} {3,5} {2,5}

0

1

2

3

4

5

...

...

...
2

5

1 2 3

1 2 3 4 5 1 2 43 5

543211 2 3 4 5

{1,2,3,4}

Figure 9: Same portion of search tree forqueens 5 , annotated with conflict sets as computed bybj .

pair is copied into the current table; otherwise a conflict check is performed and the result (a known conflict
pair orUnknown) is recorded. Note that each node’s table contains a refinement of the information in its
parent’s table, with a table at levell containing complete consistency information about assignments at level
l. Once the tree has been annotated with cache tables,lookupCache is mapped over each node to extract
the conflict pair for the node’s own assignment from the node’s table; if the node has no recorded conflicts
and represents a complete state, it is a solution and is therefore given an empty conflict set. The ultimate
annotated tree is identical to that produced bybt .

As usual, we rely on lazy evaluation to avoid building the tables or their contents unless they are needed.
So most of the tables remain unbuilt, and the actual order in which consistency checks is performed is similar
to bt . The important point is that, because many of a node’s table entries are inherited from its parent’s table,
all duplicate consistency checks are avoided.

As before, we obtain a complete solver by usingbmas thelabeler parameter tosearch . Somewhat
surprisingly, this algorithm turns out to be equivalent (in terms of consistency checks made) to a standard
imperative algorithm calledbackmarking[1].

8 Conflict-Directed Backjumping

The bt andbm algorithms annotate inconsistent nodes with known conflict sets, but most internal nodes
remain markedUnknown. If we could somehow compute non-empty conflict sets for internal nodes closer
to the root of the tree, we could prune larger subtrees and so speed up search. In fact, many such nodesdo
have non-empty conflict sets; for example, see the leftmost node at level 3 in Figure 9.

One approach to computing internal node conflict sets is to construct them bottom-up from the conflict
sets of a subset of their children. To do this, we make use of two key facts about conflict sets:

� (i) If a nodes at levell has a child (at levell + 1) with a known conflict setCS that does not contain
l+1, thenCS is also a conflict set fors. (In particular, ifs has a child with an empty conflict set, then
s also has an empty conflict set.)

� (ii) If all the children of nodes at level l have non-empty conflict setsCS1; CS2; : : : ; CSn, then
(CS1 [CS2 [: : : [CSn) \ f1; : : : ; lg is a conflict set fors.

11

bjbt :: Labeler
bjbt csp = bj csp . bt csp

bj :: CSP -> Transform (State, ConflictSet) (State, ConflictSet)
bj csp = foldTree f

where f (a, Known cs) chs = Node (a,Known cs) chs
f (a, Unknown) chs = Node (a,Known cs’) chs

where cs’ = combine (map label chs) []

combine :: [(State, ConflictSet)] -> [Var] -> [Var]
combine [] acc = acc
combine ((s, Known cs):css) acc =

if maxLevel s ‘notElem‘ cs then cs else combine css (cs ‘union‘ acc)

bj’ :: CSP -> Transform (State, ConflictSet) (State, ConflictSet)
bj’ csp = foldTree f

where f (a, Known cs) chs = Node (a,Known cs) chs
f (a, Unknown) chs =

if knownConflict cs’ then Node (a,cs’) [] else Node (a,cs’) chs
where cs’ = Known (combine (map label chs) [])

Figure 10: Conflict-directed backjumping.

These facts are easy to prove from the definition of conflict set. Intuitively, fact (i) says that ifanychild
of s has conflicts that don’t involvevl+1, thenall children ofs have (at least) the same conflicts, and hence so
doess itself. (The special case just says that if a child ofs can be extended to a solution, then so cans.) Fact
(ii) says that if no child ofs can be extended to a solution, then neither cans, and any solution must differ
from s in the value of at least one of the offending variables of one of the children. Fact (i) is the crucial
one for optimizing search, since it permits the parent’s conflict set to be computed from a strictsubsetof the
children’s conflict sets.

We can now define a lazy bottom-up algorithm for computing internal node conflict sets from a tree that
has been (lazily) “seeded” with at least one conflict set along every path from root to leaf. Functionbj in
Figure 10 is a Haskell version of this labeling algorithm. At each parent node that doesn’t already have a
conflict set,bj callscombine to build one.combine inspects the conflict sets of the children in turn. If it
finds a child to which fact (i) can be applied, it immediately returns this as the conflict set for the parent; if no
such child is found, it applies fact (ii).2 Under lazy evaluation, the subtrees corresponding to the remaining
children are never explored.

This algorithm works correctly forany initial seeding of conflict sets, but it is most effective when the
conflict sets are small and contain low-numbered variables, because this increases the number of levels for
which fact (i) can be applied. This is why we useearliestinconsistent pairs to represent consistency conflicts.
The combination ofbj with bt is commonly referred to asconflict-directed backjumping (CBJ)(or just
backjumping) in the literature and it is the cornerstone of many newly-developed algorithms [6]. In its usual
imperative formulation this algorithm is notoriously difficult to understand or prove correct. While we have
relied on the analysis of Caldwell, et al. [4] for our understanding of conflict sets, we are unaware of any
description of the algorithm as a form of labeling.

While search bjbt behaves just like imperative CBJ in the sense that it performs the same number of
consistency checks, it has an unfortunate space leak. The problem is that the pruning phase cannot remove
the children of a node until that node’s conflict set has been computed, but that computation may generate
a substantial part of the children’s subtrees into memory. We can plug the space leak effectively, if not too

2To simplify the implementation, we don’t bother performing the intersection step in fact (ii), since it is harmless for a node’s
(non-empty) conflict set to include indices of its descendents.

12

fc :: Labeler
fc csp = domainWipeOut csp . lookupCache csp . cacheChecks csp (emptyTable csp)

collect :: [ConflictSet] -> [Var]
collect [] = []
collect (Known cs:css) = cs ‘union‘ (collect css)

domainWipeOut :: CSP -> Transform ((State, ConflictSet), Table) (State, ConflictSet)
domainWipeOut CSPvars t = mapTree f t

where f ((as, cs), tbl) = (as, cs’)
where wipedDomains = ([vs | vs <- tbl, all (knownConflict) vs])

cs’ = if null wipedDomains then cs else Known(collect(head wipedDomains))

Figure 11: Forward checking.

neatly, by adding additional pruning into the labeler itself, as illustrated bybj’ .

9 Forward Checking

Another way of assigning conflict sets to consistent internal nodes can be developed on the basis of the the
cache tables introduced for backmarking (Section 7). Recall that these tables record, for each node, the ear-
liest conflict sets for all descendent nodes; table entries for consistent nodes will remain markedUnknown.
Suppose, however, that the table for some noden at leveli contains a row, corresponding to a domain level
j > i, in which every entry contains a non-empty conflict set. Then it is evident that the node can never be
extended to a solution, because the assignments inn rules out all possible values for variablej. (As an ex-
ample, consider the the left diagram in Figure 5; if we add a queen at position (4,4), then we can immediately
see that no row placement will work for column 5.) Therefore, there must exist a non-empty conflict set for
n. By labellingn with such a set, we can avoid further search in the subtree rooted atn. This technique has
been calleddomain wipeout[1]. The combination of domain wipeout with backmarking corresponds to the
well-known imperative algorithm calledforward checking. Because our cache table construction is lazy, we
have actually rediscovered (“for free”)minimal (or lazy) forward checking, itself a recent discovery in the
imperative literature [5].

Figure 11 shows code for implementing domain wipeout. To gather a list ofwipedDomains and test
whether it is non-empty is straightforward. The interesting question is what conflict set to assign to the node
n if domain wipeout has occurred. Since it is always valid to throw additional variables into a non-empty
conflict set, we could just use the setf1; : : : ; ig. But it is better to use the smallest available conflict sets
based on the available information, because this can increase their utility for other algorithms (e.g., CBJ).
In this case, the cache table row for a wiped-out domain records which existing assignment rules out each
possible value for that domain. The union of the variables in these assignments (restricted tof1; : : : ; ig)3 is
a valid conflict set forn, since any solution must assign a different value to at least one of them. If there is
more than one wiped out domain, we could compute a conflict set from any one of them; for simplicity and
to limit computation,domainWipeOut just chooses the first.

10 Mixing and Matching

A major advantage of our declarative approach is that we can trivially combine algorithms using function
composition, so long as they take a consistent view of conflict set annotations. The combination of forward

3Again, we simplify the implementation by omitting the restriction step, which is harmless.

13

Queens 8 9 10 11 12 13
CSPlib BT 0.01 0.05 0.27 1.50 8.91 57.34
ghc monolithic BT 0.14 0.60 3.20 18.03 108.34 686.92
ghcbtsolver0 0.56 2.84 14.18 76.29 440.72 2686.13

Table 1: Runtime in seconds for different versions of simple backtracking search for then-queens problem.

checking and backjumping

bjfc csp = bj csp . fc csp

is well known, although to our knowledge it has not previously been achieved for lazy forward checking. Im-
perative forward checking is traditionally described as filtering out all the conflicting values from the domains
of future variables; this makes it hard to explain how it can be profitably combined with backjumping, since
the latter would seem to have no information on which to base backjumping decisions. Our viewpoint is that
forward checking is just a more (time-)efficient way of generating conflict sets, which makes the combination
perfectly reasonable.

Similarly, the combination of backmarking and backjumping

bjbm csp = bj csp . bm csp

is tricky to implement correctly in an imperative setting [11], but is simple for us, and turns out to do do fewer
consistency checks onqueens than any of our other algorithms.

Once problem-specific value ordering heuristics are introduced, many more possibilities for new algo-
rithm design open up. Since the best combination of algorithm features tends to depend on the particular
problem at hand, it is important to be able to experiment with different combinations; our framework makes
this extremely easy.

11 Experimental Results

To estimate the cost of modularity and laziness we wrote an integrated, strict version of simple backtracking
search for then-queens problem in Haskell and compared the runtime with that ofbtsolver0 . Table 1
reports the results; they indicate an overhead factor of about four times. The measurements were taken using
ghc (the Glasgow Haskell compiler) version 3.02 with optimization turned on, running on a lightly loaded
Sun Ultra 1 under Solaris 2.5.1. We also show the runtime of an optimized C library for solving CSPs [17]
compiled withegcs version 2.93.06 using-O4 on the same platform; it runs an order of magnitude faster,
partly because it performs consistency checks via lookup into a precomputed table. Table 2 gives the number
of consistency checks made by the different algorithms for then-queens problem.

12 Related Work

Hughes [9] gives a lazy development of minimax tree search. Bird and Wadler [3] treat the n-queens problem
using generate-and-test and lazy lists. Laziness (not in the context of lazy languages) has been used for
improving the efficiency of existing CSP algorithms [15, 5], but as far as we know laziness has not been
previously been used to modularize any of the CSP algorithms presented here.

14

Queens 5 6 7 8 9 10 11 12 13
bjbm 276 909 3158 11928 49369 210210 975198 4938324 26709008
bjfc 279 916 3182 12229 51314 218907 1026826 5231284 28387767
bm 276 944 3236 12308 50866 220052 1026576 5224512 28405086
fc 279 920 3189 12276 51642 220745 1038129 5297651 28817439
bjbt 405 1828 8230 41128 214510 1099796 6129447 36890689 233851850
bt 405 2016 9297 46752 243009 1297558 7416541 45396914 292182579
Solutions 10 4 40 92 352 724 2680 14200 73712

Table 2: Number of consistency checks performed by various algorithms on then-queens problem. Algo-
rithms are identified by their labeler function name.

Many reformulations of standard algorithms into a framework exist in the literature [8, 6, 16, 2], but the
frameworks typically aren’t modular; in the best case the differences between two algorithms are highlighted
by showing which lines of pseudo-code have changed [11]. Algorithms have been classified according to
the amount of arc consistency (AC) they do [12] or the number of nodes visited [11]. These classifications
have shown that the backmarking and forward checking algorithms, which were previously thought of as
being fundamentally different, actually share the same foundation [1], as we independently rediscovered
(Section 9). There often remains confusion, even among experts in the field, about which algorithm a given
description really implements.

Considering how long the standard algorithms have existed and how much they are used, there have been
surprisingly few proofs of correctness. A correctness criterion for search algorithms based on soundness
and completeness was presented in Kondrak [11] and an automatic theorem prover was used to derive the
algorithms in Caldwell, et al. [4].

The term “conflict set” is very common in the literature, but a precise definition is difficult to achieve; we
base ours on that of Caldwell, et al. [4].

13 Conclusion

Expressing algorithms in a lazy functional language often clarifies what an algorithm does and what invariants
it depends on. With a little bit of care we can modularize code that traditionally has been expressed in
monolithic imperative form. Experimentation is also very easy. New combinations of algorithms, such as
forward checking plus conflict-directed backjumping, can be expressed in a single line of code; the equivalent
algorithm in the imperative literature requires many lines of (mysterious) C or pseudocode. Despite the
overheads introduced by laziness and use of Haskell, large experiments can be conducted. For example,
combininghrandom with bjbt allowed us to find solutions for the queens problem with well over 100
queens, even using the Haskell interpreter Hugs.

The major problem of working with lazy code is difficulty in predicting runtime behavior, particularly
for space. Very minor code changes can often lead to asymptotic differences in space requirements, and the
available tools for investigating such problems in Haskell are inadequate.

For future work, we plan to work on formal proofs of algorithmic correctness, which should be relatively
easy in our framework, and to investigate variable-reordering heuristics, which are at the core of current work
in the AI search literature.

15

References

[1] F. Bacchus and A. Grove. On the forward checking algorithm. InPrinciples and Practice of Constraint
Programming, pages 293–309, Cassis, France, September 1995.

[2] F. Bacchus and P. van Run. Dynamic variable ordering in CSPs. In U. Montanari and F. Rossi, editors,
Principles and Practice of Constraint Programming, pages 258–275, Cassis, France, September 1995.

[3] R. Bird and P. Wadler.Introduction to Functional Programming. Prentice Hall, 1988.

[4] J. L. Caldwell, I. P. Gent, and J. Underwood. Search algorithms in type theory. InSubmitted to:
Theoretical Computer Science: Special Issue on Proof Search in Type-theoretic Languages, September
1997.

[5] M. J. Dent and R. Mercer. Minimal forward checking. InPrec. of the Int’l Conference on Tools with
Artificial Intelligence, pages 432–438, New Orleans, Louisiana, 1994. IEEE Computer Society.

[6] D. H. Frost.Algorithms and Heuristics for Constraint Satisfaction Problems. PhD thesis, University of
California Irvine, 1997.

[7] A. Gill, J. Launchbury, and S. Peyton Jones. A short-cut to deforestation. InProc. ACM FPCA, 1993.

[8] M. L. Ginsberg. Dynamic backtracking.Journal of Artifical Intelligence Research, 1:25–46, 1993.

[9] J. Hughes. Why functional programming matters.Computer Journal, 32(2):98–107, 1989.

[10] D. King and J. Launchbury. Structuring depth first search algorithms in Haskell. InProc. ACM Princi-
ples of Programming Languages, 1995.

[11] G. Kondrak. A theoretical evaluation of selected backtracking algorithms. Master’s thesis, University
of Alberta, 1994.

[12] V. Kumar. Algorithms for constraint satisfaction problems: A survey.AI Magazine, 13(1):32–44, 1992.

[13] B. A. Nadel. Representation selection for constraint satisfaction: A case study using n-queens.IEEE
Expert, 5(3):16–23, June 1990.

[14] C. Okasaki.Purely Functional Data Structures. Cambridge University Press, 1998.

[15] T. Schiex, J. C. Regin, C. Gaspin, and G. Verfaillie. Lazy arc consistency. InProc. of AAAI, pages
216–221, Portland, Oregon, USA, 1996.

[16] E. Tsang.Foundations of Constraint Satisfaction. Academic Press Limited, 1993.

[17] P. van Beek. A ’C’ library of constraint satisfaction techniques., 1999. Available from
ftp://ftp.cs.ualberta.ca/pub/vanbeek/software/ .

16

