
EuroPython.org by Localizer
Internationalization and Localization of

EuroPython.org with Localizer

J. David Ibáñez

j-david@noos.fr

EuroPython.org by Localizer – p.1/13

Overview

This talk will explain how the EuroPython.org web site was
internationalized and localized using the Localizer product.
The discussion will be drived by examples and at the end
some ideas to improve this task will be exposed.
The different sections are:

Introduction

The Internationalization process, exampe by example

What was not internationalized and why

The Localization process

How to do better next time

EuroPython.org by Localizer – p.2/13

Introduction, the context

The internationalization process of EuroPython.org has
been determined by several constrains, these are:

The web site was originally built as a monolingual one,
without the support of multiple languages in mind.

The internationalization started when the web site was
already in production.

Many developers did it, with different styles (some used
ZPatterns, others developed a Python product, etc..).

There was very few time to do it, the work took around a
month spending few hours every week.

Limited access to the web site, only to the management
screens.

EuroPython.org by Localizer – p.3/13

Introduction, the approach

As a consequence of these constrains, the web site
internationalization is not ideal, basically:

Different sections had different solutions because they
were already different.

None of the sections was rebuilt, instead workarounds
were used when needed. Not always the most elegant
solution.

This was a challenging task, a test for Localizer.

EuroPython.org by Localizer – p.4/13

i18n, master_zpt

The overall layout and design of the web site is defined in
the master zpt template, which contains the menus and
other texts. It was internationalized using a message
catalog and few local content objects.

A message catalog in the root of the site, gettext;
<b tal:content="python:here.gettext(’Register NOW with’)" />

Two local content objects, footer and header.
<tal:block content="structure container/footer/body" />

EuroPython.org by Localizer – p.5/13

i18n, index_html

The home page was a ZPT template, its internationalization
consisted to use a local content object instead, and add the
required default template.

<html metal:use-macro="container/master zpt/macros/page">

<tal:block content="structure here/body" />

</html>

EuroPython.org by Localizer – p.6/13

i18n, dates

To internationalize the dates a LocalFolder object was
used, its name is date and contains a method for each
language, for example, long en looks like:

import DateTime

date = DateTime(int(date))
return date.strftime(’%A, %d %B %Y’)

It’s used as:

container.date.long(date)

EuroPython.org by Localizer – p.7/13

i18n, others

Other sections were internationalized too, using always the
resources already described, the message catalog, local
content objects and local folders.
However, the internationalization not always was as clean
as the examples described above. For example:

The talks are stored in a ZPattern based solution, to
internationalize it without having to rewrite everything a
non intrusive quick and dirty solution was used.

EuroPython.org by Localizer – p.8/13

i18n, language negotiation

Nothing special was done in this area, the default features
provided by Localizer were used.
An instance of the Localizer meta type was created in the
root and the builtin form to change the language was used
as a quick solution:
<tal:block content="structure here/Localizer/changeLanguageForm" />

EuroPython.org by Localizer – p.9/13

Not internationalized

Some things in the web site weren’t internationalized for
different reasons, they’re:

Images with translatable text
Technically are easy to internationalize, just using the
LocalFolder meta type. However, the localization
cost is too high, so they weren’t internationalized
because they wouldn’t be localized anyway.

Python products: ZWiki and Formulator
These two products are monolingual and generate html
directly. To internationalize them was out of the scope
of this effort, and would have required much more
resources than availiable.
However, Localizer also provides facilities to make
Python products as these multilingual. It was just of the
scope.

EuroPython.org by Localizer – p.10/13

Localization, who

The localization was done through the web using the
interfaces provided by the different meta types. People that
did it includes:

Godefroid Chapelle

Thomas Reulbach

Nicolas Chauvat

Coordination was done through a wiki web.

EuroPython.org by Localizer – p.11/13

Things to improve

Many things can be done to improve this task next time, but
mainly two look as the most important ones:

Everybody involved in the development of the web site
should be aware of the internationalization
requirements to avoid bad practices, such as using
images with translatable text.

A system should be developed to notify translators
when an object has changed so they can update its
translations.

EuroPython.org by Localizer – p.12/13

Conclusions

I think Localizer has passed the test, EuroPython.org is now
a multilingual web site. But there’s still a lot of work to do to
improve the internationalization and localization process.
Localizer related links:

Localizer, http://www.nuxeo.org/localizer

CMFLocalizer,
http://zope.org/Members/fafhrd/CMFLocalizer
Extends Localizer with ZPT and CMF features.

Base18, http://www.nexedi.org/software/Base18.stx
Extends Localizer improving the multilingual content
management.

Thank you for staying here until the end!!

EuroPython.org by Localizer – p.13/13

	Overview
	Introduction, the context
	Introduction, the approach
	i18n, master_zpt
	i18n, index_html
	i18n, dates
	i18n, others
	i18n, language negotiation
	Not internationalized
	Localization, who
	Things to improve
	Conclusions

