
m4 Obstack Interleaved Write Bug

John Brzustowski

January 24, 2006

1 Overview

After GNU m4 reaches the end of input and begins to process wrapup text
saved by m4wrap(), it does not always correctly deal with subsequent calls to
m4wrap(). Below are details of the misbehaviour, and a proposed solution. A
set of patches to m4-1.4.4 is provided separately.

2 Current problematic behaviour

Due to word-size and alignment differences, the tests described below may not
expose the buggy behaviour on all platforms. ^D in what follows represents
the system end-of-file character, which prompts m4 to begin processing wrapup
text.

Wrapping from within wrapped text can cause an infinite loop:

$ m4
m4wrap(‘m4wrap(a)m4wrap(b)’)
^D
=> (infinite loop)

instead of the desired (and specified) output ba. Here are two examples which
might expose the bug on other platforms, especially if large values are passed
to f().

A simple countdown function:

$ m4
define(‘f’,‘ifelse(
eval(‘$1>0’),
0,
‘m4wrap(0)’,
‘m4wrap($1:)m4wrap(‘f(decr($1))’)’)’)
f(1000)
^D
=> Segmentation fault

2

January 24, 2006 m4bug2.nw 3

instead of 1000:999:998:...:2:1:0
An awkward definition of the factorial function:

$ m4
define(‘f’,‘ifelse(
eval(‘$1>1’),
0,
Answer: $2$1=‘eval($2$1) ’,
‘m4wrap(‘f(decr($1),$2$1*)’)’)’)
f(10)
^D
=> NONE:0: m4: INTERNAL ERROR: Input stack botch in peek_input ()
=> Aborted

instead of Answer: 10*9*8*7*6*5*4*3*2*1=3628800

January 24, 2006 m4bug2.nw 4

3 Source of the problem

GNU m4 uses an obstack, input obstack, for keeping track of text to be pro-
cessed. This input can come from files, strings, or any text which must be
re-read, such as a just-expanded macro. Along the way, any calls to m4wrap()
stack their output onto a separate obstack, wrapup stack. These two stacks
have pointers to their top entries in the variables isp and wsp, respectively.
When m4 reaches the end of input obstack, it begins reading wrapup stack
for any wrapup text to be processed, using wrapup stack exactly as it had pre-
viously used input stack. The pointers isp and wsp can now point to different
objects in the same obstack.

While processing wrapup stack, any further calls to m4wrap() also place
their output on wrapup stack, and this can lead to interleaved write access:
the input processor might deleted an object from wrapup stack even if that
object is no longer at the top of the stack because a call to m4wrap() has
pushed something onto it. This leaves m4wrap()ed entries on wrapup stack
effectively freed (obstack free() frees a given object and all those above it on
the obstack), and subject to overwriting when the input processor next grows
an object on wrapup stack.

Consider this example:

$ m4 -dqeat
m4wrap(‘format(‘%s is good.’, m4wrap(‘All done!’)‘My luck’)’)
^D
=> m4trace: -1- m4wrap(‘format(‘%s is good.’, m4wrap(‘All done!’)‘My luck’)’)
=>
=> m4trace: -2- m4wrap(‘All done!’)
=> m4trace: -1- format(‘%s is good.’, ‘My luck’) -> ‘My luck is good.’
=> Segmentation fault

The interleaved writing occurs as follows:

• m4 reads ^D and repoints its input stack to the wrapup stack, which
will now also be the input stack. It looks like this:

TOP-OF-STACK
isp->Input Block: format(‘%s is good.’, m4wrap(‘All done!’)‘My luck’)

BOTTOM-OF-STACK

wsp->NULL

January 24, 2006 m4bug2.nw 5

• m4 notices the macro call format() and begins collecting its arguments

• m4 notices the macro call m4wrap() and begins collecting its arguments

• m4 allocates an entry on the input stack for expanding m4wrap(), since
its expansion will be re-read as input. The stack now looks like:

TOP-OF-STACK
Input Block: (space for expansion of m4wrap()

isp->Input Block: format(‘%s is good.’, m4wrap(‘All done!’)‘My luck’)
BOTTOM-OF-STACK

wsp->NULL

• m4 calls the internal function m4 m4wrap() which pushes its argument on
the stack, which now looks like:

TOP-OF-STACK
wsp->Input Block: ‘All done!’
isp->Input Block: (space for expansion of m4wrap()

Input Block: ‘format(‘%s is good.’, m4wrap(‘All done!’)‘My luck’)’
BOTTOM-OF-STACK

• m4 looks for the next input token, for which it uses isp. Since the ex-
pansion of m4wrap() is empty, the input stack is popped, which deletes
everything from isp to the top of the stack:

DELETED-STACK-ENTRIES
wsp->Input Block: ‘All done!’

Input Block: (space for expansion of m4wrap()
TOP-OF-STACK

isp->Input Block: ‘format(‘%s is good.’, m4wrap(‘All done!’)‘My luck’)’
BOTTOM-OF-STACK

• m4 finishes collecting the arguments to format(), then allocates space on
the stack for its expansion:

DELETED-STACK-ENTRIES
wsp->Input Block: ‘All done!’

TOP-OF-STACK
isp->Input Block: (space for expansion of ‘format()’

Input Block: ‘format(‘%s is good.’, m4wrap(‘All done!’)‘My luck’)’
BOTTOM-OF-STACK

January 24, 2006 m4bug2.nw 6

• Now, as format() is expanded, the expansion will overwrite the input
block pointed to by wsp, leading to eventual havoc when the end of input
is reached and m4 again seeks to read the wrapped text pointed to by wsp.

4 Proposed fix

The GNU documentation is clear on how m4wrap() is supposed to behave, so
the changes below serve only to make m4 behaviour conform to the specification.

Rather than using statically-allocated obstacks for input stack and wrapup stack,
these are dynamically allocated. When m4 is finished processing input stack,
it is freed, and the pointer repointed to wrapup stack. A new empty obstack
is allocated for wrapup stack, and this is where subsequent m4wrap() calls will
place their output.

4.1 Changes to functions

• input.c:

Declare input stack and wrapup stack as obstack * instead of obstack.

Remove the declaration for current input, which is used an an alias for
either &input stack or &wrapup stack. All functions in input.c will now
directly use input stack instead of current input.

Inline documentation is changed to reflect this.

• input.c: input init()

Set input stack and wrapup stack to point to empty, dynamically-allocated
obstacks.

• input.c: pop wrapup()

Free the obstack and its contents pointed to by input stack.

Assign wrapup stack to input stack.

Point wrapup stack to a newly allocated and initialized obstack.

January 24, 2006 m4bug2.nw 7

5 Discussion

This fix allows the examples agove to perform correctly. I have run the count-
down example from above with f(1000000) and monitored the process with top.
The amount of memory allocated does not increase, despite the repeated alloca-
tion and freeing of obstacks. (The factorial example uses an increasing amount
of memory, as coded.)

For better or worse, the fix allows a new kind of infinite loop:

$ m4
define(‘f’,‘m4wrap(‘f’)’)
f
^D
=> (infinite loop)

This is similar to the existing example:

$ m4
define(‘f’,‘f’)
f
^D
=> (infinite loop)

in semantics, but differs in that it repeatedly allocates and frees obstacks for
the wrapped text, rather than re-using the same input obstack.

