|
From: | Elias Mårtenson |
Subject: | Re: [Bug-apl] Prime Performance |
Date: | Fri, 28 Aug 2015 14:54:51 +0800 |
MikeRegards,Should load PRIMESATF.atf. You need to have it in your workspaces directory. You can see where that is with )LIBSHi Elias,)IN PRIMESATFOn Thu, Aug 27, 2015 at 7:45 PM, Elias Mårtenson <address@hidden> wrote:I have never used an ATF file, how do I load them?Generally, I just edit my APL files as plain .apl files. Makes the Emacs navigate-to-definition easy to use too.Regards,EliasOn 28 August 2015 at 10:42, Mike Duvos <address@hidden> wrote:MikeRegards,Hi Elias,I am apparently still having problems with pasting Unicode dropping less than or equal to and greater than or equal to. I've attached the .atfOn Thu, Aug 27, 2015 at 7:37 PM, Elias Mårtenson <address@hidden> wrote:I wanted to test this thing myself, but I'm getting this error when testing it:TIME 'PRIMES←SIEVE 100000'DOMAIN ERRORSIEVE[3] →((⍴B)P←B⍳1)/L2^ ^Regards,EliasOn 28 August 2015 at 10:30, Mike Duvos <address@hidden> wrote:Here is a function that finds all the Primes less than N, by clearing bits in a boolean vector.
)CLEAR
CLEAR WS
⎕IO←0
∇
[0] Z←SIEVE N;B;K;P
[1] Z←B←0 0,(¯2+N)⍴0=K←0
[2] L1:→((⍴B)P←B⍳1)/L2
[3] B←B∧(⍴B)⍴∼P↑1
[4] Z[K]←P◊K←K+1
[5] →L1
[6] L2:Z←K↑Z
∇
And our timing function, which we have used previously.
∇
[0] TIME X;TS
[1] TS←⎕TS
[2] ⍎X
[3] (⍕(24 60 60 1000⊥¯4↑⎕TS-TS)÷1000),' Seconds.'
∇
[IBM APL2]
TIME 'PRIMES←SIEVE 100000'
1.865 Seconds.
[GNU APL]
TIME 'PRIMES←SIEVE 100000'
132.056 Seconds.
10 10⍴PRIMES
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
10 10 ⍴¯100↑PRIMES
98897 98899 98909 98911 98927 98929 98939 98947 98953 98963
98981 98993 98999 99013 99017 99023 99041 99053 99079 99083
99089 99103 99109 99119 99131 99133 99137 99139 99149 99173
99181 99191 99223 99233 99241 99251 99257 99259 99277 99289
99317 99347 99349 99367 99371 99377 99391 99397 99401 99409
99431 99439 99469 99487 99497 99523 99527 99529 99551 99559
99563 99571 99577 99581 99607 99611 99623 99643 99661 99667
99679 99689 99707 99709 99713 99719 99721 99733 99761 99767
99787 99793 99809 99817 99823 99829 99833 99839 99859 99871
99877 99881 99901 99907 99923 99929 99961 99971 99989 99991
So on that function, GNU APL is 70.807 times as slow as APL2, so obviously some performance issues remain.
Function PD returns a list of the primes not greater than the square root of a number which divide it evenly. If there are none, the number is prime, and it returns the number. FACTOR calls PD repeatedly to get the full prime factorization of its argument. FFMT factors a list of numbers, and returns the numbers and their factorizations printed out neatly.
∇
[0] Z←PD X;Q
[1] →(0≠⍴Z←(Q=⌊Q←X÷Z)/Z←(PRIMES⌈X⋆0.5)/PRIMES)/0
[2] Z←,X
∇
∇
[0] Z←FACTOR X;Q
[1] Z←''
[2] L1:→(1=Q←⌊X÷×/Z)/L2
[3] Z←Z,PD Q
[4] →L1
[5] L2:Z←Z[⍋Z]
∇
∇
[0] Z←FFMT X
[1] Z←FACTOR¨X←,X
[2] Z←(((⍴X),1)⍴X),Z
[3] Z←('Number' 'Prime Factorization'),[0]Z
[4]
∇
Now lets get some random data, being careful to call Roll and not the system-destroying Deal.
4 5⍴DATA←?20⍴¯1+2*31
1979327593 1319354819 771200257 1811210650 789012101
1029042612 152268513 20570707 832781767 898376923
1725231712 117387147 931909676 752862863 1800558041
736032325 151634070 731135336 1798144557 1223769030
FFMT DATA
Number Prime Factorization
1979327593 14747 134219
1319354819 17 23 101 33409
771200257 17 17 1117 2389
1811210650 2 5 5 31 1168523
789012101 101 7812001
1029042612 2 2 3 3 13 29 75821
152268513 3 137 370483
20570707 20570707
832781767 47 199 269 331
898376923 898376923
1725231712 2 2 2 2 2 53913491
117387147 3 23 1701263
931909676 2 2 23 23 37 11903
752862863 752862863
1800558041 6841 263201
736032325 5 5 7 29 145031
151634070 2 3 3 5 7 233 1033
731135336 2 2 2 7247 12611
1798144557 3 11 1667 32687
1223769030 2 3 5 11 1471 2521
That ran in a reasonable amount of time.
[Prev in Thread] | Current Thread | [Next in Thread] |