
Department of Electrical Engineering NESL
University of California, Los Angeles

The FPGA

Author: Oussama Sekkat
Graduate student advisor: Thomas Shmid

Advisor: Dr. Mani Srivastava

Abstract

This article gives a description of the main functionality of the FPGA in the Universal
Software Radio Peripheral (USRP). It also includes a brief tutorial on how to reprogram
the FPGA.

The Universal Software Radio Peripheral (USRP)

The Universal Software Radio Peripheral was designed as a low cost board solely
for the purpose of running GNU radio applications. Fully developed by Matt Ettus, it is a
very flexible platform and can be used to implement real time applications. It is the
bridge between the software world and the RF world. The motherboard has a USB
controller, an FPGA and two Analog Device (AD9862) chips. The USB controller
contains the firmware that defines its behavior and the USB endpoints. The firmware also
takes care of loading the FPGA bit stream. The FPGA handles the high bandwidth
computations and reduces the data rate to something we can send over the USB 2.0. The
Analog Device chip is a mixed signal processor that takes care of the conversion between
analog and digital signals, digital up conversion in the transmit path and
interpolation/decimation of the signals. The motherboard can have up to 4
daughterboards, two for receive and two for transmit. They consist of the RF front end
where the signal is up converted from the intermediate frequency to the carrier frequency
or vice versa for the received signal. The USRP and the daughterboards can be purchased
form www.ettus.com . That website also contains data sheets for the board.

The following is a high level view of the USRP.

Department of Electrical Engineering NESL
University of California, Los Angeles

FPGA
CYCLONE

USB CONTROLLER
Cypress FX2

AD9862
Two 14 bit

DACs
Two 12 bit

ADCs

AD9862
Two 14 bit

DACs
Two 12 bit

ADCs

TXA
TX B

Daughterboard

RX B
Daughterboard

TX A
Daughterboard

RX A
Daughterboard

TXA_1

TXA_2

RXA_1

RXA_2

RXA_1

RXA_2

TXB

TXB_1

TXB_2

RXB_1

RXB_2

RXB_1

RXB_2

Now let’s have a look inside the FPGA in order to understand the functionality of each of
its building blocks.

Department of Electrical Engineering NESL
University of California, Los Angeles

Inside the FPGA

The following figure shows a high level view of the main building blocks inside the
FPGA.

The transmit path:

On the transmit side, the data comes as a 16 bit value from the USB. It goes through the
TX buffer module. This module demuxes the data to be transmitted and decouples it into
I and Q signals. Then, each complex pair of signals I, Q, goes through the TX chain
module which interpolates the data to 32 MS/s. Those I, Q signals are then interleaved
and sent to the AD 9862 chip where the signals are interpolated by a factor of 4, then up
converted to an intermediate frequency and finally converted to an analog signal.

Department of Electrical Engineering NESL
University of California, Los Angeles

Here is a high level schematic of the transmit path:

The receive path:

The signals from the daughter boards are first converted to a 12 bit digital value in the
AD 9862 chip, and decimated in the same chip. The signals then enter the ADC interface
module which routes them to the proper digital down converter. Then the RX chain
module in the FPGA takes care of the digital down conversion to baseband and
decimation to 32MS/s. And finally, the signals go through the RX buffer module where
they get interleaved into a 16 bit value. That value is the sent to the PC through the USB
bus.

Here is a high level schematic of the receive path:

Department of Electrical Engineering NESL
University of California, Los Angeles

How to compile the verilog code and program the FPGA

The program used to compile the verilog code is Altera Quartus II for windows. A
Linux version also exists but is not free. Here is a link to Quartus® II Web Edition
Software v6.0 Service Pack 1:
https://www.altera.com/support/software/download/altera_design/quartus_we/dnl-
quartus_we.jsp

For every Windows machine you run the software on, you will need a license. This
license is given for free and you can get it by clicking on the link below the download
link.

Once you’ve installed the software, you can edit verilog code and reprogram the FPGA in
the USRP. Now let’s go over how to do that.

Editing the verilog code:

First you should copy all the verilog files to your windows machine.
For example, create a folder C:\USRP.

- From your Linux machine, copy all the files in the gr-build\usrp\fpga folder into
the new c:\usrp folder.

- There are other verilog files in the gr-build\usrp\firmware\include folder. Copy
that folder into your c:/usrp folder.

- Now some verilog files will need to be edited because the “include” folder is in a
different location and so all the verilog files which have the following statement
at the beginning :
`include “…/…/…/firmware/include/[name].v” will need to be changed to
`include “c:\usrp\include\[name].v”
We will come back to that later on.

- You are now ready to open the project. To do that, go to File -> Open Project.
Open the project file C:\usrp\toplevel\usrp_std\usrp_std.qpf.

- If you are using the new version of Quartus II 6.0 (as of June 20th 2006) it will
mention that the last time that file was opened was with an older version of
Quartus. Just ignore that, and compile the code.

- To compile the code go to Processing -> Start compilation or just click on the

 icon.
- The compilation will give you lots of errors. That’s normal. (I get 46 errors)
- If you click on the error tab you’ll see that lots of errors are of the kind: can’t

open verilog design file “file_name.v”. This is what I mentioned previously. To
fix that, make sure all such files have the correct path name in their `include
statement.
For example, the usrp_std.v file has the following statements in the beginning:
`include "usrp_std.vh"
`include “…/…/…/firmware/include/fpga_regs_common.v”
`include “…/…/…/firmware/include/fpga_regs_standard.v"
Make sure you change those statements to:

Department of Electrical Engineering NESL
University of California, Los Angeles

`include "usrp_std.vh"
`include "C:\usrp\include\fpga_regs_common.v"
`include "C:\usrp\include\fpga_regs_standard.v"

- Proceed the same way for all the files that have those kind of include statements
and recompile the code.

- The compile will take anywhere between 5 to 20 min depending on the speed of
your processor. At the end, you’ll get the compilation report that looks like the
following:

- Now, you can program the board using the new bit file.

Programming the board:

- Now, you need to transfer the bit file to your Linux machine. I suggest you put
your file in the /usr/local/share/usrp/rev{2,4} folder.

- The USRP has almost no non-volatile storage. Thus, whenever you run an
application, the FPGA is programmed. By default, the USRP loads the FPGA
bitstream from /usr/local/share/usrp/rev{2,4}/*.rbf. However, if you want the
board to load your own bitstream, you can specify it as an additional keyword
constructor argument when opening the USRP:
u = usrp.sink_c(0, 64, fpga_filename="usrp_std.rbf")
This will load the usrp_std.rbf bitstream from the
/usr/local/share/usrp/rev{2,4}folder.

Department of Electrical Engineering NESL
University of California, Los Angeles

Table of contents

 The Universal Software Radio Peripheral

 Inside the FPGA
- the transmit path
- the receive path

 FPGA/USB interface (not written yet)

 How to compile the verilog code and program the FPGA

