

AVR106: C functions for reading and writing to

Flash memory

Features
• C functions for accessing Flash memory

- Byte read
- Page read
- Byte write
- Page write

• Optional recovery on power failure
• Functions can be used with any device having Self programming Program memory
• Example project for using the complete Application Flash section for parameter

storage.

Introduction
Recent AVR®s have a feature called Self programming Program memory. This
feature makes it possible for an AVR to reprogram the Flash memory during
program run and is suitable for applications that need to self-update firmware or
store parameters in Flash. This application note provides C functions for accessing
the Flash memory.

Figure 1. Example of an application using the complete Application Flash section
for parameter storage.

|

Microcontroller
8kB program memory

120kB dataflash
for parameter storage

ATmega128Relization

8-bit
Microcontrollers

Application Note

Rev. 2575B-AVR-08/06

2 AVR106
2575B-AVR-08/06

Theory of operation
This section contains some basic theory around using the Self programming Program
memory feature in AVR. For a better understanding of all features concerning Self
programming, please refer to the device datasheet or application note “AVR109 Self
Programming Flash”.

The Flash memory may be programmed using the Store Program Memory (SPM)
instruction. On devices containing the Self Programming feature the program memory
is divided into two main sections: Application Flash Section and Boot Flash Section.

On devices with boot block, the SPM instruction has the ability to write to the entire
Flash memory, but can only be executed from the Boot section. Executing SPM from
the Application section will have no effect. On the smaller devices that don’ have a
boot block, the SPM instruction can be executed from the entire memory.

During Flash write to the Boot section the CPU is always halted. However, most
devices may execute code (read) from the Boot section while writing to the
Application section. It is important that the code executed while writing to the
Application section do not attempt to read from the Application section. If this
happens the entire program execution may be corrupted.

The size and location of these two memory sections are depending upon device and
fuse settings. Some devices have the ability to execute the SPM instruction from the
entire Flash memory space.

The Flash memory is written in a page-by-page fashion. The write is carried out by
storing data for an entire page into a temporary page buffer prior to writing the Flash.
Which Flash address to write to is decided by the content of the Z-register and
RAMPZ-register. A Flash page has to be erased before it can be programmed with
the data stored in the temporary buffer. The functions contained in this application
note use the following procedure when writing a Flash page:

• Fill temporary page buffer
• Erase Flash page
• Write Flash page
As one can see of this sequence there is a possibility for loss of data if a reset or
power failure should occur immediately after a page erase. Loss of data can be
avoided by taking necessary precautions in software, involving buffering in non-
volatile memory. The write functions contained in this application note provide
optional buffering when writing. These functions are further described in the firmware
section. For devices having the read-while-write feature, allowing the boot loader
code to be executed while writing, the write functions will not return until the write has
completed.

Using SPM

Write procedure

 AVR106

 3

2575B-AVR-08/06

The Flash memory in AVR is divided into 16-bit words. This means that each Flash
address location can store two bytes of data. For an ATmega128 it is possible to
address up to 65k words or 128k bytes of Flash data. In some cases the Flash
memory is referred to by using word addressing and in other cases by using byte
addressing, which can be confusing. All functions contained in this application note
use byte addressing. The relation between byte address and word address is as
follows:

• Byte address = word address • 2
A Flash page is addressed by using the byte address for the first byte in the page.
The relation between page number (ranging 0, 1, 2…) and byte address for the page
is as follows:

• Byte address = page number • page size (in bytes)

Example on byte addressing:

A Flash page in an ATmega128 is 256 bytes long.

Byte address 0x200 (512) will point to:

• Flash byte 0x200 (512), equal to byte 0 on page 2
• Flash page 2
When addressing a page in ATmega128 the lower byte of the address is always zero.
When addressing a word the LSB of the address is always zero.

Implementation
The firmware is made for the IAR compiler. The functions may be ported to other
compilers, but this may require some work since several intrinsic functions from the
IAR compiler are used. Implementation is done by including the file
Self_programming.h in the main C file and adding the file Self_programming.c to
the project. When using Self-programming it is essential that the functions for writing
are located inside the Boot section of the Flash memory. This can be controlled by
the usage of memory segment definitions in the compiler linker file (*.xcl). All other
necessary configurations concerning the firmware are done inside the file
Self_programming.h

The constant PAGESIZE must be defined to be equal to the Flash page size (in
bytes) of the device being used.

Defining the constant __FLASH_RECOVER enables the Flash recovery option for
avoiding data loss in case of power failure. When Flash recovery is enabled, one
Flash page will serve as a recovery buffer. The value of __FLASH_RECOVER will
determine the address to the Flash page used for this purpose. This address must be
a byte address pointing to the beginning of a Flash page and the write functions will
not be able to write to this page. Flash recovery is carried out by calling the function
RecoverFLASH() at program startup.

The memory range in which the functions are allowed to write is defined by the
constants ADR_LIMIT_LOW and ADR_LIMIT_HIGH. The write functions can write to
addresses higher or equal to ADR_LIMIT_LOW and lower than ADR_LIMIT_HIGH.

Addressing

Page size

Enabling Flash recovery

Defining Flash memory
for writing

4 AVR106
2575B-AVR-08/06

It is necessary to redefine a range of segments defined inside the default *.xcl file in
order to place the entire application code in the Boot section of Flash. The location
and size of the Boot section varies with the device being used and fuse settings.
Programming the BOOTRST fuse will move the reset vector to the beginning of the
Boot section. It is also possible to move all the interrupt vectors to the Boot section.
Refer to the interrupt section in the device datasheet for instructions on how to do
this. The segment definitions that have to be redefined in order to place the entire
program code into the Boot section is as follows:

TINY_F, NEAR_F, SWITCH, DIFUNCT, CODE, FAR_F, HUGE_F, INITTAB,
TINY_ID, NEAR_ID and CHECKSUM.
The file lnkm128s.xcl provided with this application note will place the entire code
into the 8kB Flash section of an Atmega128. This file can easily be modified to be
used with other devices and provides instructions on how to do this.

Alternatively it is possible to place only selected functions into defined segments of
the Flash memory. In fact it is only the functions for writing that need to be located
inside the Boot section. This can be done by defining a new Flash segment
equivalent to the Boot memory space and use the @ operator to place the desired
functions into this segment. The @ operator does not apply to functions called inside
the function it is used on.

Definition of Boot segment in *.xcl file for an ATmega128 with 8kB Boot size:

1. Make a new define for Boot size.

-D_..X_BOOTSEC_SIZE=2000 /* 4096 words */

2. Define a new segment for the entire Boot section based on the definition in step 1.

-Z(FARCODE)BOOT_SEGMENT=(_..X_FLASH_END-_..X_BOOTSEC_SIZE+1)-
_..X_FLASH_END

Placing a C function into the defined segment:
void ExampleFunction() @ BOOT_SEGMENT {

}

The C-code above will place the function ExampleFunction() into the defined memory
segment “BOOT_SEGMENT”.

Placing entire code
inside Boot section

Placing selected
functions inside Boot
section

 AVR106

 5

2575B-AVR-08/06

Firmware description
The firmware consists of five C functions and one example project for IAR v 2.28a /
3.10c using an ATmega128. The example project is configured to have the entire
program code located in the Boot section of Flash and can be used as a starting point
for the application sketched in Figure 1.

Table 1. C functions for accessing Flash memory.
Function Arguments Return

ReadFlashByte() MyAddressType flashAdr unsigned char

ReadFlashPage()
MyAddressType flashStartAdr, unsigned char
*dataPage unsigned char

WriteFlashByte() MyAddressType flashAddr, unsigned char data unsigned char

WriteFlashPage()
MyAddressType flashStartAdr, unsigned char
*dataPage unsigned char

RecoverFlash() Void unsigned char

The datatype MyAddressType is defined in Self_programming.h. The size of this
datatype is depending upon the device that is being used. It will be defined as an
long int when using devices with more than 64kB of Flash memory, and as a int (16
bit) using devices with 64kB or less of Flash memory. The datatypes are actually
used as __flash or __farflash pointers (consequently 16 and 24 bit). The reason why
a new datatype is defined is that integer types allow a much more flexible usage than
pointer types.

ReadFlashByte() returns one byte located on Flash address given by the input
argument.

ReadFlashPage() reads one Flash page from address ucFlashStartAdr and stores
data in array pucDataPage[]. The number of bytes stored is depending upon the
Flash page size. The function returns FALSE if the input address is not a Flash page
address, else TRUE.

WriteFlashByte() writes byte ucData to Flash address ucFlashAddr. The function
returns FALSE if the input address is not a valid Flash byte address for writing, else
TRUE.

WriteFlashPage() writes data from array pucDataPage[] to Flash page address
ucFlashStartAdr. The number of bytes written is depending upon the Flash page size.
The function returns FALSE if the input address is not a valid Flash page address for
writing, else TRUE.

RecoverFlash() reads the status variable in EEPROM and restores Flash page if
necessary. The function must be called at program startup if the Flash recovery
option is enabled. The function Returns TRUE if Flash recovery has taken place, else
FALSE.

Description of C
functions

6 AVR106
2575B-AVR-08/06

When the Flash recovery option is enabled a page write will involve pre-storing of
data into a dedicated recovery page in Flash, before the actual write to a given Flash
page takes place. The address for the page to be written to is stored in EEPROM
together with a status byte indicating that the Flash recovery page contains data. This
status byte will be cleared when the actual write to a given Flash page is completed
successfully. The variables in EEPROM and the Flash recovery buffer are used by
the Flash recovery function RecoverFlash() to recover data when necessary. The
writing of one byte to EEPROM takes about the same time as writing an entire page
to Flash. Thus, when enabling the Flash recovery option the total write time will
increase considerably. EEPROM is used instead of Flash because reserving a few
bytes in Flash will exclude flexible usage of the entire Flash page containing these
bytes.

Figure 2. Flowchart for function ReadFlashByte().
ReadFlashByte()

Return byte

Read byte from Flash
address given by input

argument

Figure 3. Flowchart for function ReadFlashPage().

ReadFlashPage()

Is input address a
valid page address?

Yes

Loop PAGESIZE
number of times

Read byte from Flash and
store in data array given by

input argument

Return TRUE Return FALSE

No

Flash recovery

Flowcharts

 AVR106

 7

2575B-AVR-08/06

Figure 4. Flowchart for function WriteFlashByte().
WriteFlashByte()

Store EEPROM interrupt
mask and disable

EEPROM interrupt. Wait
for EEPROM to complete.

Input address valid
write address?

Clear Flash recovery status
variable in EEPROM

Flash recovery
option enabled?

Erase & Write new data to
Flash recovery page

Store Flash page address
in EEPROM

Write "BUFFER FULL ID"
to Flash recovery status

variable in EEPROM

Erase & Write new data to
Flash page

Flash recovery
option enabled?

Clear Flash recovery status
variable in EEPROM

Return TRUE Return FALSE

Yes

No

Yes

No

Yes

No

Restore EEPROM
interrupt mask

Read Flash page, replace
one byte, fill Flash
temporary buffer

Read Flash page, replace
one byte, fill FLASH

temporary buffer

8 AVR106
2575B-AVR-08/06

Figure 5. Flowchart for function WriteFlashPage().

WriteFlashPage()

Store EEPROM interrupt
mask and disable

EEPROM interrupt. Wait
for EEPROM to complete.

Input address valid
write address?

Clear Flash recovery status
variable in EEPROM

Flash recovery
option enabled?

Erase & Write new data to
Flash recovery buffer

Store Flash page address
in EEPROM

Write "BUFFER FULL ID"
to Flash recovery status

variable in EEPROM

Erase & Write new data to
Flash page

Flash recovery
option enabled?

Clear Flash recovery status
variable in EEPROM

Return TRUE Return FALSE

Yes

No

Yes

No

Yes

No

Restore EEPROM
interrupt mask

Fill Flash temporary buffer

Fill Flash temporary buffer

 AVR106

 9

2575B-AVR-08/06

Figure 6. Flowchart for function RecoverFlash().

RecoverFlash()

 Status variable ==
"BUFFER FULL ID"?

Write Flash recovery buffer
to Flash temporary buffer

Return TRUE Return FALSE

Erase & Write new data to
Flash page given by
address variable in

EEPROM

Clear Flash recovery status
variable in EEPROM

No

Yes

2575B-AVR-08/06

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice,
and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel
are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for
use as critical components in life support devices or systems.

© 2006 Atmel Corporation. All rights reserved. ATMEL® and combinations thereof, AVR® , and AVR Studio® are the registered
trademarks of Atmel Corporation or its subsidiaries. Microsoft® , Windows®, Windows NT® , and Windows XP® are the registered trademarks of
Microsoft Corporation. Other terms and product names may be the trademarks of others

